
SIAM J. MATRIX ANAL. APPL.
Vol. 11, No. 3, pp. 466-480, July 1990

() 1990 Society for Industrial and Applied Mathematics
OO9

ROBUST REGRESSION COMPUTATION USING ITERATIVELY
REWEIGHTED LEAST SQUARES*

DIANNE P. O’LEARYt

Abstract. Several variants of Newton’s method are used to obtain estimates of solution vectors
and residual vectors for the linear model Ax b / e btrue using an iteratively reweighted least
squares criterion, which tends to diminish the influence of outliers compared with the standard least
squares criterion. Algorithms appropriate for dense and sparse matrices are presented. Solving
Newton’s linear system using updated matrix factorizations or the (unpreconditioned) conjugate
gradient iteration gives the most effective algorithms. Four weighting functions are compared, and
results are given for sparse well-conditioned and ill-conditioned problems.

Key words, iteratively reweighted least squares, robust regression

AMS(MOS) subject classifications. 62J05, 65F20

1. Introduction. Consider the linear model

Ax b + e btrue,

where A, the model matrix, has dimension m n; b is the vector of observations;
btrue is the unknown vector of true values; e is the unknown vector of observation
errors; and x is the unknown vector of parameters. For a given vector x, we define
the residual vector r(x) b- Ax.

We discuss in this paper various algorithms for obtaining estimates of the solution
vector &, the residual vector r(&), and the norm of the residual vector using the
iteratively reweighted least squares criterion: i.e., we wish to solve the problem

m

(1) mnZ p(r,(x)),
i--1

where p is a given function. For a discussion of the statistical properties of this type
of regression, see, for example [19]. Taking p(z) z2/2 gives the ordinary linear least
squares problem. In order to reduce the influence of outliers, other functions have been
proposed, and we consider in this paper four such functions, each twice continuously
differentiable almost everywhere, with nonnegative second derivative wherever it is
defined. Huber [lS] used

z:/2,
2/2,

where is a problem-dependent parameter. Dutter [11] gives a safeguarded algorithm
that overcomes degenerate cases. Minimizing Huber’s function leads to a quadratic
programming problem, and it is possible to develop finitely terminating algorithms as
in the work of Clark and Osborne [3]. The logistic function [4] is

p(z) ;32 log(cosh(z/f)).

Received by the editors August 9, 1989; accepted for publication (in revised form) December 8,
1989. This work was supported by the Air Force Office of Scientific Research under grant 87-0158.

Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, Maryland 20742 (olearycs.umd.edu).

466

ITERATIVELY REWEIGHTED LEAST SQUARES 467

1.5

0.5

0
0

SSl

0.5 1 1.5 2

1.5

0.5

0
0 0.:5 1 1.5 2

Huber function Logistic function

,1

1
1.5 JSIt

0.5

0
0 0.5 1 1.5 2

1.5

0.5 10 1.5 2

Fair function Talwar function

FIG. 1. The weighting functions (solid lines) with the standard least squares function (dotted
lines) as reference. The constant fl is set to 1.

Fair [14] proposed the function

p(z) (Izl/Z- +
Huber [18] also proposed the function

p(z) { z2/2’ Izl -< ’2/2, Izl >,
which is given the name Talwar [16] in [4]. Graphs of these functions are given in Fig.
1. There have been other proposals to use other convex and nonconvex weighting
functions, but the methods we discuss may have stability problems for noapositive
second derivatives.

The subject of this paper is the comparison of some algorithms for solving the
iteratively reweighted least squares problem, a comparison of the performance of var-
ious weighting functions, and a discussion of the interaction between the weighting
and the conditioning in the matrix A.

Robust regression through the use of functions related to least squares has been
the subject of intense research, and we note only selected references here. Dempster,
Laird, and Rubin [6] discuss statistical properties of the estimates under the assump-
tion that the observation errors are independent normal. Coleman et al. [4] developed
a high quality set of routines to compute robust estimators for eight weight functions,
including the four discussed in this paper.

468 DIANNE P. OLEARY

We take the viewpoint that the variance of the observation errors is known, at
least approximately, and thus the scale is fixed. This is appropriate in some but not
all applications, and it is possible to obtain simultaneous estimates of the scale factors
and the solution; see, for example, Shanno and aocke [25] and Ekblom [13].

