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ABSTRACT 

We consider the practical implementation of Krylov subspace methods (conjugate 

gradients, GMRES, etc.) for parallel computers in the case where the preconditioning 
matrix arises from a multisplitting. We show that the algorithm can be efficiently 
implemented by dividing the work into tasks that generate search directions and a 
single task that minimizes over the resulting subspace. Each task is assigned to a 

subset of processors. It is not necessary for the minimization task to send frequent 
information to the direction generating tasks, and this leads to high utilization with a 

minimum of synchronization. We study the convergence properties of various forms of 

the algorithm and present results of numerical examples on a sequential computer. 
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1. INTRODUCTION 

The preconditioned algorithms in the Kylov subspace family (conjugate 
gradients, GMRES, CGSTAB, etc.) are standard tools in the numerical solution of 
large systems of linear equations 

Ax=b 

on high performance computers. The choice of preconditioners is still a topic 
of research, since there is no general rule for choosing a preconditioner that 
will ensure rapid convergence. 

In many cases the matrix A has a natural splitting as A = M - N, where 
linear systems involving the 
induces an iterative method 

initialized by a choice of x O, 

matrix M can be-solved easily. A splitting of A 

Mxk+l = Nxk + b, (1) 

and the iteration is convergent for each choice of 
the initial guess x ” if and only if the spectral radius p of the matrix M-IN 
satisfies p( M-'N) < 1. Common splittings include M equal to the main 
diagonal of A (the Jacobi partition), M equal to the diagonal and lower 
triangular elements of A (the Gauss-Seidel partition), and block variants of 
these. In some cases the splitting is induced by the structure of the problem 
(e.g., domain decomposition methods for elliptic partial differential equa- 
tions). In many instances, a matrix has several possible convergent splittings, 
each with advantages and disadvantages. 

O’Leary and White [I41 provided a framework for studying multiple 
splittings of matrices. If a matrix can be partitioned in several ways, 

A = Mi - N, , i =i,...,p, (2) 

then a m&splitting of A is defined by 

B = i DiM,+Ni, (3) 
i=l 

where the matrices Di are diagonal matrices that sum to the identity matrix. 
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Multisplittings induce the iterative method 

Ak+l = i D$;‘, x 
i=l 

where 

Mi$:' = Nigk + b. 

This can be written in the equivalent form 

(4) 

(5) 

(6) 

where 

G = i D&. (7) 
i=l 

Thus the convergence of the multisplitting is dependent on the condition 

p(B) < I. 
Part of the motivation behind multisplittings is that the work for each 

individual splitting can be assigned to a subset of processors and communica- 
tion is required only to combine the results using the diagonal weighting 
factors. If any element of Dj is zero, then the corresponding component of 
g(“1; ’ need not be computed, so the multisplitting framework can be used to 
partition variables among processors. 

The parallel implementation of multisplittings has been investigated 
in many papers (e.g., [16, ll]), and it is natural to try to accelerate 
the convergence of the iteration using Krylov subspace-based methods 181. 
The Krylov subspace 3$ A, 9,j) of dimension j is the span of the vectors 

(9, A9,. . . , Aj-iql, where 9 is a vector in 9”. The Krylov subspace 
methods that we discuss form iterates y k that minimize some error function 

(e.g., IlAx - bll 1 2 over the Krylov subspace S@ A, 6, k). If preconditioning is 
used, then the subspace becomes s M- ‘A, Mp lb, k), and in the case of 
multisplittings this can be written as aB, Gb, k). 

The natural parallel implementation of a multisplitting preconditioner for 
a Krylov subspace method is to divide the algorithm into p + 1 tasks and 
assign a set of processors to each task. Each of the p multisplitting tasks 
computes one of the vectors xlCij. The remaining task combines these vectors, 
generates a new basis vector to expand the Krylov subspace, minimizes the 
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error function over that subspace, and sends the updated vector back to the 
multisplitting tasks. There is a great deal of parallelism within each task, but 
to improve parallel utilization, it is possible to let the multisplittings run m 
iterations at a time before generating the next Krylov vector. 

Using this form of the algorithm, it can be difficult to achieve very high 
utilization, since the work is bimodal: either some of the p multisplitting 
tasks are active or the Krylov task is active, but not both. Synchronization can 
be a significant bottleneck: the Krylov minimization cannot be performed 
until each of the multisplitting tasks has reported, and the multisplitting tasks 
are idle while the minimization is being performed. The assignment of tasks 
to processors must be done quite carefully in order to balance the work in 
each phase and minimize waiting time. 

