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MULTI-SPLITTINGS OF MATRICES AND PARALLEL SOLUTION
OF LINEAR SYSTEMS*

DIANNE P. O’LEARY" AND R. E. WHITE-

Abstract. We present two classes of matrix splittings and give applications to the parallel iterative
solution of systems of linear equations. These splittings generalize regular splittings and P-regular splittings,
resulting in algorithms which can be implemented efficiently on parallel computing systems. Convergence
is established, rate of convergence is discussed, and numerical examples are given.
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1. Introduction. Consider the solution of a large linear system of equations

Ax b

on a parallel computer. We assume that several processors are available and that they
can execute different instruction sequences on their local data and can communicate
with physically adjacent processors.

In this paper we consider the problem of solving linear systems for which the
matrix A can either be split into many pieces or split into two pieces in many ways.
An example of the first case is the assembly of a finite element matrix by elements. In
that case A can be decomposed as

K

A=Ak
k=l

where each matrix Ak has small rank. The second case arises from having several
candidate iterative methods

BkX/l CkX + b, O, l, ,
where for k= 1,2,..., K, A= Bk--Ck.

We discuss ways of using these two kinds of decompositions of A in order to
construct convergent iterative methods which are structured so that most operations
can be performed in parallel. We base such iterative methods on multi-splittings of the
matrix A.

In 2 we define multi-splittings and prove some convergence results for these iterative
methods. Section3 provides a discussion of parallelism in the iterative methods,
examples of problems for which multi-splittings can be used, and motivation for the
definitions and results of 2. Section 4 provides results of some numerical experiments
on multi-splittings. It is possible to read 3 and 4 before 2 if a reader is so inclined.

2. Multi-splittings: definitions and theory. We begin with a definition of a multi-
splitting of a matrix A, discuss its use in an iterative method for solving linear systems,
and prove some convergence results. For notational convenience we omit the lower
and upper limits 1 and K on all sums and the indices k 1,. ., K on ordered triples
(Bk, Ck, Dk).
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DEFINITION. Let A, Bk, Ck, and Dk be n x n matrices. Then (Bk, Ck, Dk) is called
a multi-splitting ofA if

i) A Bk-Ck, k 1,’’., K, where each Bk is invertible.
ii) k Ok I where the matrices Dk are diagonal and Dk >--_0.

We will use the notation

H DkB-ICk and G Y DkB- 1.
k k

We are interested in the convergence of an iterative method based on H and G for
solving Ax b. Using (i) above, Ax- b may be written as

or

BkX CkX + b, k 1, , K

x B- CkX + B- b, k=l,’",K.

We use the weighting matrices Dk to combine these K equations as

DkX Y’, DkB- CkX + DkB- b,
k k k

which, by (ii) and the definitions of H and G yields the following algorithm.

ALGORITHM 1
Choose Xo arbitrarily.
For 0, 1, 2, , until convergence

Xi+ Hxi +Gb.

The parallelism in a variant of this algorithm will be discussed in 3.
It would be convenient if it were true that whenever the iterative methods based

on each of the splittings A Bk -Ck converged, then Algorithm I produced a conver-
gent sequence, too. Unfortunately, the situation is more complicated than that, as the
following trivial example shows.

Example. Let K- 2, n- 2, and consider

where

and

=B-C=B2-C2,

B=
.5 -1

C=
-.25 -1

1 4 1 3.25

-1 .5 -1 -.25

Then

B-1C= .25 .875 -.25 0

The spectral radius p for both matrices is .7965, so iterations based on both splittings
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are convergent. But, with the choice

D= 0

the resulting iteration matrix is

.25 .875

for which the spectral radius is 1.125, and therefore Algorithm 1 would not be
convergent. Other choices of D and D2 will change this situation, of course. For
example, if the definitions of D1 and D2 above are interchanged, the resulting matrix
H has spectral radius equal to 1/4.

Recall that (B, C) is a weak regular splitting of A if A B-C, B-l>= O, and
H-- B-IC>=O. Similarly, (B, C) is called a P-regular splitting of A if B is nonsingular
and the symmetric part of B + C is positive definite. From standard results in the
theory of iterative methods (see, for example, [1] and [6]),

(1) If (B, C) is a weak regular splitting of a matrix A satisfying A-1 >=0, and
H B-1 C, then p(H) < 1.

