
Mathematical Programming 23 (1982) 20-33 
North-Holland Publishing Company 

A D I S C R E T E  N E W T O N  A L G O R I T H M  F O R  M I N I M I Z I N G  

A F U N C T I O N  O F  M A N Y  V A R I A B L E S  

Dianne P. O ' L E A R Y  

Computer Science Department and Institute for Physical Science and Technology, University 
of Maryland, College Park, MD, U.S.A. 

Received 4 August 1980 
Revised manuscript received 16 February 1981 

A Newton-like method is presented for minimizing a function of n variables. It uses only 
function and gradient values and is a variant of the discrete Newton algorithm. This variant 
requires fewer operations than the standard method when n > 39, and storage is proportional 
to n rather than n 2. 

Key words: Discrete Newton Algorithm, Function Minimization, Conjugate Gradient. 

1. Introduction 

Many algorithms have been proposed for finding a local minimum of a 

function f ( x )  f rom R" into R ~ using only function and gradient values. These 
include discrete Newton  methods,  quasi -Newton methods,  and the conjugate 

gradient algorithm. For  a discussion of these methods,  see, for example [1]. 
There are classes of problems for which each of these methods is the most  

efficient. 
In this paper,  we describe a variant  of the discrete Newton  algorithm which 

requires fewer  operat ions than the standard method when n > 39. If  a pre- 
condit ioned form of the matrix of second derivatives has many  multiple or 

clustered eigenvalues, this can be exploited, and even greater  efficiency can be 
achieved. Storage is of O(n) rather than the O(n 2) of the standard discrete 

Newton  method,  and this method requires less storage if n > 12. The algorithm 

uses a precondit ioned conjugate gradient method to generate and solve the linear 

sys tem which determines the Newton  step. 
In Section 2 we present  the algorithm and discuss its convergence rate and 

properties.  Section 3 provides numerical  examples.  A Fortran code is provided 

in [2]. 

2. A discrete Newton algorithm and its properties 

In this section we consider the problem 

min f(x) .  
x c R  n 

20 



Dianne P. O'Leary/ Discrete Newton algorithm 21 

We assume that [ is twice continuously differentiable, and we denote the 
gradient of f by g(x) and the Hessian matrix of second derivatives by G(x). 
Section 2.1 reviews standard discrete Newton methods for this problem. Section 
2.2 discusses a tool used in our algorithm, the conjugate gradient method for 
solving linear systems. The discrete Newton method variant is presented in 
Section 2.3 and its properties are discussed in Section 2.4. 

2.1. The discrete Newton algorithm 

In discrete Newton methods, the Hessian matrix G(x) is approximated by 
differencing the gradient, using the relation 

G(x)v = lira g(x + hv) - g(x) 
h~O h 

The standard method is to difference g along the coordinate directions el . . . . .  e, 
(where ei is the ith unit vector) in order to generate approximations to the 
columns of G. Since, for smooth functions, G is symmetric, the approximate 
Hessian is then often symmetrized by averaging corresponding elements in the 
upper and lower triangles. 

Directions other than the coordinate ones have been proposed for the 
differencing; see, for example, Brent [3]. If G is known to have a fortuitous 
zero-nonzero structure, then other directions are more efficient than coordinate 
directions for calculating the elements. For example, a tridiagonal Hessian of 
any dimension n can be approximated with three evaluations of the gradient. 
This idea of tailoring the direction of the finite difference to the structure of the 
Hessian has been exploited by Curtis et al. [4], and Powell and Toint [5]. 

Once the differences have been calculated, however, there remains the prob- 
lem of solving a linear system of equations in order to determine the Newton 
step direction p satisfying 

G ( x ) p  = - g ( x ) .  

In high dimensions this can be an expensive operation, in general of order n 3, 
unless special techniques are used as in [6]. 

There is the added complication of insuring that the step direction actually is a 
descent direction for small step lengths, i.e., that pTg(x)<O. Safeguarded 
Newton algorithms do this by modifying G(x) to make it positive definite if it is 
not already. The most efficient algorithms for this are based on the Cholesky 
factorization of a symmetric matrix into a lower triangular matrix times its 
transpose [7, 8]. A survey of some safeguarding techniques is given in [9]. 