The algorithms are presented in 2, and results are discussed in 3 and summarized
in 4.

A similar computational problem (see (2)) arises in the core step in algorithms like
that of Karmarkar for solving linear programming problems [20], and the algorithms
in this paper have application there as well.

2. The algorithms. We will use Newton-like methods to solve our problem.
Our first observation is that although we are minimizing over x-space, it is easier to
work in the appropriate subspace of r-space. To establish some notation, we express
(i)

m

mn :(x) =_ mn f(r(x)) =_ mn p(r(x)).
i--i

Let y be the gradient vector for f(r):

yi p’(ri),

and let D(r) be a diagonal matrix with entries

dii p"(ri).

Now, the function](x) has a gradient t) and Hessian matrix of second derivatives/7/
defined by

-ATy, [-I ATDA,

and/:/is positive semidefinite if p" is nonnegative.
The step direction for Newton’s method for minimizing](x) is _/2/-1, and

a change of in the x variables will create a change in the residual of s -A, or

(2) s -A(ATDA)-IATy.

Since we need to assess the progress of Newton’s method by evaluating the function
p at each element of the residual, the computation is more conveniently done without
the x variables. Further, determining the search direction for the x variables involves
a computation whose conditioning is related to that of A, but, as we demonstrate
below (see Algorithm 2), the conditioning for the problem of determining the search
direction in r depends on QTDQ, where the columns of Q form an orthonormal basis
for the range of A.

The general method is as follows:
Given an initial x, compute an initial r b- Ax.
Repeat until convergence:

1. Compute the search direction s -A(ATD(r)A)-ATy.
2. Perform a linesearch to determine a value a for which
f(r + as) is sufficiently less than f(r).

Upon convergence to a residual vector ropt, compute the correspond-
ing Xopt by solving the consistent linear system Ax b- ropt.

ITERATIVELY REWEIGHTED LEAST SQUARES 469

Due to round-off errors, the system Ax b- ropt may fail to be consistent, and
the norm of the residual from this system is a good diagnostic.

If fewer than n residuals are below the cut-off value/ for the function p, then
the Hessian matrix may be rank deficient. To prevent this from occurring at initial
stages of the iteration, where we may be far from the optimal solution, we gradually
decrease the cut-off value from a very large number to the desired value over the first
four steps of the iteration. This has the effect of starting the iteration from the least
squares solution.

Developing efficient and reliable linesearch algorithms is not an easy task, but
one such algorithm, due to Jorge J. Mord and David J. Thuente, is CVSRCH in the
MINPACK collection of routines. It uses function and gradient values. Since the value
a 1 is almost always a good choice, we use that for the initial guess and use coarse
tolerances (.1) for convergence in x, the function value, and the gradient value.

We now focus attention on the strategies for computing the search direction. Our
basic tool is the QR factorization of an m n matrix into the product of an m n
matrix Q with orthogonal columns, and an n n upper triangular matrix R (see, for
example, [7]).

Algorithm 1. If p" is nonnegative, then the matrix D has nonnegative elements,
and we may factor the matrix D1/2A as (/. The definition (2) of s then becomes

s --D-I/20(TOTO)-[TOTD-/2y -D-/2OOTD-/2y.

Dutter [10] uses this formulation in his "HV algorithm" for the Huber function.

Algorithm 2 (QR Newton). The first algorithm requires a QR factorization
of an m n matrix at each iteration. To avoid this, we could factor A QR, which
yields

s -QR(RTQTDQR)- RTQTy _Q(QTDQ)-1QTy.

Each iteration is accomplished using the Cholesky factors of the symmetric n n
matrix B QTDQ.

Algorithm 3 (/ Newton). We can express the matrix B as

m

B QTDQ d -T
iiqiqi

i=1

where cT is the ith row of Q. Only the elements dii change from iteration to iteration,
and as the algorithm converges, we can expect many terms in the summation to
remain relatively constant. Thus a reasonable way to reduce the computational work
is to monitor B and perform rank-one updates to the Cholesky factors only when
the change in some component diiTi is large compared to the size of B. One
way to measure this is to test whether Ti times the change in dii is greater than
sone tolerance times the norm of the matrix that we have factored. If so, a rank-one
update (or downdate) to the factorization can be performed using standard algorithms
implemented, for example, in LINPACK [7]. Ekblom [13] also used the update idea,
but worked with ATDA rather than with QTDQ.

