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Abstract Data acquisition errors due to dead pix-
els or other hardware defects can cause undesir-
able artifacts in imaging applications. Compensat-
ing for these defects typically requires knowledge
such as a defective pixel map, which can be diffi-
cult or costly to obtain and which is not necessarily
static. However, recent calibration data is readily
available in many applications. In this paper, we
compute optimal filters for image deconvolution
with denoising using only this calibration data, by
minimizing the empirical Bayes risk. We derive a
bound on how the reconstruction changes as the
number of dead pixels grows. We show that our
approach is able to reconstruct missing informa-
tion better than standard filtering approaches and
is robust even in the presence of a large number of
defects and to defects that arise after calibration.
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1 Introduction

Missing data artifacts are common in imaging sys-
tems such as MRI [19], CT scans [1], and charge-
coupled-device (CCD) detectors. For definiteness,
we discuss CCD cameras, but our techniques ap-
ply more generally. Common CCD defects include
dead pixels or hot pixels, whose response is inde-
pendent of light input; dead columns, where an en-
tire column of pixels are dead [20]; and pixel traps,
where a defective pixel causes loss of information
in all pixels above it in a column [14,22].

Defects in CCDs become more prevalent as de-
tectors age. If an accurate map of defective pix-
els is available, as in Figure 1, digital correction
techniques such as image inpainting or interpola-
tion can be used to pre-process the data and “fill-
in” the missing information [2, 3, 5]. However, ob-
taining an accurate map may require tedious vi-
sual inspection of calibration data. In applications
where images are processed without manual inter-
vention, artifacts in the reconstructed images may
be missed by the scientists who use the results.

In this paper, we assume that no defective pixel
map is available. However, we do rely on recent
calibration data, which can be gathered in many
applications. As in our previous work [7], we use
this calibration data to compute optimal filters for
image deconvolution. Our approach uses an empir-
ical Bayes risk minimization framework to learn
the missing information. We adopt the assump-
tion, common in the machine learning literature,
that the calibration data are samples drawn from



a space of images according to some probability
distribution. We describe two approaches for de-
convolution that can be efficiently implemented
within the empirical risk framework. One is im-
age deblurring via spectral filtering and another
is a combined image deblurring and denoising ap-
proach. We show that our approach is robust even
when a large number of pixels are defective or few
training images are available.

In Section 2 we describe the basic problem of
image deconvolution and introduce our approach
to defining optimal filters for deblurring and de-
noising. In Section 3 we assess the effect of missing
pixels on the reconstruction, deriving a bound on
how the reconstruction changes as the number of
dead pixels grows. Numerical results are shown in
Section 4, demonstrating superior performance of
our method relative to standard algorithms such as
Tikhonov regularization and inpainting. In these
experiments, our algorithms provide reconstruc-
tions with small error even when 50% of the pixels
are defective or when additional pixels become de-
fective after calibration. Conclusions are presented
in Section 5.

2 Problem Formulation

The goal of image deconvolution is to reconstruct
a clear image from one that has been blurred and
obscured by noise. Mathematically, the observed
blurred image b ∈ Rn can be written as

b = Aξ + δ , (1)

where ξ ∈ Rn is the unknown true image, A ∈
Rn×n models the blurring process, and δ ∈ Rn is
additive noise. The blurring matrix A is defined by
the point spread function (PSF), which describes
how a point source is blurred [15]. In this paper,
we assume that the PSF is known.

The goal of image deconvolution is to recon-
struct an approximation of ξ, given b and A. The
problem is ill-posed, meaning small errors in the
data may lead to large errors in the solution. When
n is small enough, or when the blur is spatially
invariant and boundary conditions permit a fast
spectral decomposition of A [15], spectral filtering
is often used to regularize the problem and com-
pute stable solutions.