As a further precaution, many algorithms insist that the function value 
decrease at each iteration. If the Newton step does not produce a sufficient 
decrease, a linesearch is performed in the Newton direction. 

Near a stationary point, the norm of g(x) may be close to zero but G(x) may 



22 Dianne P. O'Leary / Discrete Newton algorithm 

be indefinite. In this case a direction can be substituted which satisfies 
pTG(x)p <0. Gill and Murray [7] have shown that such a direction can be 
calculated easily, given the Cholesky factors of the modified Hessian matrix. 

The following discrete Newton scheme is typical of many of the better 
algorithms. 

Standard discrete Newton algorithm 

Given: x0, g(x0), a steplength h for the finite differences, and a convergence 
tolerance E 

For k = 0, 1 .... 
Step 1. Generate an approximate Hessian matrix G~ by taking finite 

differences in predetermined directions (usually the coordinate unit vectors) and 
averaging corresponding elements in the upper and lower triangles. 

Step 2. Perform a Cholesky factorization of the approximate Hessian Gk into 
LL T, modifying it if necessary to make the factored matrix positive definite. 

Step 3. If Jlg(xk)]] < ~ and Gk is positive definite, halt with the approximate 
minimizer xk. 

Step 4. If IIg(Xk)ll< • and Gk is not positive definite, compute pk to be a 
direction of negative curvature of Gk. Otherwise compute Pk to satisfy LLTpk = 

- g(xk). 
Step 5. If f(xk + pk) is sufficiently less than f(xk) (as judged by Goldstein's 

criteria [10] or some other test), then set xk+~ = Xk + Pk. 
Otherwise determine a so that f(Xk + ~Pk) gives a sufficient decrease in the 

function value and set Xk+j = Xk + apk. 
Step 6. Evaluate g(xk+j). 

The algorithm proposed in Section 2.3 combines Steps 1--4, producing a 
method which in some cases is significantly more efficient. It uses as a tool the 
conjugate gradient algorithm, which is reviewed in the next section. 

2.2. The preconditioned conjugate gradient algorithm 

The conjugate gradient algorithm for solving linear systems is an iterative 
method which can be used to solve G~pk = -g(xk). It requires at each step the 
product of the matrix Gk with a given vector v. Total space required is 
proportional to n. To simplify notation, in this section we will drop the subscript 
k on Gk and Pk and denote g(xk) by g. 

The conjugate gradient method was originally phrased to solve positive 
definite systems of linear equations [11], but this is not sufficient for our 
purposes. To preserve stability when G is indefinite we need to exploit the 
relationship of the conjugate gradient algorithm to one of Lanczos [12, 13]. From 
this viewpoint the algorithm is a method to factor G into the product of an 



Dianne P. O'Leary/ Discrete Newton algorithm 

orthogonal matrix times a tridiagonal times an orthogonal: 

G = V T V  T, 

v T v  = I~ 

-Pl  fi2 

~2 P2 

T =  

f3 

23 

or 

T y  = -- VXg, y = VXp.  

Typically the first column of V is chosen to be in the direction of - g  so that 

- V ~ g  = I lg l le , .  

The linear system for y can be solved using a Cholesky decomposition, modify- 
ing the matrix T if necessary to make it positive definite. This gives the 
equivalent problem 

L L T y  = [[gl[el 

where L is lower bidiagonal. 
As it stands now, the solution cannot be accumulated in an iterative manner 

without saving all previous vectors, but an idea of Chandra [14] borrowed from a 
similar situation discussed by Paige and Saunders [15], overcomes this problem. 
Let C be defined by 

V = C L  T. 

Then the columns of C can be computed sequentially, without saving all of L or 
V, by forward substitution on the system 

L C T  = V T. 

f i n  Pn 

The matrices V and T are generated (and discarded) column by column. If a full 
n steps of the algorithm are taken, then the linear system 

Gp = - g 

is equivalent to 

V T V T p  = -- g 



24 Dianne P. O'Leary/ Discrete Newton algorithm 

At the same time, p can be accumulated using the relations 

L z  = Ilglle,, 

p = V y  = V L - T z  = Cz. 