Since B is not necessarily fully updated, the computed search direction is not
necessarily the true Newton direction but is some approximation to it.

470 DIANNE P. OLEARY

TABLE 1
Costs per iteration of the various algorithms. Not included in the table are costs common to

all algorithms: the function evaluations in the line search (mp evaluations each) and the Hessian
evaluation (m p evaluations). "Qmult." means multiplication ofQ (or QT) times a vector. "Solve"
means solution o.f a linear system using Cholesky factors.

Algorithm Work per iteration Operations counts (full matrix)

1. First Newton

2. QR Newton

3. B Newton

4. PCG Newton

5. CG Newton

QR fact. and 2 Qmults.

Form and factor QTDQ,
1 solve, and 2 Qmults.

k updates to B factors,
1 solve, and 2 Qmults.

k updates to B factors,
pcg itns., and 2 Qmults.

2 Qmults. and cg itns.

mn2 1/3n3 + 2mn + O(n2)

m(n2 + n)/2 + n3/6 + 2mn + n2

(1.75k + 1)n2 + 2mn

1.75kn2 + 2(/+ 1)mn + In2 + 5nl

2(1 + 1)mn + 5nl

Algorithm 4 (PCG Newton). In Algorithm 3, we established a distinction
between a matrix/ for which we have Cholesky factors and the current true matrix
B, and we settled for an approximation to the Newton search direction rather than
fully updating/. We can, however, compute the Newton direction quite efficiently
by using the preconditioned conjugate gradient algorithm to solve the linear system
Bw QTy with/ as the preconditioner. Decreasing the number of matrix updates
increases the number of conjugate gradient iterations.

This algorithm is related to the truncated Newton method [5], [22].

Algorithm 5 (CG Newton). For the particular weighting functions we are
using, the matrix D has a very special form. For the Huber and the Talwar functions,
each diagonal entry is 1 for residuals with magnitude less than /, and 0 for the
outlying residuals. The logistic and Fair functions have diagonal entries that fall
quickly from 1 to 0 as the residual increases from 0. We notice that B is a multiple
of the identity matrix whenever D is, and thus for practical problems B may differ
from the identity by a matrix of small rank, where the rank is equal to the number
of outliers, plus a matrix of small norm (for the logistic and Fair functions). Thus we
also consider computing the Newton direction using the conjugate gradient algorithm
with no preconditioning. This algorithm is particularly well suited for large sparse
problems, since only the matrix Q and the diagonal matrix D are required. Conjugate
gradients have been used by Scales, Gersztenkorn, and Treitel [24] with p(z) -[zip (p
less than one), but they solved linear systems involving ATDA rather than QTDQ.

Table 1 presents the costs associated with an iteration of each of the five algo-

ITERATIVELY REWEIGHTED LEAST SQUARES 471

rithms. The number of floating point additions and multiplications are tabulated,
assuming that the matrix is dense and that updates to Cholesky factors result from
increases in diagonal elements (at a cost of 1.5n2 operations) as often as decreases
(2n2 operations). From these numbers we see that function and Hessian evaluations
have a negligible cost compared to the linear algebra overhead of an iteration.

For sparse matrices, working with the original matrix A rather than the factor Q
would better preserve sparsity but, as we will see later, the linear system expressed in
terms of Q requires no preconditioning in the conjugate gradient algorithm, and this
is a substantial savings. There has been some work in reorderings of A that produce
a sparse representation of Q (see, for example, Tewarson [27], Chen and Tewarson [2],
and Duff [8]), but most of this work has been directed toward maintaining sparsity
in Q and R simultaneously. The sparsity of R is not essential to the algorithms
considered here.