(2) If (B, C) is a P-regular splitting of a symmetric positive definite matrix A,
and H B- C, then p(H) < 1.

(3) If IIHII <1 for any matrix norm, then p(H)< 1.
We seek conditions on the multi-splitting (Bk, Ck, Dk) which will ensure that

analogous results apply to the splitting resulting in H. Consequently, these conditions
will ensure that Algorithm 1 is convergent. The example above shows that the second
result does not have a direct analogue: it is not enough that each splitting in the
multisplitting is a P-regular splitting of a symmetric positive definite matrix. The other
two results do generalize without additional hypotheses.

THEOREM 1. (a) If, for k 1, 2,..., K, (Bk, Ck) is a weak regular splitting of a
matrix A satisfying A-> O, then Algorithm 1 is convergent.

(b) If, for k 1, 2,..., K, (Bk, Ck) is a P-regular splitting of a symmetric positive
definite matrix A and Dk --OlkI then Algorithm 1 is convergent.

(c) If, for k= 1,2,..., K, IIBZCII 1, then Algorithm 1 is convergent.
Proof. (a) The proof parallels the proof for convergence of weak regular splittings

found, for example, in Ortega [6]. From the definitions of H and weak regular splitting
we have the following three facts:

1. H ->_ 0 and therefore H >_- 0, j 0, 1, .
2. I H ,k DkB-IA.
3. (/+H+’’’ +n")(I-n)= I-n"+.

Now, using these facts in order,

0<_-(I+H+ + H") E DkB-’
k

=(I+H+...+Hm)(I-H)A-1

=(I_Hm+)A-<__A-.
Therefore, the elements of H must remain bounded, and therefore H is convergent.

(b) Again, the proof parallels a standard proof of convergence, that for P-regular
splittings [6]. It is sufficient to show that A-HTAH is positive definite; then the result
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that p(H)< 1 follows from a theorem of Stein [9]. We use the notation B-r= (Br)-1=
(B-’) T.

=Z ADkB-IA+Z AB-TDkA Z AB-7DkADjBf1A
k k k,j

AB-T[BDk + DkBk DkADk]B-’A
k , AB-rDkADjBfA
kj

ABT[B[Dk + DkA+ DkCk DkADk]B-A
k

AB-rDkADBIA
k,j
kj

AB7"[B[Dk + DkCk -}- DkADj]B-lA
k

jk, AB-rDkADB;A
k,j
kj

E AB-T[B[Dk + DkCk]B-1A
k

+ ABTDkAD[B-’A -Bf’A]
k,j
kj

--$1+$2.

Let sym (P)= (P+ PT)/2 denote the symmetric part of the matrix P. Then

sym (S,) Z akAB-T sym (Bk + Ck)B-’A,
k

and each of these terms is positive definite. Now

2 sym (S) Z aka)[(ABT- AB/T)AB’A + AB-TA(B-’A
k,j
kOj

Z akai[AB-rAB-’A AB;rAB-’A AB/rAB-’A + AB-TAB-f’A]
k,j
kj

E akaI[(AB-T-ABr)A(B;’A-B-f’A)].
kj

Thus sym (S2) is positive definite and the result is established.
(c) The infinity norm of a matrix is the maximum absolute row sum, and the

absolute row sums of H are bounded by convex combinations of the absolute row
sums of B Ck. Thus IIHII < 1, and convergence is established.

This theorem says that if we have a collection of convergent splittings of a matrix,
then under certain conditions we can construct a convergent multi-splitting. There is
another way to construct convergent multi-splittings. We break the matrix into simple
pieces Ak and add diagonal matrices Ek to ensure that each Bk -= Ak + Ek is invertible.
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DEFINITION. Let Ak, Bk, and Dk be n x n matrices. Then (Ak, Ek, Dk) is called a
dissolution ofA if

i) A-k Ak.
ii) Ek and Dk are diagonal matrices.
iii) (Bk, Ck, Dk) is a multi-splitting of A, where Bk Ak + Ek and Ck Ek --jk

We call (Ak, Ek, Ok) a convergent dissolution of A if it is a dissolution for which the
multi-splitting (Bk, Ck, Ok) leads to a convergent algorithm.