Chandra [14] notes that in order to preserve stability when T is indefinite or 
close to semi-definite, it is necessary to do a block triangular factorization 
making L block lower triangular, with 1 × 1 or 2 × 2 matrices on its main 
diagonal. This version of the Cholesky factorization is due to Bunch and Parlett  
[16]. An alternative to this is to use the scheme of Paige and Saunders [15] where 
T is factored as the product  of a lower triangular matrix /% and a very simple 

orthogonal matrix Q. Then, in the relations above, /~ would play the role of L 
and Q would play the role of L T. The resulting code requires somewhat more 

operations. 
So, given V and T by columns, we can solve the system. Recurrences for the 

columns are defined by 

G V  = V T .  

Writing the jth column of this relation we get 

Gvj = ~jvj_j + pjvj + ~j+~vj+~ 

where vi is the jth column of V. 
Using the orthogonality relations gives (through an induction argument) 

pj = v T Gvj,  

E + ,  = - P J 4  = T V jGvj+l.  

The definitions of/3~+j are equivalent if G is symmetric and no round-off error 
occurs. In computational practice, however,  they are not equal. To preserve 
orthonormali ty it is best to use the first definition in generating the v sequence. 
To symmetrize the tridiagonal matrix we use the average of the two values as 

the new off-diagonal element. 
In the course of the factorization, if T is found to be indefinite, the factors can 

be modified as in Gill and Murray's  algorithm [7] to produce a positive definite 

matrix. In terms of the original matrix, 

G = V L L T V  T -  V D V  T 

where D is a positive semi-definite diagonal matrix. We will denote the positive 
definite matrix V L L T V  T by G. 

To find a direction of negative curvature when G is indefinite and the gradient 
is small, we use a method directly analogous to that of Gill and Murray. Let  s be 
the index of the maximum element of the diagonal of D. Then we determine p 

by solving 

L T z  = es 



Dianne  P. O ' L e a r y /  Discre te  N e w t o n  algori thm 25 

where es is the sth unit vector,  and setting p = Vz.  Then 

p T G p  = p T V L L  TVT p - p T V D V T  p 

= eTes - z T D z  

1 _  2 z = Z j djj. j=l 
Now note that Zs+l . . . . .  z, = 0, zs = 1/l,s, djj >- O, j = 1, 2 . . . . .  n, and I,Zs - d,s = 

p~ - l~,s-1 < 0 i f  G is indefinite. Therefore,  

d,s ~-~ z idj j p T G p =  l - - ~ s  -i~_i 2 

12 - d,~ s-1 
- ~" z jd# < O. 

Thus p is indeed a direction of negative curvature.  
As noted above, when .carried a full n steps, conjugate gradients may be 

regarded as a direct method. It is often more practical, however,  to regard it as 

an iterative method. If we define 

~(x) = 1/2(x - X*)TG(x -- X*), 

then a convergence bound is given by [17, 18]: 

/ 1  - -  K -112 )2k 
~(xk)-< 4(1 + ~ K _  2_ ~(x0) 

where x* is the true solution to the problem Gp = - g  and K = )tm.x(G)/)tmin(G) is 
the condition number of the matrix t~, the ratio of the largest and smallest 
eigenvalues. Convergence can be accelerated by preconditioning the problem; 
see, for  example, [19, 20]. Consider the equivalent linear system 

M I I 2 G M I / 2 W  = - M l/2g 

where M~JZw = p  and M m is symmetric positive definite. Writing the conjugate 

gradient algorithm for this problem and then converting back to the original 
variables gives a recurrence 

G M V  = V T  w h e r e V v M V = I .  

The convergence bound above is still valid, where K is now the condition 
number of MG. In addition if M(~ has only r distinct eigenvalues, the exact solution 
will be found in r or fewer  iterations. The complete algorithm is given below. 

A c o n j u g a t e  g rad ien t  a l g o r i t h m  

In i t i a l i za t ion :  Given a convergence tolerance e, a preconditioning matrix M, a 
lower bound w ~12 for  main diagonal elements of L, and an upper bound ~O for the 



26 Dianne P. O'Leary / Discrete Newton algorithm 

off-diagonal elements of L, let 

v 0 = c 0 = p  = 0 ,  

/3~2) = (gTMg)l/2 ' v~ = -gl/3~ 2), 

31=0.  