In this paper we consider an alternative algorithm. Again there are p + 1 
tasks, p for the m&splitting and one for the minimization, and each task is 
assigned to a subset of processors. But in this algorithm, the multisplittings 
report individually to the minimization task and do not need to wait for a 
response. This reduces waiting time at the cost of some additional complica- 
tion in the minimization, and it will be shown that the subspace over which 
the error function is minimized equals the Krylov subspace used in the 
standard algorithm. Although no synchronization signals are sent from the 
minimization task to the multisplittings, the minimization task can be imple- 
mented in a way that makes the algorithm deterministic rather than chaotic. 
In practice, due to roundoff error, the minimization task must periodically 
reinitialize the multisplittings, but this can be done infrequently. 

This approach provides additional flexibility as well. We can generate a 
larger dimensional space for minimization by using each of the multisplitting 
vectors in the minimization, and we can add other promising vectors to the 
subspace. This creates a subspace that includes the standard Krylov subspace. 

In Section 2 we define the parallel tasks in the algorithm. Section 3 
is devoted to determining the properties of the subspace over which 
the minimization is performed and establishing a convergence rate for the 
symmetric positive definite case. The parallel complexity is considered in 
Section 4, and results of numerical examples on sequential machines are 
presented in Section 5. A preliminary report on part of this work was given in 

[lOI. 

2. ALGORITHM KMS: KRYLOV MULTISPLITTING 

As noted in the introduction, Krylov subspace methods such as the 
conjugate gradient algorithm and GMRES form approximate solutions to a 
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linear system AX = b by minimizing an error function over the subspace 
HM-lA, M-lb, k), k = 1,2,. . . . Standard implementations use an ortho- 
normal basis for this subspace in order to make the minimization more 
efficient. In this section we present the algorithm in a form that uses the 
natural basis rather than the orthogonal one in order to reduce communica- 
tion among tasks, to allow for extra basis vectors, and to achieve better 
parallel utilization. We first present the algorithm in a general way. Some 
implementation notes and specific examples of multisplittings follow. 

Task, is the minimization task, and the multisplitting tasks are denoted by 
Task,, i = 1,. . , p. 

ALGORITHM KMS (A parallel multisplitting-preconditioning of a Krylov 
subspace minimization) 

Cobegin Task,, Task,, . . , Task,. Send the initial guess Go to each task 
and the convergence tolerance E to Task,. Coend. 

. Algorithm for multisplitting Task,, i = 1, . , p: 

For k = 0, 1, . , until receiving a halt signal from Task,, 

Receive the latest multisplitting iterate, 5Zk and call it z’. 
For j = 1,. , m 

Determine .zj by solving Mi d = Ni .zj- ’ + b. 

Send the search direction A z,!+‘,j = .zj - zjP ’ to Task, for 
minimization. 

endfor 
Form zk+’ = Di,zm, and participate with the other multisplitting 
tasks in ‘forming x^ k+ i by summing the zk+ ‘, i = 1,. , p. (See 

Note 1.) 

endfor 

. Algorithm for minimization Task,. 

Initialize r = b and S to be the null matrix. 

While llrll > Ellbll, 

Receive any available new directions AZ from tasks 1, . . . , p, and 
use them to form columns for the matrix S. 
Set x to be the minimizer of the error function (e.g., a norm of the 
x-error or of the residual) over the subspace 9 spanned by the 
columns of S, and set the residual r = b - Ax. (A more complete 
description is given in Section 2.1.) 

end 
Send halt signal to Task,, . . . , Task,. 
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NOTE 1. The best algorithm to use for formation of the vector sum in 
the multisplitting tasks depends on the parallel architecture and on the 
particular multisplitting. If each element of the weighting matrices Di is 
either 1 or 0, then the “summation” is simply a merging of subvectors and is 
performed by sending local values to all other tasks that depend on them and 
receiving relevant subvectors from other tasks. If the weighting matrices have 
elements strictly between 0 and 1 so that averaging is needed, then the 
summation is performed using standard algorithms [3] in logarithmic time 
using hypercube connections or linear time using a mesh-connected set of 
processors. 

