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INTRODUCTION 

Consider  the  problem of digital  image  compression: given a 
gray  level  image A of dimension R x n with 0 bits  for  the  gray 
level of  each  of  the n2 pixels,  store  an  approximation  to A in 
less than pn2 bits.  The  survey  papers  by  Jain  [4]  and  Thomas 
[ 7 ]  discuss the  many  techniques  that  have  been  proposed 
for  data  compression.  The  technique  proposed  in  this  paper 
is  a  “transform  technique,”  where  here  the  transform is image 
dependent. We approximate  the  image  by  an  outer-product 
expansion: 

K 

where x k  and y k  are n X 1  vectors  with  elements  equal t o  
+ I ,  -1,  or 0, and  the d ,  are  real  constants. 

Previous  outer  product  expansions  have  been  of  two  types. 
1)  The  vectors x k  and/or y k  are  predetermined  (for 

example,  Hadamard-Walsh  vectors  or  Haar  vectors).  Generally, 
K needs to be  rather  large  in  order  to  approximate A well. 
However,  there is n o  need to  store  the  vectors.  The  workin 
computing  each dk is  linear  in  the  number of pixels. 

2 )  The  vectors x k  and y k  are  image  dependent  but  are 
vectors  of  real  numbers.  They  are  usually  generated  using  the 
singular  value  decomposition  (SVD)  [l] -[ 31 , a  matrix  factoriza- 
tion  technique.  These  are  the  optimal x k ,  y , ,  and d k  in  the 
sense  of  minimizing  the sum of  squares  of  deviations  between 
the original  and  the  approximate  pixel  values,  i.e., 

where Xik and Y j k  are  components of the  vectors x k  and y k .  
The  total  work  is  proportional  to  the  number of pixels to   the  
312 power. 

A method of  Moler and  Stewart [SI, approximates  the  re- 
sults of the  second  algorithm,  but  in  less  work.  This  method 
still  stores 2K real  n-vectors. 

The  method  proposed  in  this  paper  uses  the  same  error 
Digital  Image  Compression by Outer  Product  Expansion criterion  as  the  SVD  algorithm,  but  restricts  the  elements 

of  vectors x k  and y ,  t o   + I ,  - 1 ,  and 0 only.   bnceyk  (or  x,) 
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products dxyT where d is  a  real  number  but  the  vectors x and y have Per  outer  Product is ProPortional  to  the  number of Pixels. 
elements +1, -1, or 0 only. The expansion  gives a least  squares 
approximation. Work is  proportional  to  the  number of pixels;  re- 11. THE  ALGORITHM 
construction  involves  only  additions. 

The  idea is  as follows. 
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F o r k  = 1, ..., K 
1) Choose a vectory. 
2.1)  Given  the  current y ,  compute  the  vector x which 

solves the  problem - 

min r(x, y , d )  
d,X 

n 

where r(x, y ,  d )  = (aii(‘) - dx . .)? 
i, j =  1 

1 YI 

and A(‘) is the  current  residual  picture. 
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2.2) Given the  current x ,  compute  the  optimal y and d 
t o  solve the  problem  mind,yr(x,y, d ) .  

2.3) Repeat  steps 2.1 and 2.2 until  the  improvement in 
deviation is  less than  a given threshold. 

3) Prepare  for  the  next  iteration:  the  current  values of 
X, y ,  and d become x k ,  y k ,  and d k ,  and  the  current  picture 
is updated as 

In  detail,  the  algorithm is as  follows. 
One  is  given  the  original  digitized  picture A ,  and  the  num- 

Initialize  the  current  image, A(') = A ,  and  the  residual 
ber K of outer  products  to  be  computed. 

n 
r = ai?. 

i, j =  1 

F o r k  = 1, . a * ,  K 
1)  Initializey.  (See  later  notes.) 

Initialize change to  be  1,  improvement to   be 1.  
2 )  Repeat  steps 2.1-2.3 whileimprovement > 0.01. 