A compromise between sparsity and ease of solution of systems QTDQ can be
achieved by performing an LU factorization of A rather than a QR. Peters and
Wilkinson suggested the use of this factorization for standard least squares problems,
and BjSrck and Duff [1] studied its implementation for sparse matrices. All of the
algorithms above can be rewritten for this factorization, substituting L for Q, and
U for R. Since it has been observed that L is usually well conditioned, even for
ill-conditioned A, there is hope that solving systems involving LTDL will be substan-
tially easier than solving those involving the original matrix ATDA. Computational
experience is reported in 3.3.

3. Results.
3.1. A note on perturbations. The solution x* of an iteratively reweighted

least squares problem is characterized by the gradient of](x*) being zero. The weight
functions p are designed to diminish the effects on x* of outliers in the observations b,
but how is x* affected by small perturbations in b? A simple first-order perturbation
analysis will yield insight.

The gradient of .f(x*) is -ATp’(b Ax*) O. If b is changed to b+ Ab, then the
solution will be changed to x* / Ax, where

-ATp’ (b + Ab- A(x* + Ax)) O.

We expand this to first-order terms as

ATp’(b+Ab-A(x*+Ax)) . AT(p’(b-Ax*)+p"(b-Ax*)(Ab-AAx)) ATD(Ab-AAx),

and Ax is a vector that makes this equal to zero. Thus,

ATDAAx . ATDAb,
or, Ax is defined by Ax ,, AiDAb, where A?D (ATDA)-IATD is a weighted pseudo-
inverse of A. We now have the conclusion that

(3) II xll2 IIAVDII211 blI2,
Unfortunately, the D in this expression is evaluated at the unknown solution r*, but
results in [26] and [21] guarantee that if D is positive semidefinite and if Q is a matrix
whose columns form an orthonormal basis for the range of A, and if _< 1 is the

472 DIANNE P. O’LEARY

smallest of the nonzero singular values of all matrices formed from nonempty subsets
of rows of Q, then

Thus the change (3) in x can be bounded by the change in b magnified by a factor
dependent only on the matrix A.

These expressions suggest that for ill-conditioned matrices A the weighting func-
tions will not overcome the sensitivity of the solution to small perturbations in the
observations, and this will be illustrated by the numerical results.

3.2. The test problems. There is a large number of small least squares test
problems in the literature (see, for example, the previously cited references) but a very
small number of large ones in the Harwell-Boeing test set [9]. This makes parametric
studies difficult. Shanno and Rocke [25] and others use randomly generated problems,
but such problems tend to be very well conditioned [12].

The following procedure was used to generate test problems with varying condi-
tioning and varying number of outliers.

The m x n matrix A was constructed as the product of three matrices C, E, and
F. The matrix C had the same dimensions as A and had #m/2 nonzeros in each
column, each sampled from a normal probability distribution N(0, 1). The positions
for the nonzeros were chosen randomly from a uniform distribution. F was a square
matrix with diagonal entries chosen to be two times N(0, 1) samples and with one
off-diagonal N(0, 1) entry (except in row n) in a random position. E was a diagonal
matrix with entries between 1 and 1/a (equally spaced on log scale). The product
A CEF has approximately #m nonzeros per column (i.e., "density" #) and its
singular values usually have separations proportional to those of E.

The true solution vector was taken to be z, the vector of all ones, and the right-
hand side was chosen to be b Az + aN(O, 1), except that outliers were generated by
adding 100aN(0, 1) to nout randomly chosen elements of b. In all cases, a was taken
to be .01.

Thus, the test problems have five parameters: m, n, #, a, and not.
Computations used double precision arithmetic on a Sun-3 machine. Convergence

was declared when the change in the function value was less than 10-5 This test is not
suitable in general, but because of the uniform scaling of our problems it is sufficient
for our purposes. See [4] for a better termination criterion.

The termination test for the conjugate gradient iterations was that the residual
norm be less than 10-8 times the norm of the right-hand side, forcing a rather accurate
solution to the linear systems.

We investigated several questions, some related to the algorithms and some related
to the performance of the various weighting functions. Since Algorithm 1 is not as
stable as Algorithm 2 and failed to find a full-rank Hessian matrix quite often in the
experiments, we do not present data on its performance.