For  j = 1,2,. . .  
S t e p  1. Generate the new Lanczos  vector. 

pj = v T M G M v j ,  

30),V + i+, i l = G M v i  - pivi -/312)vj-I 
where o(l) is chosen so that x v j + ~ M v p ~ -  1, I-,j+l 

/3 ~2) = v ~ M G M v i +  1. j+l 

S t e p  2. Update the factorization, modifying if necessary to make the tridi- 
agonal matrix positive definite. 

,,(1), + /313 ' = -8~, djj=O. ~j+l = P , i+ l  2 , Ti PJ 

I f  VJ < co, then  djj = max(,, , ,  I~'Jl) - VJ, ~J+. = ~ . . / X / ~ +  djj. 
If I~J+,l > ~,  then 

dii = dij - (Tj + djj)(1 - ~÷~/~2) and ~j+~ = sgn(Si+O0, 

~j = X/,/j + djj. 
S t e p  3. Update the iterate; compute the next column of C and the residual 

norm. 

zj = - ~izj_l/Tj (with Zl =/31[T1), 

cj = ( M v j  - 6jcj I)/T~, 

p = p + z iq ,  

Ilrll -= IIGp + gll = Izj/~j÷~/vJl- 

If Ilrll < ' ,  then  halt. 

Gill and Murray advise that co be taken as 2 -t/2 on a t bit machine, and ~ as 
max(max~lG,] m, m a x ~ ¢ ~ l G ~ , J n l m ) .  Since in our case g2 is not computable,  an 
overestimate should be used; the effect of this is to keep the difference between 
G and G somewhat smaller by allowing more ill-conditioning in the factors. 

2.3.  A d i s c r e t e  N e w t o n  v a r i a n t  

We combine the discrete Newton algorithm of Section 2.1 with the conjugate 
gradient algorithm of Section 2.2 to obtain the following method. 



Dianne P. O'Leary/ Discrete Newton algorithm 27 

A discrete Newton variant 
Given: x0, g(x0), a steplength h for the finite differences, and a convergence 

tolerance E. 
For  k = 0, 1 .... 
Step 1. Use the precondit ioned conjugate gradient algorithm of Section 2.2 to 

find Pk to solve the linear system 

ffJkPk = -- g(Xk) 

or, if IIg(Xk)l[ < ~, to find a direction of negative curvature.  The inner product  of 
Gk with a vector  v of length 1 is approximated by 

Gkv = g(xk + b y ) -  g(xk) 
h 

If  Gk is found to be indefinite, the matrix T is modified by adding a diagonal 
matrix to it. The algorithm is terminated when the residual norm IIGkPk + g(xk)ll is 
sufficiently small. 

Step 2. If IIg(x~)ll < E and Gk was found to be positive definite, then halt with 
the approximate minimizer Xk. 

Step 3. If  f(Xk + Pk) is sufficiently less than f(Xk) (as judged by the Goldstein 
criteria or some other test), then set 

Xk+l = Xk -~- Pk. 

Otherwise determine a so that [(xk + (~p~) gives a sufficient decrease and set 

Xk+l = Xk nt- OLpk. 

Step 4. Evaluate g(Xk+l). 

An algorithm related to this one, but applicable only when f is convex and the 
approximate Hessian is positive definite, was presented in [21, p. 137] as a 
special case of one in [22]. 

2.4. Properties of  the algorithm 

The standard discrete Newton method takes, in general, n gradient evaluations 
and ~n 2 multiplications and additions to evaluate and symmetrize G~, and, 

ignoring any modifications to make Gk positive definite, ~n3+ ~n 2 multiplications 
and additions for the factorization and solution of the linear system. Storage 
required is -ln2. Conjugate gradients with no preconditioning, and assuming the 
worst  case where a full n iterations are necessary to solve the linear system to 
an acceptable level of accuracy,  involves n gradient evaluations and n 2 multi- 
plications and additions to form the product  of Gk with the direction vectors,  
plus 9n 2 multiplications and 7n 2 additions as overhead.  The ~n 2 storage locations 
of the standard method are replaced by 6n. 