2.1 Spectral Filtering

Let A = UΣV> be the singular value decomposi-
tion of A, where Σ is a diagonal matrix containing

Fig. 1: Sample dead pixel map. At a white (dead) pixel,
the observed image value is zero.

the singular values, σ1 ≥ σ2 ≥ ... ≥ σn > 0, and
orthogonal matrices U and V contain the left and
right singular vectors ui and vi, i = 1, 2, ..., n, re-
spectively. The filtered solution can be written as

xA(φA) =
n∑

i=1

(φA)i
u>i b
σi

vi ,

= Vdiag
(
U>b

)
Σ−1φA , (2)

where φA is the vector of spectral filter factors
(φA)i. The choice of filter factors is crucial to the
reconstruction. Standard filters typically use a par-
ticular functional representation for the filter fac-
tors. For example, Tikhonov filter factors can be
written as (φA)i = σ2

i /(σ2
i +α2), where α is a regu-

larization parameter, chosen to make the filter fac-
tors corresponding to large singular values close to
1 and filter factors corresponding to small singu-
lar values close to 0. In contrast, building on our
work in [7], our approach allows each filter factor
to be selected independently, without assuming a
particular functional form, so we treat each of the
n values (φA)i as a separate parameter.1

Ideally, we would use image-dependent filter
factors that minimize the error between the true
image and the reconstructed image. However, the
true image is not known in practice, so we choose
to learn good filter factors from a set of calibration
or training images [10], using a Bayes formulation.
As in [7], we assume that the operator A is deter-
ministic, not subject to noise, that the true images
(both calibration and test) are chosen according to

1 The extension to a matrix A that has more rows
than columns, or that has rank less than n, is straight-
forward. In that case, replace every Σ−1 by the pseudo-
inverse Σ† and every summation from i = 1 to n by
a summation i = 1 to rank(A), so that the number of
filter factors is reduced to rank(A).
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a probability distribution with finite second mo-
ments, and that we have a probability distribution
for the noise with zero mean and finite second mo-
ments. Let ξ(k), k = 1, 2, ..., N, be a set of training
(calibration) images, with corresponding observed
(noisy) blurred images b(k). Then we compute the
optimal p-norm error filter [7] as the solution to
the empirical Bayes risk minimization problem

φ̂A = arg min
φA

1
pnN

N∑
k=1

‖x(k)
A (φA)− ξ(k)‖p

p , (3)

where ‖·‖p is the p-norm and x(k)
A is the filtered so-

lution (2) corresponding to b(k). For p = 2, Equa-
tion (3) reduces to solving a linear problem, since
the n parameters (φA)i appear linearly in (2), but
for all other p, we solve this optimization problem
using a Gauss-Newton optimization method with
Armijo line search [17].

2.2 A Combined Approach: Deblurring and
Denoising

It has been observed in the image processing lit-
erature [16, 18] that spectral filtering followed by
image denoising is an effective approach for the
deconvolution of images. The basic idea is to first
apply a spectral filter to deblur the image and
then use a second low-pass filter in some other
frequency-related basis to denoise the resulting im-
age. Finding the right balance of deblurring and
denoising is key to the success of this approach. In
this section, we use calibration data to determine
the optimal combination of deblurring and denois-
ing, by employing a variable projection approach
within an empirical Bayes risk framework.

Let W ∈ Rn×n represent any orthogonal dis-
crete 2-D frequency transform. For example, W
and its inverse operation, W>, could be defined
using a wavelet, Fourier, or cosine transform.

Then the filtered solution can be written as

xAW (φA,φW ) = W>diag(φW )WxA(φA) , (4)

where φA is a spectral filter for deblurring, φW

is a frequency filter for denoising, and xA(φA) is
defined in (2). The optimal filters φ̂A, φ̂W are com-
puted as solutions to the joint optimization prob-
lem

arg min
φA,φW

f(φA,φW ), (5)

where

f(φA,φW ) =
1

pnN

N∑
k=1

‖x(k)
AW (φA,φW )− ξ(k)‖p

p ,

(6)

and x(k)
AW is the filtered solution (4) corresponding

to b(k).