The next theorem gives explicit conditions on the matrices A, Ak, and Ek such
that (Ak, Ek, Ok) will be a convergent dissolution of a matrix A.

THEOREM 2. Let A Ek Ak be an M-matrix and let the matrices Ek be nonnegative
diagonal matrices with diagonal components equal to elk. Then if the matrices Ak --(am)
satisfy

(a) 0 <-- -am <- -arm, # m,
(b) etk + a> -m, am,
(C) elk + al >: au,

thenfor all nonnegative diagonal matrices Dk with k Dk I, (Ak, Ek, Dk) is a convergent
dissolution of A.

Proof. Let us examine the elements of Ck. For # m,

Cm’-’-- E am--akim--alm >-0
j#k

using assumption (a) and the fact that A= ,k Ak. By (c), c! ek + a--au>= O. Now
Bk Ak + Ek satisfies bm akm <= O, # m, by (a), and b ai + elk > 0 by (c). Further,
by (b), Bk is a strictly row diagonally dominant matrix. Therefore, Bk is an M-matrix
[7] and B -->0. Thus A= Bk--Ck is a weak regular splitting for each k, and, by
Theorem l a, the multi-splitting is convergent.

THEOREM 3. Let A ’. k Ak be a symmetric positive definite matrix, and let Ak + Ek
be nonsingular and 2(Ak + Ek) A bepositive definite, k 1, 2, , K. Thenfor nonnega-
tire diagonal matrices Dk akI, (Ak, Ek, Dk) is a convergent dissolution of A.

Proof. The conditions in the theorem assure that Bk Ak + Ek is invertible and

Bk + Ck A +2E E At 2(A + Ek) A
jOk

is positive definite. Convergence follows from Theorem lb. F1

3. Examples of multi-splittings. In this section we construct some examples of
convergent multi-splittings of matrices. We also discuss the use of multi-splittings on
parallel computers. Many other approaches to parallel iterative methods have been
developed; see, for example, [2],[4],[8]. We consider the following algorithm for
solving Ax b. It is equivalent to Algorithm 1 when to 1.

ALGORITHM 2
Choose Xo arbitrarily; choose a parameter
For i= 1, 2,... until convergence

Let
For k= 1,2,. ., K
Find DkYk where Yk satisfies

(3.1) BkYk Ck -" b.
Form xi+ (1-to)xi+ to ,k DkYk.

We use the term "dissolution" in the sense of "the breaking up of an assembly or organization"
(Random House Dictionary, 1980).
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As before, Dk is a diagonal matrix and A Bk-
Parallelism in Algorithm 2 could be exploited in several ways, depending on the

precise machine architecture and the choice of the multi-splitting (Bk, Ck, Dk). First,
the computations in (3.1) for various k are independent, and could be performed in
parallel. (Note that if a main diagonal element of Dk is zero, the corresponding
component of Yk need not be computed at all.) Second, the n components of a single
vector Yk (or xi/) could be computed in parallel. Third, the accumulation of the sum
of K + 1 terms which forms a component of xi/l could be formed in O(log2 (K)) time
using parallel computation.

Our first two examples illustrate the use of convergent multi-splittings to solve
algebraic systems resulting from applying the finite difference and finite element
methods to partial differential equations. In both examples, the original matrix is
decomposed into a sum of matrices which are considerably "simpler" than the original
one and which reflect significant contributions to A from given subsets of nodes. Thus
it is natural to use these decompositions of A as the basis for a dissolution as defined
in2.

Example 1. Decomposition by blocks ofunknowns. Consider the partial differential
equation

--1,1xx- Uyy --f on 12, u g on Ofl.