3.3. How well do the algorithms perform? How does the convergence
rate depend on the test problem parameters? As shown in Tables 2 and 3,
there seems to be no trend to increased work as the condition number of the problem
increases or as the number of outliers increases. As the number of outliers increases,
however, there is an increased tendency for the algorithms to fail to find a full rank
Hessian matrix. Updating/} less frequently usually increased the number of function
and Hessian evaluations. But a factor of 10 fewer updates, costing O(n2) each, at worst

ITEI:tATIVELY I:tEWEIGHTED LEAST SQUAI:tES 473

TABLE 2
Results of varying condition number. 500 100 matrix, density]z .1, nout 10 outliers,

constant 2.5a. Table entries: number o]]unction evaluations, number of Hessian evaluations,
number of cg iterations, number of Cholesky updates for algorithms with .few or frequent updates to
the]actors.

Fair, few updt.
Fair, freq. updt.
Talwar, few updt.
Talwar, freq. updt.

175

Fair, few updt.
Fair, freq. updt.
Talwar, few updt.
Talwar, freq. updt.

a 14576

Fair, few updt.
Fair, freq. updt.
Talwar, few updt.
Talwar, freq. updt.

QR [PCG CG CG-LU

16, 9

19, 9

16, 9

67,10

17, 9

29,11

39,20,0, 100
20,10,0,1184
39,20,0, 100
26,11,0, 788

39,20,0, 100
20,10,0,1184
75,20,0, 100
62,11,0, 788

40,20,0, 100
21,10,0,1184
16, 5,0, 100
31,11,0, 786

16, 9, 76, 100
16, 9, 32,1071
24,11,186, 100
18, 9, 50, 707

16, 9, 76, 100
16, 9, 32,1071
23,11,186, 100
18,10, 53, 709

16, 9, 76, 100
16, 9, 32,1071
60,10,179, 100
56,10, 55, 711

16, 9, 76116, 9,362

24,11,186125,10,520

16, 9, 76116, 9,414

23,11,186 19,10,553

16, 9, 76116, 9,432

60,10,179123,10,568

474 DIANNE P. O’LEARY

TABLE 3
Results of varying number of outliers. 100 x 20 matrices, density # .1, well-conditioned

problems (E =identity matrix), constant 2.5a. Table gives number of function evaluations,
number of Hessian evaluations, number of cg iterations, and number of Cholesky updates.

Outliers
True Est. QR B PCG CG

0 0 Huber
0 0 Logistic
0 0 Fair
0 0 Talwar

10 Huber
10 10 Logistic
10 13 Fair
10 10 Talwar

20 Huber
20 Logistic
20 28 Fair
20 10 Talwar

30 Huber
30 Logistic
30 48 Fair
30 88-90 Talwar

9,5
9,5
8,5
9,5

fail
19,9
16,8
21,9

fail
fail
15,8
fail

fail
fail
18,9
fail

9,5,0, 20
9,5,0, 58
8,5,0,106
9,5,0, 20

fail
17,9,0,295
16,8,0,314
22,9,0,170

fail
fail

16,8,0,330
40,9,0,120

fail
fail

18,9,0,347
13,6,0,114

13, 5, 0, 20
9, 5, 2, 58

13, 5, 3,106
13, 5, 0, 20

fail
19, 9, 14,291
16, 8, 12,309
42, 9, 5,170

fail
fail

15, 8, 11,335
47,20,110,190

fail
fail

18, 9, 15,348
28, 7, 9,118

13, 5, 0
9, 5, 3

13, 5, 5
13, 5, 0

fail
19, 9, 54
16, 8, 39
46,13,111

fail
fail

15, 8, 45
25,11,104

fail
fail

18, 9, 62
22, 7, 27

ITERATIVELY I:tEWEIGHTED LEAST SQUARES 475

TABLE 4
Results o] varying update parameter for factors. 100 20 well-conditioned matrix, density

I .5, nout= 10 outliers. Table entries: number of]unction evaluations, number of Hessian
evaluations, number o. cg iterations, and number of Cholesky updates.