Computing solutions to (5) can be numerically
difficult due to nonlinearities. However, for the case
p = 2, we can exploit the separability of the prob-
lem and use a variable projection approach [12,13].
That is, we solve the reduced optimization prob-
lem

min
φA

f(φA, φ̂W (φA)) , (7)

where

φ̂W (φA) = arg min
φW

f(φA,φW ) . (8)

Notice that for fixed φA, the filtered solution

xAW (φA,φW ) = W>diag(WxF (φA))φW ,

is linear in φW . Thus, optimization problem (8)
for p = 2 has a closed form expression for the so-
lution. Problem (7) can then be solved by New-
ton’s method, or a variant. Every time a function
value is needed, (8) is solved, and derivatives, if
needed, are computed using the chain rule. Using
variable projection reduces the number of variables
in the optimization problem and tends to reduce
the number of local minimizers, which can make it
easier to find a global minimizer.

Furthermore, if Tikhonov regularization is used
for deblurring, then φA is determined by a sin-
gle parameter α, so that (7) reduces to a one-
parameter optimization problem.

3 Effect of Missing Pixels on the
Reconstruction

In this section, we compute error bounds for re-
constructions when missing pixels are present in
the data. We first compare the reconstruction for
a blurred image with missing pixels to that of the
blurred image without missing pixels. We show
that, for p = 2, the mean squared difference in re-
constructions can be bounded linearly in the num-
ber of missing pixels.

The filtered solution corresponding to no miss-
ing pixels can be represented as xA = VΦAΣ−1U>b ,

where b is the blurred image in (1) and ΦA is a
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diagonal matrix with filter factors (φA)i on the
diagonal. Let M be the set of indices correspond-
ing to missing pixels in the image, and let M be
the identity matrix with ones replaced by zeros
for missing pixels. Then the observed image with
missing pixels can be written as

b̃ = Mb ,

and the corresponding filtered solution is given by

x̃A = VΦAΣ−1U>b̃ . (9)

Assume that the observed image has been normal-
ized so that 0 ≤ bi ≤ 1. Then, using the fact that

M = I−
∑
i∈M

eie>i ,

where ei is the i-th column of the identity matrix,
we get a bound for the mean squared difference in
reconstructions,

‖xA − x̃A‖22 = ‖VΦAΣ−1U>
(∑

i∈M
eie>i

)
b‖22

≤ γ2
A

∑
i∈M

b2
i

≤ γ2
A |M| ,

where

γ2
A = max

i

(
(φA)i

σi

)2

.

Similarly, for the combined approach, we have

x̃AW = W>ΦW Wx̃A . (10)

and

‖xAW − x̃AW ‖22

= ‖W>ΦW WVΦAΣ−1U>
(∑

i∈M
eie>i

)
b‖22

≤ ‖ΦW WVΦAΣ−1‖22 · ‖U>
(∑

i∈M
eie>i

)
b‖22

≤ ‖ΦW ‖22 · ‖ΦAΣ−1‖22
∑
i∈M

b2
i

≤ γ2
AW |M| ,

where
γ2

AW = γ2
A ·max

i
((φW )i)2 .

We have shown that the squared difference can
be bounded linearly in the number of missing pix-
els. Using this bound and the fact that

‖ξ − xA‖2 = ‖ξ −VΦAΣ−1U>b‖2
= ‖(ΦA − I)V>ξ + ΦAΣ−1U>δ‖2
≤ ‖(ΦA − I)V>ξ‖2 + γA‖δ‖2 ,

the total reconstruction error can be bounded as

‖ξ − x̃A‖2 ≤ ‖ξ − xA‖2 + ‖xA − x̃A‖2
≤ ‖eA‖2 + γA(‖δ‖2 + |M|1/2) ,

where ‖eA‖ = ‖(ΦA−I)V>ξ‖ is the regularization
error, obtained by using regularized inverse ma-
trix VΦAΣ−1U>. The second term corresponds
to perturbation errors. Similarly, we have for the
AW filters,

‖ξ − x̃AW ‖2 ≤‖ξ − xAW ‖2 + ‖xAW − x̃AW ‖2
≤‖eAW ‖2 + γAW (‖δ‖2 + |M|1/2) ,

where eAW = (W>ΦW WVΦAV> − I)ξ. These
results are summarized in the following theorem.