28 Dianne P. O'Leary/ Discrete Newton algorithm 

Thus, this variant requires fewer operations when n > 39 and less storage 
when n > 12. 

Preconditioning the conjugate gradient iteration can reduce the number of 
gradient evaluations by reducing the number of conjugate gradient iterations 
necessary to determine the direction. Possible choices of the preconditioning 
matrix include the following: 

(1) M -~ can be chosen to be G(x0), the Hessian matrix at the initial point. 
(2) M -I can be chosen as a part of the Hessian that is easy to evaluate, 

perhaps a constant portion. If, for example, the Hessian is a constant matrix plus 
a matrix of rank r, conjugate gradients will, in the absence of rounding and 
truncation error, terminate with the exact solution in at most r iterations when 
using this preconditioning. Acceleration will also occur if the non-constant 
portion is small in norm. If storage is not sufficient to store a factorization of the 
chosen portion of the Hessian, a partial factorization might be used instead. 

Information saved from a previous conjugate gradient iteration can also be 
used to accelerate conjugate gradients. If Vi (n × J) and Tj (j × j) are the 
orthogonal and tridiagonal matrices computed in the first j conjugate gradient 
steps at Newton iteration k, then the initial guess for p at a later Newton 
iteration can be defined as -VjTvj I V ~ g  rather than 0, with g + Gp substituted for 
g in the definitions of jS~ 2) and v~ in the conjugate gradient algorithm. If the 
Hessian matrix has not changed much since iteration k, then very few conjugate 
gradient iterations will be required. 

The convergence rate of this discrete Newton algorithm is best understood 
intuitively by breaking the error into three pieces. Let x* be the true solution to 
the problem, G(Xk) the Hessian evaluated at Xk, Gk the approximate Hessian 
obtained by differencing, and Hk the matrix that conjugate gradients actually 
used, i.e., Pk = --Hkgk. Then, if the step length chosen was 1 and if G(xk) is 
positive definite, 

Xk+i -- X* : Xk -- Hkgk  -- X*  

= (Xk -- G ( x k ) - l g k  -- X*)  + (G(Xk) - l -  G~)gk + (G~ 1 - Hk)gk .  

Therefore, 

tlx +, - x*[I <-Ilx  - - x*ll  + - G  )g II 

+ I I ( C ? -  H )gkll. 

The first term is the Newton error at the (k + l)st step. The second term is 
error due to discrete differencing and depends on the choice of h in the 
conjugate gradient algorithm. The third term is error due to round-off and early 
termination in conjugate gradients. Strategies for balancing the first two errors 
have been studied in detail. If, for example, f is sufficiently smooth, Gk is a 
strongly consistent approximation to G ( x k ) ,  and G ( x * )  is nonsingular, then local 
quadratic convergence can be established if the finite difference step length h 



Dianne P. O' Leary / Discrete Newton algorithm 29 

decreases sufficiently rapidly as k increases [23]. To obtain the same con- 

vergence for the conjugate gradient variant, this implies that the third term in the 
error should go to zero as fast as the second; thus, the E used as the convergence 
tolerance for conjugate gradients and the finite difference parameter  h must both 
decrease sufficiently rapidly as k increases. Formal results of this nature can be 

derived from those of Bus [24]. 

3. Computational results and conclusions 

The discrete Newton  variant was programmed and tested on a UNIVAC 
1100/40 computer  in double precision arithmetic (approx. 18 decimal digits). 
Per formance  was compared with a standard discrete Newton algorithm, which 
differed only in that the Hessian approximation was formed by differencing 
along the coordinate axes and then symmetrizing, and the linear system was 

solved using a Cholesky factorization with modification to force the matrix to be 
positive definite. 

Four  test problems were used: 

(1) Generalized Rosenbrock function [25, 8] 

f ( x ) : l O O ( x 2 - x ~ )  2 + ( 1 - x O  2 if n = 2 ,  

f ( x ) = l + ~ ( l O O ( x i - ~ _ l ) 2 + ( l - x i )  2 if n > 2 .  i=2 
Initial guess: 

x = ( - 1 . 2 , 1 . 0 )  7 if n = 2  

x = ( l / ( n + l )  . . . . .  n l ( n + l ) )  x for n = 5 0 , 1 0 0 .  