NOTE 2. The algorithm as written here generates a basis for a subspace 
including the Krylov subspace. An alternative algorithm sends just the “outer” 
iteration Krylov directions gk+ ’ - f k to Task, instead of sending all of the 
direction vectors from each “inner” iteration of each multisplitting task. 
Whether this is a good idea depends on the relative speed of computation vs. 
communication for Task,. Ideally, we want to feed directions to Tusk, as fast 
as they can be processed. Since the amount of work in Task0 grows with the 
number of columns in S, this may mean that Tusk, initially accepts every 
column it receives, but later may discard some early columns or accept only a 
subset of the new columns generated by the multisplitting tasks. In this way it 
may behave more like a restarted GMRES algorithm, for instance. 

NOTE 3. The number of “inner” iterations m could be variable, deter- 
mined adaptively depending on the convergence properties of the multisplit- 
ting and on the computing environment [2]. 

NOTE 4. An iterative method can be used to solve M,.zj = i’Vi.C1 + b. 
Given a splitting Mi = F, - Gi, we perform s “inner” iterations with this 
splitting in order to approximate the solution. The resulting iterate is 

s - 1 

zk+l = (F'G) %k + c (F-%)jF-l( hh, + b), k =O,l,... (8) 
j=o 

Two-stage (or inner/outer) methods based on such splittings have been 
studied, for example, by Frommer and Szyld [6] and by Golub and Overton 

[71. 

NOTE 5. Due to roundoff error, it is necessary to periodically reinitialize 
the m&splitting tasks so that they work with the most accurate computed 
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solution, but this can be done relatively infrequently. Due to the growth of 
work in the minimization task, it is desirable to periodically reinitialize the 
subspace Y. 

NOTE 6. The algorithm bears some relation to the s-step conjugate 
gradient method of Chronopoulos and Gear [5] that forms a series of 
matrix-vector products before orthogonalizing against the previous directions. 
In our case, we allow extra basis vectors in the minimization, and s is the 
total number of iterations between reinitialization of the multisplitting tasks. 

NOTE 7. Our algorithm is also related to one given by Axelsson and 
Vassilevski [2], who propose using a variable preconditioner, perhaps chang- 
ing the number of iterations m or the exact form of the operator from 
iteration to iteration. There are some important differences. Our minimiza- 
tion subspace can be somewhat richer, including the subvectors for the 
multisplittings; they use only the vectors Gk+ ’ - Gk. In their algorithm, the 
direction-generating tasks must wait for an updated vector from the mini- 
mization task before proceeding. We will show in the next section that the 
same subspace can be generated without such waits. Their computation of 
the orthogonal basis for minimization is more direct, as is typical of most 
Krylov subspace algorithm implementations, and can be done with somewhat 
more simplicity. 

2.1. The Minimization Task 

To illustrate the implementation of the minimization algorithm, we will 
use the error function 11 AX - b]l 2 as an example. Other error functions (e.g., 
the conjugate gradient function 11 x - x*]]~, where I]w]]; = wTAw and x* is 
the true solution to the problem) or preconditioned forms of these functions 
yield similar procedures. 

Mathematically, the minimizer of the error function ]I AX - bl], over the 
subspace spanned by the 1 columns of a matrix S is x’ = So, where CY is 
determined as the solution of the linear system 

STATASa = STATb. 

Attempting to solve this system directly can lead to numerical difficulties, 
since the columns of S may contain some (near) linear dependencies, so a 
more reliable numerical approach is to factor the matrix AS using a rank- 
revealing QR factorization [4]. Th e matrix AS is factored as QR, where the 
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columns of the n x I matrix Q are orthogonal (i.e., Q’Q = I), R is an Z X Z 
upper triangular matrix (n > I>, and the columns of AS have been rear- 
ranged in the course of the factorization so that the columns causing linear 
dependencies are pushed to the “ght. We pick a maximal leading principal 
submatrix R, of R of dimension Z < 1 that corresponds to a well-conditioned 
subset of basis vectors, and solve a reduced system. For the QR factorization n 
we determine the first Z components of (Y from the reduced system 

R,q = Q% (9) 

where Qr consists of the first i columns of Q, and we set the last Z - i 
components of cr to zero. 