Theorem 1 Assume A, ξ, and b̃ are given. Let
x̃A and x̃AW be filtered solutions defined in Equa-
tions (9) and (10) respectively. Then the recon-
struction errors are bounded in terms of the square
root of the number of missing pixels |M|, i.e.,

‖ξ − x̃A‖2 ≤ ‖eA‖2 + γA(‖δ‖2 + |M|1/2)

and

‖ξ − x̃AW ‖2 ≤ ‖eAW ‖2 + γAW (‖δ‖2 + |M|1/2) .

In this section, we have computed error bounds
for the reconstructions, when missing pixels are
present in the data. Previous results for inpainting
[4] do not include the blurring operator and only
consider errors in the inpainting region.

4 Numerical Results

In this section, numerical results illustrate the per-
formance of the optimal filters for image deconvo-
lution, in the presence of missing data artifacts.
Experiments were conducted to address the fol-
lowing questions: First, how do the optimal fil-
ters compare to standard methods for deconvo-
lution (Section 4.1)? Second, how do our learn-
ing methods perform as the number of dead pixels
increases, and how do they compare to standard
inpainting methods (Section 4.2)? Third, how sen-
sitive are the optimal filters to additional dead pix-
els, which have not been learned by the empirical
Bayes framework (Section 4.3)? Lastly, how many
training images are needed to get reasonable re-
sults (Section 4.4)?
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4.1 Comparing Optimal Filters to Tikhonov
Filters

Satellite images from NASA were used in the ex-
periments. Each image was 256×256. Forty train-
ing images were obtained by randomly rotating,
translating, and zooming 8 NASA images 5 times
each. We defined A using a spatially-invariant sym-
metric Gaussian point spread function with mean
0 and covariance matrix equal to the identity 2.
More precisely, a blurred image b(k) was produced
from a true image ξ(k) by

b(k) = M(Aξ(k) + δ(k)) ,

where the noise δ(k) is an independent and iden-
tically distributed sample from a normal distribu-
tion with mean zero and covariance a multiple of
the identity matrix, with the multiple uniformly
sampled from [0.05, 0.1]. Other NASA satellite im-
ages were processed in the same way for validation.

In this experiment, training data is used to
compute optimal filters from Equation (3) with
p = 2 and p = 10. We refer to these as the A2 and
A10 filters respectively. The A2 filter corresponds
to a widely used measure of the error, namely,
the mean squared error. It has been shown that
the optimal A2 filter numerically approximates the
Wiener filter [7]. The 10-norm was selected (as a
proxy for the infinity or max norm) so that large
errors, such those arising at dead pixel locations,
are strongly penalized and small errors, such as
background noise, are weakly penalized. The so-
lution changes slowly for larger values of p, but
finding the optimal parameters is a more difficult
optimization problem.

We also computed the optimal filters from Equa-
tion (5) with p = 2, and we refer to them as AW2
filters. Matlab’s fminbnd routine was used for the
1D optimization, and W represented a single level
discrete 2-D Haar wavelet decomposition.

The missing pixel map consisted of 1310 ran-
domly distributed dead pixels (accounting for ap-
proximately 2 % of the image), a dead column (col-
umn 156), and a pixel trap (in column 129). Fig-
ure 1 illustrates the dead pixel map used in our
experiment, and the top row of Figure 2 shows the
two validation images.

For each of the validation images, we compare
our optimal filters to the Tik-GCV filter, which is

2 Any type of blurring operator A (spatially variant
or invariant) may be considered, with the only restric-
tion that the singular value decomposition should be
available.

the Tikhonov filter obtained by using the generalized-
cross-validation (GCV) method [11] to choose the
regularization parameter α. We also compare to
the Tik-MSE filter, where α is chosen to minimize
the mean square error. Tik-MSE is not a practi-
cal method, since it requires knowledge of the true
validation images, but it indicates the best per-
formance that Tikhonov filtering could obtain. It
is important to note that optimal filters are com-
puted off-line, while the Tikhonov parameter is
typically re-estimated for each image.