(2) Watson problem [25] 

~ (j.~_n 1 (~1)./-2 (~__~ 1 (~91)i-1)2 )2 f ( x )  : x j ( j  - 1) xj - 1 + x 2. 
i=l 

Initial guess: 

x : ( 0  . . . . .  0) T, n = 6 .  

(3) Powell problem [8] 

f ( x )  = (x~ + lOxz) 2 + 5(x3 - x4) z + (xz - 2x3 )  4 + l O ( x t  - x4)  4. 

Initial guess: 

x = ( 3 , - 1 , 0 , 1 )  7 , n = 4 .  

(4) Pen 1 [25] 

f ( x )  = (xi - 1) 2 + 10 -3 x 2 -  0 . 2 5  . i=l 



30 Dianne P. O'Leary/ Discrete Newton algorithm 

Initial guess: 

x = ( 1 / ( n + l )  . . . . .  n/(n+l)) T or ( 1 , - 1 , 1 , - 1  .... )T for n = 5 0 , 1 0 0 .  

The references given refer to comparable results rather than to the original 
sources for the problems. Numerical results on these problems are, of course, 
insufficient to draw firm conclusions, but do indicate the method's  promise. 

The line search was a modified implementation of an algorithm suggested by 

Osborne [26]. If a steplength guess of 1 passes Goldstein's test, then it is used. 
Otherwise parameters are successively determined by one of two algorithms: 
quadratic interpolation on an interval starting at zero, if the last guess was an 
overestimate;  or the secant method on an interval starting with the previous 
guess, if the last was an underestimate. This is continued until Goldstein's test is 
passed. This strategy works well on most problems, but occasionally produces a 
sequence of bad step lengths which are very  close together. This happened,  for 

example, on the Rosenbrock functions. To avoid this problem, Osborne 's  choice 
of step length parameter  was averaged in the proportion (0.9, 0.1) with the result 
of bisection on the same interval. This is a very crude strategy, and implement- 

ing a high quality line search procedure would undoubtably improve the results, 
especially on problems for which gradient evaluations are expensive. 

In the experiments,  the finite difference step length was taken as h = 10 -8. The 

conjugate gradient algorithm iteration was terminated when the Euclidean norm 
of the residual had been reduced by a factor of 10 -5. The Goldstein parameter  ~r 
was taken as 10 -3 , demanding very little reduction in the function value per 

Newton iteration, or 0.25, demanding a substantial reduction. The termination 

criterion was 

f(xk) - f ( x * )  --- 10-5(1 + If(x*)l). 

Sample results are given in Table 1, which lists number of iterations, function 
evaluations, and gradient evaluations. For  comparison with [8], to obtain an 
accuracy of 10 -20 rather than 10 -5 in the function value took 24 Newton iterations 

(33 function evaluations) for Rosenbrock 's  example and 39 Newton iterations (73 
function evaluations) for Powell 's.  Results in [8], using a modified Newton 
algorithm are 15 (57) for Rosenbrock and 22 (67) for Powell. Differences are due 
to our use of a different line search and discrete approximations to the Hessian. 

Pen 1 is a very  special test  problem in that the Hessian matrix at the solution 
has n - 1 clustered eigenvalues of order I and one of order I0 -3. The conjugate 
gradient algorithm can exploit this, and thus this Newton variant performs 
spectacularly well on this example, even better  than the nonlinear conjugate 
gradient algorithms tested in [25]. 

