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6.7886¢e — 01
6.7930e — 01
9.3469¢ — 01
3.8350e - 01

5.1942¢ — 01
8.3097¢ — 01
3.4572¢ — 02
5.3462¢ — 02

45)

—2.2264e +05

4.2166e +05 46)
1.4062¢e +05

—2.6628e + 05

6.3758e + 02

CY)
—3.2603e + 02

—1.8704¢e +02
1.1764e +02

The minimum return difference matrix of control system, loop transfer function inf o[I + C(s)P(s)]=8=0.59. Therefore, the
multivariable stability margins,?* gain margin and phase margin, are precisely the same as those of the regulator when the observer
is included in the flight control system. Figure 3 shows the target loop and control system loop transfer function.

Conclusiens

We have given an algorithm that achieves precise loop trans-
fer recovery and provides freedom of eigenstructure assign-
ment for nonsquare plants in a situation in which the number
of sensors exceeds the number of controls. It is important to
note that the algorithm yields finite observer gain, a critical
requirement for pragmatic design. This approach is computa-
tionally simple, requiring on the order of n3 operations, and
works for regular systems with no transmission zeros.

The flexibility in selection of observer eigenvalues can be
used to meet other performance requirements. In particular, in
the case of flight control problems this flexibility can be used
to meet handling and flying quality requirements. Much work
can be done in the area of exploring the selection of observer
poles needed to achieve certain desired handling qualities and
better performance in general.

The situation in which the number of actuators exceeds the
number of sensors is dual to this case, and corresponds to
loop transfer recovery at the output. This dual version of
loop transfer recovery has been explained by a number of
researchers. 481! Tsui8 states that the necessary and sufficient
conditions for dual loop transfer recovery are CT' =0 and AT
— TF = BK,. In this case, the state feedback system does not
have a reduced-order version. There exists no full rank matrix
T to exactly satisfy these dual conditions.'* One can conclude
that, in this case, precise loop transfer recovery is not possible.

Appendix
Proof of Theorem 1 '

The assumption on the rank of CB is sufficient to guaran-
tee the existence of the QR factors in steps 1 and 3 and
the invertibility of R, . The distinct eigenvalue hypothesis guar-
antees that the Sylvester equation in step 5 has a unique
solution. Thus, all of the indicated computations in steps
1-6 can be performed. We now verify that we have satis-
fied Eqgs. (11) and (10). In step 6, we set T=ZW/, so that
TB = (ZWI)(W,S)) =0, since W] W,=0, and so Eq. (11) is
satisfied. Now, the matrix T satisfies the Sylvester equation
(10) if and only if

ZWTA - FZW] =K;C (A1)
or, when we multiply by the nonsingular matrix W,
ZWJAW — FZWIW = K,CW (A2)

Equation (A2) can be rewritten as

Z[A, A)]-FZ[0 I1=K/[C; CW;] (A3)
which is equivalent to the two conditions
ZA, = K;C, (Ad)
and ’
ZA, - FZ = K;CW, (A5)

We now verify that the matrices Z and K, determined by the
algorithm satisfy these relations. By step 6,

' R
K;C = [ZA,R[" L,]Q7C, = [ZA,R[ Lz][ 0‘] = 74,
(A6)
and by steps 5, 4, and 6,
ZA,— FZ = ZA\R{'E; + L, E; (A7)
E
=[ZA,R[" Lz][ ‘] (A8)
E,
=[ZA\R[' L,]QTCW, (A9)
=K,CW, (A10)
as desired. ‘ O

The second theorem concerns the meaning of transmission
zeros. We will use several facts about the rank of a matrix. A
matrix Y with at least as many rows as columns has full rank
if and only if there exists no nonzero vector 4 such that YA =0.
The rank of a matrix is unchanged if 1) the matrix is multiplied
by a square, nonsingular matrix, 2) row operations are per-
formed, adding a multiple of one row to another, and 3) rows
or columns are reordered.

Finally, if
Y, Y,
Y =
[ 0 Ys]

where Y, is square, then Y is full rank if and only if Y; and Y;
are full rank. .

(A11)
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Proof of Theorem 2

We multiply the transmission matrix by square nonsingular matrices to produce the following product:

p 4 m n
p I 0 O p | wr
n-pl0 I O |n-p|WS
m [0 0 QOT| m 0
_p n-p m_
p I 0 0 D
=n-p |0 I 0| n—p
m LO 0 QT_ m
p n-p m
p |1 o] »
=n-p |0 0| n—-p
m 0 Q7| m
p n—-p p
D WlAwW,—sI WTAwW, S,
n—p A A,—sI 0
= » R, E, 0 (Al4)
m-—p 0 E, 0

After permutation, and subtraction of 4 R["! times the third
block of rows from the second block, we obtain the following
matrix, whose rank is the same as that of the transmission
matrix:

» p n-p

p | S wlaw,-sI wWIAW,

p 0 R, E,

n-p |0 0 A,—AR['E|—sI (AL3)
m-p |0 0 E,

Since, by regularity, R, and S, are full rank, we see that there
are no transmission zeros if and only if the reduced system is
observable. O
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