To illustrate the performance of the filters in
the presence of dead pixels, we show in Figure 2 the
absolute error images in inverted colormap (white
corresponding to zero). All of the optimal filter
approaches were able to compensate for the dead
pixels better than the Tikhonov approaches. Dark
spots and vertical lines in the error images for
Tikhonov indicate large errors at the dead pixel
locations.

Figure 3 shows parts of columns 129 and 156
in the restored images. The plots clearly show that
Tikhonov-based methods have difficulty reconstruct-
ing dead pixels, while the optimal filters do a sur-
prisingly good job. In particular, the AW2 filter
seems to reconstruct the missing information very
accurately.

In order to investigate how different our com-
puted filters are from standard ones, we display
them as images. Figures 4(a)–(c) display the Tik-
MSE filter (for the second validation image), the
A2 filter and the A10 filter. The filter factors are
arranged in a two-dimensional format, using the
fact that the Gaussian blurring function is separa-
ble to provide a natural layout from largest singu-
lar value in the top left corner to smallest in the
bottom right, with decreasing singular values as
we go down each column or across each row. The
color of the pixel for a particular singular value σi

indicates the magnitude of its filter factor (φA)i.
These filters are visibly different. For the AW2 fil-
ter, φ̂A is similar to the filter in Figure 4(a) (image
not shown). The corresponding filter φ̂W is com-
puted for the wavelet basis and is shown in Fig-
ure 4(d). The filter is arranged such that the top
left block corresponds to the scaling coefficients,
and the other blocks correspond to the horizontal,
vertical, and diagonal orientations [9].

We notice that the dead column and pixel trap
appear in the filter factors for the scaling coeffi-
cients and the vertical orientation. A reconstruc-
tion that provides a good approximation of dead
columns and pixel traps can be obtained using
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Fig. 2: Validation images (top row), and absolute error
images (inverted colormap: white corresponds to zero)
for reconstructions using optimal filters (A2, A10, and
AW2) and Tikhonov filters.

only these filter factors (with all others set to one).
However, obtaining a good reconstruction that also
compensates for random missing pixels requires
the full denoising filter.

4.2 Sensitivity to the Number of Dead Pixels

In the next experiment, we investigate the sensi-
tivity of the reconstructions to the number of dead
pixels in the observation. We consider randomly
positioned dead pixels with 1 % to 50 % of the im-
age missing. Here, we do not include pixel traps or
dead columns.

We again use 40 training images, but we evalu-
ate the filters using 90 different validation images.
These validation images were obtained by taking
9 different satellite images and performing 10 ran-
dom rotation, translation, and zoom transforma-
tions of each, and then applying blurring followed
by the dead pixel mask. For each validation im-
age, we record the MSE between the true and re-
constructed image for the A2 and the Tik-GCV
filters.

In this experiment, we also compare the per-
formance of the optimal filters to methods using
image inpainting prior to deblurring. A variety of
inpainting techniques have been proposed [5, 6, 8],
and in this paper, we consider two of these meth-
ods, one that does not require a dead pixel map
and a second approach that does. In the first method,
for each of the validation images, we compute a re-
construction using a 3× 3 median filter for image
inpainting followed by Tik-GCV for deblurring. In
the second method, we compute a reconstruction
using total variation (TV) for inpainting followed
by Tik-GCV for deblurring. For TV inpainting,
software from [8] was used, and the correct dead
pixel map was applied.

In Figure 5(a) we provide box plots for the re-
construction errors from the A2 filter, correspond-
ing to different percentages of missing pixels. The
box shows the 25th and 75th quartiles, with a circle
at the median. The whiskers extend to extreme val-
ues, and outliers are plotted individually. The gen-
eral trend is that, as expected, the error increases
with increasing numbers of dead pixels. Similarly,
box plots for reconstruction errors from the AW2
filter for different percentages of missing pixels is
presented in Figure 5(b). Figure 5(c) presents me-
dian reconstruction errors for all five reconstruc-
tion approaches on the same scale.