Update
tolerance /} PCG

0.001

0.010

0.100

Huber
Logistic
Fair
Talwar

Huber
Logistic
Fair
Talwar

Huber
Logistic
Fair
Talwar

10, 5,0, 63
23,10,0,222
16, 8,0,227
10, 5,0, 63

10, 5,0, 41
22, 9,0, 64
18, 9,0, 81
10, 5,0, 41

10, 5,0, 20
26,13,0, 20
33,17,0, 20
10, 5,0, 20

fail
22,10,59,215
15, 8,16,231
35, 8, 5, 92

fail
22,10,43, 66
15, 8,37, 72
34, 8,23, 56

fail
22,10,59, 20
15, 8,48, 20
33, 8,38, 20

TABLE 5
Variability of results over a set of 10 well-conditioned problems. 100 20, density # .25,

nout 10 outliers. / 10a, update param --.001. Table entries: range and average number of
]unction evaluations, number of Hessian evaluations, and number of Cholesky updates]or Algorithm
3, the Newton method. (Results]or Huber exclude one problem that produced failure.)

Huber
Logistic
Fair
Talwar

Function evaluations Hessian evaluations Updates

7-39 ave. 22
12-16 ave. 14
12-16 ave. 13
4-39 ave. 20

5-8 ave. 7
7-9 ave. 8
7-8 ave. 8
5-8 ave. 7

21- 45
54-170
128-222
21- 83

ave. 35
ave. 92

ave. 171
ave. 40

476 DIANNE P. O’LEARY

doubled the number of function and Hessian evaluations, that cost O(m), resulting in
a faster algorithm.

The last two columns of Table 2 show the results of using the conjugate gradient
algorithms with no preconditioning. The "CG" data results from use of the QR
factors, while the "CG-LU" data involved the LU factors. The use of the LU factors
required between 2.8 and 5.6 times as many conjugate gradient iterations, but there
was no trend to increased work as the condition number of A was increased. Use of
the original matrix A would have shown an increase in the number of iterations as
the condition number grew. Each use of conjugate gradients for the LU factors took
on average 40-50 iterations, while the theoretical maximum is n 100. Using the LU
factors with conjugate gradients, with or without a preconditioning matrix, seems to
be a good approach for sparse matrices if the resulting Q would be too dense.

Table 4 shows further results of performing fewer updates to the approximate
Hessian. On this problem of size 100 x 20, the matrix was never updated if the
update tolerance was set greater than or equal to 0.100, and there was very little
penalty in the number of function or gradient evaluations for either the/} Newton
(Algorithm 3) or the preconditioned conjugate gradient (Algorithm 4) methods.

Table 5 shows the variability of the computational work for a set of 10 random
problems with the same test parameters.

3.4. Which functions perform better? How does ill-conditioning affect
the performance of the functions? Figure 2 shows graphs of the solutions and
residuals produced for well-conditioned problems by ordinary least squares and by the
different p functions considered in this paper. A well-conditioned matrix of dimension
100 x 20 was generated, and 10 sample right-hand sides were generated by adding
random noise to Az, using 10 different sets of outliers. The Huber and the Talwar
functions each produced a solution vector bigger than 10a on one of the right-hand
sides, and those runs were disregarded. Each of the weighting functions produces a
solution vector closer to the unperturbed vector of ones than ordinary least squares,
but the corresponding residual vectors are slightly larger.

Figure 3 shows the errors in the solution vector for a sequence of increasingly more
ill-conditioned problems with 10 outliers. The residual norm for least squares was 5.00,
whereas that for the Fair function was 5.74; neglecting the 10 largest components of
the residual, the norm for least squares was 2.48 whereas that for the Fair function was
0.21. The norm of the error in the x vector was also at least ten times smaller in all
cases using the Fair function. For a problem with condition number 175, least squares
gave an error of 11.5, compared with the true solution of norm 10.0, so the computed
solution vector had little resemblance to the true solution. Both least squares and the
Fair function were unable to recover the x vector for the most ill-conditioned problem.
This is predicted by the perturbation results in 3.1.

