On Bounds for Scaled Projections and Pseudoinverses

Dianne P. O'Leary*

Computer Science Department
and Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742

Submitted by G. W. Stewart

ABSTRACT

Let X be a matrix of full column rank, and let D be a positive definite diagonal matrix. In a recent paper, Stewart considered the weighted pseudoinverse $X_D^\dagger = (X^TDX)^{-1}X^TD$ and the associated oblique projection $P_D = XX_D^\dagger$, and gave bounds, independent of D, for the norms of these matrices. In this note, we answer a question he raised by showing that the bounds are computable.

Let X be a matrix of full column rank, and let D be a positive definite diagonal matrix. In a recent paper, Stewart [1] considered the weighted pseudoinverse $X_D^\dagger = (X^TDX)^{-1}X^TD$ and the associated oblique projection $P_D = XX_D^\dagger$. He proved two results. The first is that the spectral norms of these matrices are bounded independently of D as

$$
\sup_{D \in \mathcal{D}_+} \|P_D\| \leq \rho^{-1}
$$

and

$$
\sup_{D \in \mathcal{D}_+} \|X_D^\dagger\| \leq \rho^{-1}\|X^\dagger\|,
$$

*This work was supported by the Air Force Office of Scientific Research under Grant 87-0188.

LINEAR ALGEBRA AND ITS APPLICATIONS 132:115–117 (1990) 115

655 Avenue of the Americas, New York, NY 10010 0024-3795/90/$3.50
where
\[
\rho = \inf_{\substack{y \in \mathcal{Y} \\
X \in \mathcal{X}} \forall x \in \mathcal{X}} \|y - x\| > 0,
\]

with
\[
\mathcal{X} = \{x \in \mathcal{R}(X) : \|x\| = 1\}, \tag{2}
\]
\[
\mathcal{Y} = \{y : \exists D \in \mathcal{R}_+ \text{ such that } X^TDy = 0\}. \tag{3}
\]

His second result is that if the columns of \(U \) form an orthonormal basis for \(\mathcal{R}(X) \), then
\[
\rho \leq \min \inf_+ (U_i), \tag{4}
\]
where \(U_i \) denotes any submatrix formed from a nonempty set of rows of \(U \).

In this note, we answer a question he raised by showing that
\[
\rho = \min \inf_+ (U_i).
\]

Since \(\mathcal{X} \) and \(\mathcal{Y} \) depend only on the range of \(X \) and not on its entries, we can replace \(X \) in (2) and (3) by \(U \). Thus,
\[
\mathcal{X} = \{U\alpha : \|\alpha\| = 1\}.
\]

Let the sign of a scalar \(t \) be defined by
\[
\text{sg}(t) = \begin{cases}
1 & \text{if } t > 0, \\
0 & \text{if } t = 0, \\
-1 & \text{if } t < 0,
\end{cases}
\]
and let the sign of a vector \(z \) be denoted by \(\text{sg}(z) \) and defined component-wise. Then \(\mathcal{Y} \) has the property that for any vector \(\hat{y} \in \mathcal{Y} \), every vector \(y \) with \(\text{sg}(y) = \text{sg}(\hat{y}) \) is also an element of \(\mathcal{Y} \). This is verified by letting \(D \) be the nonnegative diagonal matrix such that \(U^TD\hat{y} = 0 \). Then \(U^TDSy = 0 \), where \(S \) is the diagonal matrix with
\[
s_{ii} = \begin{cases}
\hat{y}_i / y_i & \text{if } y_i \neq 0, \\
1 & \text{if } y_i = 0.
\end{cases}
\]
Now,

\[\rho = \inf_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \| y - x \| \]

\[= \inf_{\tilde{y} \in \mathcal{Y}} \inf_{\lambda \in \mathcal{X}} \| y - \lambda \|
\]

\[= \inf_{\tilde{y} \in \mathcal{Y}} \inf_{\lambda \in \mathcal{X}} \| y - U\alpha \|, \]

In the inner infimum, for every choice of \(\alpha \) there is a set of rows of \(U\alpha \) that agree in sign with \(\tilde{y} \) and a set that disagree. The set of rows that disagree in sign must be nonempty; otherwise \(y = U\alpha \in \mathcal{Y} \), and the infimum would be zero, which contradicts (1). Let the set of those that disagree be denoted by the subscript \(I \). For this choice of \(\alpha \), the best \(y \) equals \(U\alpha \) in all rows that agree in sign and has elements zero or arbitrarily close to zero in the other rows. The resulting value of \(\| y - U\alpha \| \) is no less than \(\|(U\alpha)_I\| = \|U_I\alpha\| \), and this value is bounded below by the smallest singular value of \(U_I \). Thus we have shown that

\[\rho \geq \min \inf_+ (U_I), \]

and combining this with Stewart's result (4) establishes the equality.

REFERENCES

Received 3 March 1989; final manuscript accepted 9 March 1989