It is remarkable to see that reconstructions with
optimal filters result in smaller median errors than
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Fig. 3: Detail of reconstructions for the two validation images (left and right). Plots (a) and (b) show pixels 75
to 175 in column 129, containing a pixel trap and random dead pixels. Plots (c) and (d) show the same pixels in
column 156, a dead column. The horizontal axis denotes the row of the pixel within the column. The solid curve
plots the true pixel values, and the blue stars identify dead pixels.
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Fig. 4: (a) Tikhonov filter (for the second validation image) with regularization parameter computed using the MSE
criterion. (b) A2 filter. (c) A10 filter. (d) Denoising filter in the wavelet domain for the AW2 filter.

total variation inpainting followed by Tik-GCV.
Total variation inpainting requires an accurate dead
pixel map, while optimal filters just require train-
ing data, which is often available. Furthermore,
since optimal filters can be computed off-line, com-
puting reconstructions for optimal filters can be

significantly faster than inpainting followed by de-
convolution.
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Fig. 5: Figure (a) and (b) contain box plots for recon-
struction error for varying percentages of missing pixels
for A2 and AW2 filters respectively. (c) Median recon-
struction errors for A2, AW2, and Tik-GCV filters at
varying percentages of missing pixels, as well as me-
dian reconstruction errors for 3×3 median filter followed
by Tik-GCV and total variation inpainting followed by
Tik-GCV. The solid lines with squares and dots in (c)
correspond to median values in (a) and (b) respectively.

4.3 Sensitivity to Unlearned Dead Pixels

Next we consider the sensitivity of the optimal fil-
ters to unlearned missing pixels. That is, we com-
pute the A2 and AW2 filters for 40 training im-

ages with a dead pixel map of 10 percent randomly
generated missing pixels, and we tested these opti-
mal filters on 90 validation images with additional
dead pixels. More specifically, we considered an
additional 0–39 percent of missing pixels in the
validation images. For each additional percentage,
we record the MSE between the true and recon-
structed image for each of the 90 validation images
and present the median of the reconstruction er-
rors in Figure 6. Since an additional percentage of
missing pixels of 0 corresponds to using 10 percent
missing pixels for both the training and validation
data, the data points at 0 on the x-axis in Figure 6
are the same as the data points at 10 on the x-axis
in Figure 5(c).

Figure 6 shows that the optimal filters are still
useful when there are additional dead pixels which
are not present in the training data. Furthermore,
the desired level of accuracy in reconstruction can
inform the user when it may be necessary to up-
date the training data and compute new optimal
filters. For example, if the desired median accuracy
is 0.01 (see dashed line), then optimal filters should
be re-computed after an additional 34 percent of
missing pixels for A2 and an additional 30 percent
for AW2. An interesting phenomena is that for up
to an additional 5 percent of missing pixels, the
AW2 filter produces smaller median errors than
the A2 filter.
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Fig. 6: Median reconstruction errors for A2 and AW2
filters for increasing percentages of unlearned missing
pixels in the validation data.
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4.4 Sensitivity to the Number of Training Images

In the next experiment, we investigate the sensitiv-
ity of the reconstructions to the number of training
images. We compute the A2 and AW2 filters on 1
to 60 training images, and test the filters on a set
of 50 validation images. The problem setup is de-
scribed in Section 4.1, and the missing pixel map
in Figure 1 is used. The median reconstruction er-
rors for the validation images are found in Figure 7.
This plot is often referred to as the Pareto curve.

The expected trend is that for an increasing
number of training images, we get better recon-
structions on average for the validation data [21,
Chap. 3]. Both the A2 and AW2 filters display this
trend. For the AW2 filter, additional improvement
in reconstruction error is minimal after approxi-
mately 16 training images. However, for the A2
filter, 6 images may be sufficient.
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Fig. 7: Pareto curve of median reconstruction errors for
A2 and AW2 filters.

5 Conclusion

We have described an approach that uses calibra-
tion data to determine optimal filters for image
deconvolution, and we have shown that the result-
ing reconstructions have high quality, even when
the number of defective pixels is large or changing.
Training or calibration data are available in a vari-
ety of applications, making the method widely (but
not universally) applicable. A key advantage of this
approach is that reconstructions can be done effi-
ciently off-line and without manual intervention or
knowledge of a dead pixel map.
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