The generalized Rosenbrock function is a hard problem for two reasons: the 
Hessian has no eigenvalue clustering and there are two minimizers for the 
problem, one with Xl = 1 and one with x~ = - 1 .  This is the only problem for 
which indefinite Hessians were encountered in the new variant or in which the 



Dianne P. O'Leary / Discrete Newton algorithm 

Table 1 
Numerical results: New variant (standard discrete Newton) 

31 

Problem o- 

Number of Number of Number of Number of 
Newton function gradient CG 
iterations evaluat ions evaluations iterations 

Rosenbrock 
n = 2 10 3 22 (22) 31 (31) 67 (67) 44 (0) 

Watson 
n = 6  10 -3 24 (10) 25 (11) 193 (71) 144 (0) 

Powell 
n = 4  10 _3 11 (11) 12 (12) 56 (56) 44 (0) 

Pen I, n = 50 
First guess 10 -3 2 (2) 3 (5) 7 (203) 4 (0) 

Pen 1, n = 50 
Second guess 10 3 3 (4) 4 (5) 10 (205) 6 (0) 

Pen l , n = 1 0 0  
First guess 10 -3 3 (3) 4 (7) 10 (304) 6 (0) 

Pen l , n = 1 0 0  
Second guess 10 -3 3 (3) 4 (4) 10 (304) 6 (0) 

Gen. Rosenbrock 10 ̀3 38 (64) 106 (203) 1551 (3265) 1474 (0) 
n = 50 

0.25 35 (72) 129 (294) 1373 (3673) 1302 (0) 
Gen. Rosenbrock 

n = 100 10 ̀ 3 88 (*) 268 3994 3817 
0.25 63 (*) 258 2616 2489 

(*) No data due to expense.  

secant algorithm was employed. The number of iterations was less than that 
reported for quasi-Newton algorithms in [25], but the number of gradient 
evaluations is substantial. 

Comparison with the standard discrete Newton algorithm shows generally a 
comparable number of Newton iterations, with variations (up to a factor of 2) on 
difficult problems due to discretization and round-off error of comparable size 
but different direction. 

The algorithm is relatively insensitive to the choice of parameters. Reducing 
the finite difference step length to 10-" did not have much effect except on 
Watson's function, where the work was approximately doubled. Changing the 
Goldstein parameter also had little effect; results for all functions except the 
Rosenbrock examples were identical. 

Recently, several other algorithms have been independently proposed which 
exploit the conjugate gradient algorithm in a similar way but do not find a 
discrete Newton direction, and sometimes lack numerical stability. These 
methods include [27, 28, 29]. Combining the best features of these methods and 
the one developed in this paper would probably produce an even more effective 
algorithm. 

In conclusion, this discrete Newton algorithm has advantages in storage and 



32 Dianne P. O'Leary/ Discrete Newton algorithm 

operations counts over other discrete Newton methods for moderate and large scale 
problems without special sparsity structure. It retains the standard advantages 
which discrete Newton algorithms have over quasi-Newton and conjugate 
gradient algorithms: it is more robust on difficult problems, and it is relatively 
easy to check necessary and sufficient conditions for the solution. Techniques 
for preconditioning linear systems can be used to reduce the number of gradient 
evaluations and on certain classes of problems this will produce a dramatic 
increase in efficiency. If linear constraints are present in the problem, the 
techniques described here could be used to compute a projected Newton 
direction. 

Acknowledgment 

I wish to thank Charles (Jerry) Huller for helpful discussions concerning 
matrix modification techniques. The referees made several helpful comments. 
This work was supported by the Office of Naval Research under Grant 
N00014-76-C-0391. 

References 

[1] W. Murray, Numerical methods for unconstrained optimization (Academic Press, New York, 
1972). 

[2] D.P. O'Leary, "A discrete Newton algorithm for minimizing a function of many variables", 
Computer Science Department Report TR-910, University of Maryland (June 1980). 

[3] R.P. Brent, "Some efficient algorithms for solving systems of nonlinear equations", SIAM 
Journal on Numerical Analysis 10 (1973) 327-344. 

[4] A.R. Curtis, M.J.D. Powell and J.K. Reid, "On the estimation of sparse Jacobian matrices", 
Journal of the Institute of Mathematics and its Applications 13 (1974) 117-119. 

[5] M.J.D. Powell and Ph.L. Toint, "On the estimation of sparse Hessian matrices", SIAM Journal 
on Numerical Analysis 16 (1979) 1060-1074. 

[6] M.C. Bartholomew-Biggs, "A matrix modification method for calculating approximate solutions 
to systems of linear equations", Journal of the Institute of Mathematics and its Applications 23 
(1979) 131-137. 