Let 11 be a square and use the second order accurate 5-point finite difference method
to discretize the equation with rn equally spaced interior mesh points in each direction.
This gives the algebraic equation Au f where A is an m2 m2 matrix, f is a m2 1
column vector whose components reflect f, g, and the dimension m, and u=
(ul,. , Um," ", U,,""", Um,) r. The matrix may be written as

-I
where

-1

-1

and is of dimension m m. This linear system can be solved, for example, by the
alternating direction implicit (ADI) iterative method. One version of this method is,
first, solve m sets of equations, one set for each row of mesh points, and second, solve
another rn sets of equations, one set for each column. That is, A is decomposed as a

sum of 2 matrices:

T T

A= +p pT

T T
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where
2 -1

-1 2 -1

and P is the permutation matrix which would reorder the vector u as Pu=
(u,..., u,,,..., Ulm,"’, Um,) r. This can further be broken into the sum of 2m
matrices Ak, each one corresponding to one ofthe matrices T. We introduce nonnegative
diagonal matrices Ek such that the matrices Bk Ak + Ek are invertible, and construct
a set of nonnegative diagonal matrices Dk which sum to I. Since it is natural to let a
diagonal component of Ok be zero if the component corresponds to a mesh point or
element not in block k, most of the linear systems in Equation (3.1) of Algorithm 2
do not require the computation of a full n-dimensional problem but one whose size
is much smaller--dimension m. The matrix Ek can be taken as 0 when Ak is nonzero
and as arbitrary positive diagonal elsewhere. The solution of each linear system is
independent of the others and can be performed in parallel if sufficient processors are
available. Under natural assignments of unknowns to processors, nearby mesh points
will be computed in nearby processors, so communication in step (3.1) will be local.
Theorem l a applies to this multisplitting and assures convergence.

Example 2. Decomposition by finite elements. Consider the Galerkin formulation
of the finite element method applied to the ordinary diiterential equation

-u,x =f, u(O) Uo, u(1) u.
When linear shape functions are used on an equally spaced mesh of size 1/(m + 1),
this method gives a system of equations Au =f, where A is the matrix T defined in
Example 1 above. This matrix may be "assembled" by using the element matrices. The
domain, [0, 1], is a union of m+ 1 elements [xi, xi+ Ax], where m 23. The element
matrices have the form

Then A may be written as

A1

where

Am--1

m-1

A=Y. Ak,
k=l

-1

1

0

0

0
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and Ak, k 1, m- 1 has the element matrix as a diagonal block starting in row and
column k and zeros elsewhere. This splitting of finite element matrices has also been
used as the basis of an iterative method by Hayes and Devloo [3]. Let Bk -Ak d-Ek
where Ek is any diagonal matrix which makes B ->_0. (For example, it is sufficient
that all diagonal elements of Bk be equal to 2.) Then Theorem la ensures that Algorithm
2 will converge. Again, under natural assignment of nodes to processors, high parallel-
ism can be achieved.

We have chosen trivial problems in Examples 1 and 2 to make the descriptions
easier, but the methods are equally applicable to irregular meshes in several space
dimensions.

We now give an example of a convergent multi-splitting which is not derived from
a dissolution.

Example 3. Decomposition by block iterative methods. Let A be a sparse M-matrix
(The matrices of the first two examples satisfy this hypothesis). Assume that each
unknown has been assigned to a processor on a parallel computer. Choose some subset
of K unknowns, and direct the corresponding processors to "grow" a block of
unknowns from those local to it and in nearby processors in order to identify a principal
submatrix of A for which linear systems are easy to solve. Note that an unknown may
appear in several blocks, and the idea is to let the blocks grow to some point such
that each unknown appears in at least one block and the work among processors is
nearly balanced. Then, for k 1, 2,. ., K, we have partitioned a permuted version of
A as

where G is the principal submatrix grown by the kth unknown. Then let

where each diagonal element of (Dk)- equals the number of blocks in which the
corresponding unknown appears. We have a set of regular splittings of the M-matrix
(because each corresponds to a block Jacobi method), and Theorem la assures
convergence. Note that the blocks corresponding to the second row of Bk and Ck are
never used since the corresponding elements of Dk are 0.

Although convergence is assured in each of these examples, it may be too slow
in practice. The practical use of these algorithms in the parallel solution of sparse
linear systems may be as highly parallel preconditionings of some faster iterative
method such as conjugate gradients or block conjugate gradients [5].