3.5. How do the algorithms perform on "real" problems? Experiments
were also run using the housing price equation and the 506 observations of Boston
census tracts discussed in [15]. This model expresses the median value of homes
in each tract as a combination of 14 factors (crime rate, zoning statistics, average
number of rooms in homes, accessibility to radial highways, etc.). The model was
used without the scaling discussed in [15], and the integer parts of the singular values
were 10,128, 672, 632, 272, 197, 156, 84, 74, 10, 8, 6, 5, 2, and 1. The right-hand
side elements were around 10, and a was estimated as 0.1. The constant was taken
to be 2.5a. The four functions found between 59 and 61 outliers, using a solution
vector of size approximately 10. The x vectors from the Huber, Fair, and Logistic

ITERATIVELY REWEIGHTED LEAST SQUARES 477

1.4

/

0 10 15 20

Sample Least Squares

1.4

1.2

0.8

0.6
0 10 15 20

Sample Huber

1.4

1,2

0"810.6
0 10 15 20

Sample Logistic

1.4

0.8[
0.6

0 10 15 20

Average Least Squares (10 samples)

1.4

0’8 I0.6
0 10 15 20

Average Huber 9 samples)

1.4

1.2

0"8

0.6

’
o

05 I-1
0 10 15 20

Average Least Squares (10 samples)

-0.5 I-1

10 15 20

Average Huber 9 samples)

0 10 15 20 0 10 15 20

Average Logistic (10 samples) Average Logistic (10 samples)

1.4

1.2

0,8

0.6
0

1.4

1.2

0.8

1.4

1.2

0.8

0.6
20 010 15

Sample Fair

1.4

1.2

0.8

0.6
0

0=
-0.5

-1
5 10 15 20 0 5 10 15 20

Average Fair (10 samples) Average Fair (10 samples)

0,6
0 10 15 20 10 15 20

Sample Talwar Average Talwar 9 samples)

0 5 10 15 20

Average Talwar 9 samples)

FIG. 2. Solution vectors for one problem and average solution and residual vectors for 10
problems, 100 20, density I .1, well conditioned, 10 outliers.

478 DIANNE P. OLEARY

10o 10

I0- I0-2 [- ’’ ":’ ’ r,:’,

10-6 10-5
0 50 100 0 50 100

cond. no. 6 cond. no. 175

105

102

10-1

10"4

0 50 100

cond. no. 14576
FIG. 3. The absolute error in each component of the x vector for ordinary least squares (solid)

vs. the Fair function (dashed) (fl 2.5a) for three problems of dimension 500 100 with density
.1 and 10 outliers. The residual norm for each problem was 5.00 for least squares and 5.74 for
the Fair function. Neglecting the 10 largest components of the residual, the norm was 2.48 for least
squares and 0.21 for the Fair function.

functions had infinity norm differences of at most .04; the Talwar vector differed from
the Fair function by .25. The residual norms were 4.096, 4.086, and 4.088 for the first
three functions and 4.650 for Talwar. The CG Newton algorithm took 27 function
evaluations, 7 Hessian evaluations, and 17 cg iterations for the Huber function, and
10 function evaluations, 7 Hessian evaluations, and 16-18 cg iterations for the Logistic
and the Fair functions.

4. Conclusions. (1) Quadratic programming algorithms should be used for func-
tions such as those of Huber and Talwar, but the best algorithms for the other func-
tions are the B Newton algorithm if the problem is not too large and the CG Newton
algorithm (with QR or LU factorization) for larger problems.

(2) The functions considered here give better solution vectors than ordinary least
squares, but even so, the elements of the solution vector are often heavily contaminated
with error if the product of the matrix condition number and the standard deviation
of the errors in the data is greater than one.

(3) The number of iterations for the Newton-type algorithms seems insensitive to
the conditioning of the matrix and to the number of outliers in the data.

(4) The algorithm for generating sparse test problems with varying conditioning
may be useful elsewhere.

(5) The development of parallel algorithms for this class of problems is the subject

ITERATIVELY REWEIGHTED LEAST SQUARES 479

of current research. For these Newton-like algorithms, we need a parallel algorithm for
determining the search direction and a parallel linesearch algorithm. Parallel versions
of the conjugate gradient algorithm [23] are promising candidates for computing the
direction.

Acknowledgments. Virginia Klema and Beth Ducot kindly provided the data
for the housing model, and Gene Golub provided several of the references. Bob
Plemmons made helpful comments on the manuscript.

REFERENCES

[1]). BJRCK AND I. S. DUFF, A direct method .for the solution of sparse linear least squares
problems, Linear Algebra Appl., 34 (1980), pp. 43-67.