2.1)  Given the  current y ,  find  the  optimal x using 
the  following  procedure: 
Let 

where x i  = +1 is chosen so that si 2 0,  i = 1, *.., n .  
Order  the SI'S: S i l  2 Si2 2 ... 2 Si,. 
Let 

and 

f J  = max 4. 
j = l ; * . , n  

Set XiJ+ = ... X i n  = 0. 

using the  following  procedure: 
Let 

2.2)  Given  the  current x ,  find  the  optimal y and c 

n 

and 

f J  = max 4. 
j=l;.-,n 

and 

2.3) Find  the  change  in  the  sum  of  squares of the 
deviations  and  the  improvement: 

n 
newchange = d2J ! x j  I ,  

j=  1 

improvement = 
newchange - change 

change 
- 

1 and 

change = newchange. 

3)  Set xk = x ,  yk = y ,  dk == d ,  and  update  the  current 
picture  and  residual. 

r = r - change. 

Possible  choices  for  the  initial y vectors  include  the  fol- 
lowing. 

1)  The  kthy  could  be  the  kth  Hadamard  vector,  or  a  vector 
from  another  common  basis  set.  In  the  experiments  reported 
in  this  work,  the  Hadamard  vectors  were  generated  in  order 
of increasing  number  of sign changes  as  in [ 61. 

2 )  Pick the  largest  row of A ( ' )  and  define y by  thres- 
holding  that  row.  (If all elements of the  row  have  the  same 
sign,  then y should  have  only 0's and  1 's, no -1's.) 

3) At  each  iteration,  choosey  to  be  the  vector  of  all 1's. 

111. PROPERTIES OF THE  ALGORITHM 

1)  Given  any  vector y, the  algorithm  finds  the  optimal 
choice  for x and d ,  i.e.,  the  choice  which  solves 

n 

where x is constrained  to  have  elements  +1,  -1,  or 0 only. 
The  proof of this is  given in  the  Appendix.  Similarly,  given 
a  vector x ,   t h e  algorithm  finds  the  optimaly  and d .  

2 )  The  loop  in  step 2 of  the  algorithm  is  guaranteed  to 
terminate,  since  no  iteration  makes  the  residual  larger;  there 
are  only  a  finite  number of possible  vectors x and y ;  and d 
is chosen  optimally  for  each x*y pair.  Thus,  any  tolerance 
greater  than  or  equal  to  zero  could  be  used  in  place  of  0.01. 

3) Because  all  of the  x and y components  are  1, 0, or  -1, 
each  step  in  the  inner  loop ( 2 )  requires  only 2n + 2 multipli- 
cations  and 2n + 2 divisions.  Updating the  current  picture 
involves no  multiplications  or  divisions. 

4) Reconstructing  the  approximation  later  requires  at  most 
K n 2  additions  and  subtractions,  and  no  multiplications  or 
divisions. 

5) As an  alternative,  termination  could  be  based  on  the 
size  of A(') rather  than  a  fixed  number K of outer  products. 

6) The  cost  in  computation is linear  in  the  number  of 
pixels. 

7) One  disadvantage is that  the  algorithm is not  guaranteed 
to ever reduce  the  residual  image  to  zero,  even  though  any 
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Fig. 1. Example 1: original  and reconstructed pictures. Upper left: 
original picture. Upper right: reconstruction from 10 x-y pairs, 
0.25 bits/pixel. Lower left: reconstruction from 30 x-y pairs, 
0.75 bits/pixel. Lower right: reconstruction from 60 x-y pairs, 1.50 
bits/pixel. 

Fig. 2.  Example 2: original  and reconstructed pictures. As in Fig. 1.  

image  could  be  represented  as  the  sum of at  most n2 of these 
outer  products. 

8) The  processing  can  be  arranged t o  access the image  by 
rows  only.  Thus,  the  algorithm  could  be  run  with  fast  storage 
of  a  few  vectors of length n ,  accessing  the  image  sequentially 
from  secondary  storage. 

9)  Extension  of  the  algorithm  to  three-dimensional  images 
is possible. 

IV. EXPERIMENTAL  RESULTS 

The  algorithm  was  tested  on  several  64 X 64  and  127 x 127 
images.  Results  for  the  larger  images  are  shown  in  Figs.  1-4. 
The  coefficient  associated  with  each  vector  pair  had  6  bit 
(one  gray  level)  accuracy, as did  the  original  pixel values. 
The  initialy  vectors  were  Hadamard  vectors. 

The  127 X 127  reconstructed  images  do  preserve  the  major 
features  of  the  original  even  at K = 10, and  at K = 30 and  60 
the  detail  improves.  For  pictures of size 6 4  X 64,  about 
half as many  vectors  were  needed. 