4. Numerical examples. In the following examples we apply Algorithm 2 to two
problems and study the convergence of the algorithm as the block size, the choice of
Ek, and the choice of to are changed. The second example arises from an elliptic
boundary value problem and is more realistic than the first in the size and character
of the resulting matrix.

Numerical example 1. Consider the ordinary differential equation

-Uxx=f(x) 10, u(0)= 1 u(1).

Let the interval [0, 1] be divided into 18 equal elements of length h , and consider
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the Galerkin formulation of the finite element method with linear shape functions.
The resulting algebraic system is

1 h
(--Ui+ "1- 2U Ui_I) "" (f/+l + 4f/’’f/--1), i= 1, 2,..-, 17,

with Uo 1 u18. We construct K 16 matrices AkK as in Example 2 of 3, and further
consider examples in which K 8, K 4, and K 2. In these later examples, AK is

A(2K) and A(2K) (Theformed by grouping together the elements which contributed to 2j-1 2j

case K 1 reduces to one iteration in which a tridiagonal problem is solved for 17
unknowns.) We choose the weighting matrices Dk to have either zero, 1/2, or 1 as diagonal
components:

0 if node does not belong to finite elements in the kth set,
1/2 if node is on the boundary of the kth set of elements,

if node is in the interior of the kth set of elements.
The first choice of Ek has the form Ek (d/h)L In the last set of experiments, we
used Ek defined by

0 if node is in the interior of block k,
Ek ii 1/h otherwise.

This choice means that the diagonals of the iteration matrix Bk Ak + Ek match those
of A for all components in element block k.

Tables 1-4 indicate the number of iterations required to reach convergence, defined
when the relative error for each node was less than 10-4 The initial guess was taken
to be the vector of all one’s. The values of d in Table 2 and to in Table 3 are near optimal.

TABLE
Algorithm performance on Example

varying K

Number of
K to d iterations

2 1.00 0.35 72
4 1.00 0.35 74
8 1.00 0.35 75
16 1.00 0.35

TABLE 2
Algorithm performance on Example with

to and near optimal E d/ h I

2
4
8
16

to d

1.00 0.05
1.00 0.20
1.00 0.35
1.00 0.70

Number of
iterations

18
47
75
127
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TABLE 3
Algorithm performance on Example with

d and near optimal to 1.32

K to d

2 1.32 1.00
4 1.32 1.00
8 1.32 1.00
16 1.32 1.00

Number of
iterations

138
137
136
135

TABLE 4
Algorithm performance on

Example for the second choice of E

Number of
K to iterations

2 1.00 33
4 1.00 55
8 1.00 96
16 1.00 169

Numerical example 2. Consider the elliptic partial differential equation

-(c, ux),,-(C2Uy)y=g onD,=(O, 1)x(O, 1)-[],]x[,-],

U X
2 -- y2 on Of,

where

C 1 + X
2 + y2,

C2 1 + e + ey,
g -2(2 + 3x2 + y2 + e + 1 + y)eY).

The data have been chosen so that the solution is u x2 + y2. This problem is discretized
by the second order accurate finite difference method with mesh spacings in both
directions equal to h=l/(m+l) where m=9, m=19 or m=29. We consider a
multi-splitting as in Example 1 of 3. Thus each Ak corresponds to some row or
column of mesh points. When m =9, K 24 and the number of unknowns is N
92-32= 72. When m 19, K =48 and N= 192-52= 336; when m =29, K =72 and

TABLE 5
Algorithm performance on

Example 2

72
336
792

.30

.30

.30

Number of
iterations

17
91
234
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N 292- 72-- 792. Since each mesh point is involved in exactly two matrices Ak, We

take the ith diagonal element of Dk equal to 1/2 if mesh point is in block k and 0
otherwise. Let Ek be that matrix which makes the diagonal elements of Bk--Ak 4-Ek
equal to the diagonal elements of A whose rows correspond to nodes in block k.
(Numerical experiments showed that this choice led to fewer iterations than a choice
of the form Ek --(d/h2)I.) Convergence was defined by the 2 norm of the discrete
error vector being less than hE The initial guess was the zero vector. By numerical
experiments, to- 1.3 was determined to be near optimal. Results appear in Table 5.
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