[2] Y. T. CHEN AND P. P. TEWARSON, On the fill-in when sparse vectors are orthonormalized,
Computing, 9 (1972), pp. 53-56.

[3] D. I. CLARK AND M. P. OSBORNE, Finite algorithms for Huber’s M-estimator, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 72-85.

[4] D. COLEMAN, P. HOLLAND, N. KADEN, AND V. KLEMA, A system o.f subroutines]or
iteratively reweighted least squares computations, ACM Trans. Math. Software, 6 (1980),
pp. 327-336.

[5] R. S. DEMBO AND T. STEIHAUG, Truncated-Newton algorithms]or large-scale unconstrained
optimization, Math. Programming, 26 (1983), pp. 190-212.

[6] A. P. DEMPSTER, N. M. LAIRD, AND D. B. PUBIN, Iteratively reweighted least squares]or
linear regression when errors are normal/independent distributed, in Multivariate Analysis
V, P. R. Krishnaiah, ed., North-Holland, New York, 1980, pp. 35-57.

[7] J. J. DONGARRA, C. B. MOLEa, J. R. BUNCH, AND G. W. STEWART, LINPACK Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1979.

[8] I. S. DUFF, Pivot selection and row ordering in Givens reduction on sparse matrices, Com-
puting, 13 (1974), pp. 239-248.

[9] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matrix test problems, ACM Trans.
Math. Software, 15 (1989), pp. 1-14.

[10] R. DUTTER, Robust regression: Different approaches to numerical solutions and algorithms,
Tech. Report Research Report No. 6, Fachgruppe fuer Statistik, ETH, Zurich, 1975.

[11] , Algorithms]or the Huber estimator in multiple regression, Computing, 18 (1977),
pp. 167-176.

[12] A. EDELMAN, Eigenvalues and condition numbers o.f random matrices, SIAM J. Matrix Anal.
Appl., 9 (1988), pp. 543-560.

[13] H. EKBLOM, A new algorithm]or the Huber estimator in linear models, BIT, 28 (1988),
pp. 123-132.

[14] R. C. FAIR, On the robust estimation of econometric models (ref. by [17]), Ann. Econ. Social
Measurement, 3 (1974), pp. 667-678.

[15] G. GOLUB, V. KLEMA, AND S. C. PETERS, Rules and software for detecting rank degeneracy,
J. Econometrics, 12 (1980), pp. 41-48.

[16] M. J. HINICH AND P. P. TALWAR, A simple method.for robust regression, J. Amer. Statist.
Assoc., 70 (1975), pp. 113-119.

[17] P. W. HOLLAND AND R. E. WELSCH, Robust regression using iteratively reweighted least-
squares, Commun. Statist.- Theor. Meth., A6 (1977), pp. 813-827.

[18] P. J. HUBErt, Robust estimation o.f a location parameter, Annals Math. Statist., 35 (1964),
pp. 73-101.

[19] , Robust Statistics, John Wiley, New York, 1981.
[20] N. KARMARKAR, A new polynomial algorithm .for linear programming, Combinatorica, 4

(1984), pp. 373-395.
[21] D. P. O’LEARY, On bounds]or scaled projections and pseudo-inverses, Linear Algebra Appl.,

1990, to appear.
[22] ., A discrete Newton algorithm for minimizing a function of many variables, Math. Pro-

gramming, 23 (1982), pp. 20-33.
[23] ., Parallel implementation of the block conjugate gradient algorithm, Parallel Comput., 5

(1987), pp. 127-139.

480 DIANNE P. OLEARY

[24] J. A. SCALES, A. GERSZTENKORN, AND S. TREITEL, Fast lp solution of large, sparse,
linear systems: application to seismic travel time tomography, J. Comput. Phys., 75 (1988),
pp. 314-333.

[25] D. F. SHANNO AND D. M. ROCKE, Numerical methods for robust regression: Linear models,
SIAM J. Sci. Statist. Comput., 7 (1986), pp. 86-97.

[26] G.W. STEWART, On scaled projections and pseudo-inverses, Linear Algebra Appl., 112 (1989),
pp. 189-194.

[27] R.P. TEWARSON, On the orthonormalization of sparse vectors, Computing, 3 (1968), pp. 268-
279.