The  average  error  per  pixel  decreased  rapidly  at  first  and 

Fig. 3.  .Example 3: original  and reconstructed pictures. As in  Fig. 1.  

Fig. 4. Example 4: original  and reconstructed pictures. As in  Fig. 1. 

then  more  slowly.  The  average  errors  and  average  number  of 
choices of y vectors  per  iteration  are given in  Table I. 

Storage  required  per  outer  product is about  6 + 2-  127  logz 3 
or  approximately  410  bits.  Thus,  the  storage  required  for 10, 
30, and  60  iterations is 0.25,  0.76,  and  1.5  bits  per  pixel, 
respectively.  Significant  further  compression  could  be  achieved 
by  run  length  encoding of the  vectors.  (See  Fig. 5.)  

Using an  initial y vector  of  all 1’s at  each  iteration,  or  using 
each  Hadamard  vector  for  two  iterations  instead  of  one,  made 
little  change  in  the  pictures  or  errors  but  increased  the  number 
of inner  iterations.  For  the  vector  of  all 1’s for  the  picture 
in  Fig. 3, for  example,  the  average  number  of y choices was 
9.2. 

The  final  error levels were  limited  by  the  truncation of the 
numbers dj t o  integral  gray levels. To  obtain  more  accuracy, 
but  still  restrict  arithmetic t o  6  bit  accuracy,  the  residual 
image  can  be scaled upward  by  a  power  of two whenever 
all  elements  have  been  reduced  sufficiently,  and  the  algorithm 
can  be  applied  to  this  rescaled  image. 

V.  CONCLUSIONS 

We have  presented  an  algorithm  for  image  compression 
which  (experimentally)  achieves  a  storage  rate of 1  bit  per 
pixel  without  much  loss  of  information. 
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TABLE I 

Average error per  pixel  Average  number 

k=10 k=30 
of y choices 

Fig. 3 23.1 4.1 

Fig.  4 33.1 4.8 2.6 

Fig. 5. Display of 60 x-y pairs for the  picture of Fig. 4. -1, 0, and 1 
are  displayed as black,  gray,  and  white, respectively. The upper  row 
of  the  upper  part is the  firsty and the upper  row  of the  bottom  part 
is the first x. 

APPENDIX 

PROOF  OF  OPTIMALITY 

Here  we  show  that  the x computed  in  step  2.1  of  the algo- 
rithm  solves  the  problem 

min r ( x , y ,  d )  
x , d  

n 

.where (X, Y ,  d) = ( U l j “ )  - dx iYj)2 
i, j =  1 

x i =  +l,-1,   or 0.  

This is a  “mixed  integer  programming  problem”  with 3” 
possible  choices  for  the  vector x, but  we will show  that  the 
solution  can  be  computed  by  examining  only n of these 
possibilities.  The  argument is as  follows. 

Expanding  the  formula  for r (x , y ,  d )  gives 
n 

= ( ~ i j ( ‘ ) ) ~  - 2d 2 si 
i, j =  1 i= 1 

n n 

where  we have defined 

Now,  the  first  term  in  our  expression  for r ( x , y ,  d )  is constant, 
and  the  signs  of  the xi’s do  not  affect   the last  term.  Thus,  to 
minimize Y,  the  signs should  be  chosen so that  all  the si’s 
have the  same  sign,  positive if d > 0. 

Now  let J be  the  number  of  nonzero xis. Then 

i, j =  1 

n n 

- 2 d ~ s i f d 2 J ~  IyjI. 
i= 1 j =  1 

For a  particular  choice  of x, the  d which  minimizes  this  is 
found  by  setting ar(x,y ,  d)/ad = 0. This gives 

Using this  value gives 

W n 

Therefore,  minimizing ~ ( x ,  y ,  d j  is equivalent t o  maximizing 
d2J.   For   a  given number of nonzero xi ’s ,  d is maximized  by 
choosing  those xi ’s  to  be  the  ones  corresponding  to  the  largest 
sums I X,?=l aijyj I. Thus,  we  have n possible  choices  of x 
to  check:  set  the xi’s corresponding  to  the  Jlargest I cy, 1 avyj  I 
to - t l  or -1 (sign  chosen so t ha t   a l l  si are  positive),  find d 
from  the  formula  above,  and  choose  the  largest d2J among 
the n choices  for J .  
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