[7] P.E. Gill and W, Murray, "Newton-type methods for unconstrained and linearly constrained 
optimization", Mathematical Programming 7 (1974) 311-350. 

[8] S. Kaniel and A. Dax, "A modified Newton's method for unconstrained minimization", SIAM 
Journal on Numerical Analysis 16 (1979) 324--331. 

[9] P.E. Gill and W. Murray, "Newton-type methods for linearly constrained optimization", in: 
P.E. Gill and W. Murray, eds., Numerical methods for constrained optimization (Academic 
Press, New York, 1974) pp. 29-66. 

[10] A.A. Goldstein, "On steepest descent", SIAM Journal on Control 3 (1965) 147-151. 
[11] M.R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems", 

Journal of Research of the National Bureau of Standards 49 (1952) 409-436. 
[12] C. Lanczos, "An iteration method for the solution of the eigenvalue problem of linear 

differential and integral operators", Journal of Research of the National Bureau of Standards 45 
(1950) 255-282. 



Dianne P. O'Leary/ Discrete Newton algorithm 33 

[13] C. Lanczos, "Solution of systems of linear equations by minimized iterations", Journal of 
Research of the National Bureau of Standards 49 (1952) 33-53. 

[14] Rati Chandra, "Conjugate gradient methods for partial differential equations", Ph.D. Thesis, 
Report 129, Department of Computer Science, Yale University (1978). 

[15] C.C. Paige and M.A. Saunders, "Solutions of sparse indefinite systems of linear equations", 
SIAM Journal on Numerical Analysis 12 (1975) 617-629. 

[16] J.R. Bunch and B.N. Parlett, "Direct methods for solving symmetric indefinite systems of linear 
equations", SIAM Journal on Numerical Analysis 8 (1971) 639-655. 

[17] J.W. Daniel, "The conjugate gradient method for linear and nonlinear operator equations", 
SlAM Journal on Numerical Analysis 4 (1967) 10-26. 

[18] S. Kaniel, "Estimates for some computational techniques in linear algebra", Mathematics of 
Computation 20 (1966) 369-378. 

[19] O. Axelsson, "Solution of linear systems of equations: Iterative methods", in: V.A. Barker, ed., 
Sparse matrix techniques (Springer-Verlag, New York, 1977). 

[20] P. Concus, G.H. Golub and D.P. O'Leary, "A generalized conjugate gradient method for the 
numerical solution of elliptic partial differential equations", in: J.R. Bunch and D.J. Rose, eds., 
Sparse matrix computations (Academic Press, New York, 1976) pp. 309-332. 

[21] M.R. Hestenes, .Conjugate direction methods in optimization (Springer-Verlag, New York, 
1980). 

[22] R.F. Dennemeyer and E.H. Mookini, "CGS algorithms for unconstrained minimization of 
functions", Journal of Optimization Theory and Applications 16 (1975) 67-85. 

[23] J.M. Ortega and W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables 
(Academic Press, New York, 1970). 

[24] J.C,P. Bus, "Convergence of Newton-like methods for solving systems of nonlinear equations", 
Numerische Mathematik 27 (1977) 271-281. 

[25] P.E. Gill and W. Murray, "Conjugate gradient methods for large-scale nonlinear optimization", 
Systems Optimization Lab Report SOL-79-15, Department of Operations Research, Stanford 
University (1979). 

[26] M.R. Osborne, "An efficient weak line search with guaranteed termination", Report 1870, 
Mathematics Research Center, University of Wisconsin (1978). 

[27] N.K. Garg and R.A. Tapia, "QDN: A variable storage algorithm for unconstrained optimization", 
Department of Mathematical Sciences Report, Rice University (1980). 

[28] R.S. Dembo and T. Steihaug, "Truncated-Newton algorithms for large-scale unconstrained 
optimization", School of Organization and Management, Yale University Preliminary Draft 
(September 1980). 

[29] P.E. Gill, W. Murray and S.G. Nash, "Newton-type minimization using the linear conjugate 
gradient method", Draft, Department of Operations Research, Stanford University (October 
1980). 