The implementation of the minimization algorithm is somewhat depen- 
dent on the choice of splitting and computer architecture. As an illustration 
of the splitting dependence, if each element of the weighting matrices Di is 
either 1 or 0, then the direction vectors are sparse, and savings can be 
achieved by taking advantage of this structure in forming the product of A 
with the vectors. There is a great deal of parallelism in the matrix updating 
and in the solution of the linear system, and this should be exploited on a 
given architecture. 

The approach that we have just described keeps the size of the subspace 
small. However, it is desirable to use the most recent directions if the 
underlying iteration (i.e., the multisplitting iteration) is convergent. Therefore 
an alternate approach is to find an orthogonal basis for Y, form A times the 
orthogonal basis vectors, and solve the resulting system by QR. The orthogo- 
nalization of the basis vectors requires additional work, but it ensures that the 
matrix AS is at least as well conditioned as A is, and ensures that a new basis 
vector is generated for each direction vector (although it may be effectively 
random if the direction vectors are highly dependent). Therefore, the experi- 
ments discussed later are based on the following procedure. When a new 
vector u is received: 

1. Update the QR decomposition of the vectors spanning the subspace P’ 
to include u. The last column qk of Q is our new basis vector. 

2. Form Aqk. 
3. Update the QR decomposition Qn R, of AQ to include Aqk. A rank- 

revealing QR algorithm is used, so that if necessary, the subspace can be 
truncated to maintain a well-conditioned matrix R,. 

4. Form the minimizer in the subspace by solving R, (Y = Q,Tb. 
5. Form the new iterate xk = Qcx. 
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2.2. Multisplitting Examples 
To better illustrate the division of labor in the multisplitting tasks, we give 

several specific examples. See also [21]. 

EXAMPLE 1. Discretization of elliptic partial differential equations may 
lead to symmetric positive definite matrices of the form 

A= 

where systems of the form M,z = d and M, z = d are easy to solve. Setting 

leads to the very effective “block’ J ace i i era ion (see [S]). Since we solve b’ t t’ 
M,z, = d, and M,z, = d, independently, it is apparent that we can parti- 
tion the work into two tasks, with each task updating a disjoint piece of the 
vector of unknowns. If we solve the linear systems involving M, and M, 
directly, then we set m = 1 and have the two tasks exchange information 
after each update. We show in Section 3 that the resulting subspace for 
minimization includes the Krylov subspace X(M-rA, M-lb, k). 

EXAMPLE 2. The structure in Example 1 can be exploited in a different 
way: it is not necessary to solve Mz,, 1 = rk exactly. Our goal is to efficiently 
provide a good subspace for minimization. Thus, if M has a splitting as 

M= (“” M22)= (“’ F2)- (“’ Gz)=F-G 

where F is nonsingular, then the two tasks can iterate using the splittings 
Ml = diag(F,, O), M, = diag(O, Fz). W e use these two-stage methods to 
produce a vector space for minimization. This raises the question how many 
of these “inner” iterations we should perform. On the one hand, we should 
reduce the communication overhead between Task, and Task,. On the other 
hand, even if we solve the linear system Mz = d exactly, we do not necessary 
increase the convergence rate. Hence the answer to this question depends on 
the problem to be solved and the computing environment. 
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EXAMPLE 3. Splittings with more than p = 2 pieces arise naturally 
in discretizations of partial differential equations, using either domain 
decomposition or multicolorings. 

In domain decomposition [I71 th e variables are partitioned into possibly 
overlapping subsets corresponding to subdomains for which solution is easy. 
The operators M, correspond to a partial differential equation over the 
subdomain. 

A similar partitioning can be used to handle problems in which the 
discretization has been locally refined. Variables can be partitioned into 
pieces of roughly equal size corresponding to “coarse” grid points and refined 
points, and a multisplitting can be constructed from this partitioning. 

In m&colorings, the variables are partitioned into groups (colors) so that 
the matrices Mi are block diagonal. The simplest example is the well-known 
red-black ordering for the 5-point operator, but partitionings with p > 2 
have also been developed [l, 121. 

3. CONVERGENCE ANALYSIS 

3.1. Properties of the Multisplitting Subspace 

In this section, we characterize the subspace spanned by the vectors 
generated by the multisplitting tasks. We do this by deriving expressions for 
the iterates and their differences. Without loss of generality, we assume that 
nn x = 0. 

LEMMA 3.1. In Algorithm KMS, the directions AZ,!’ i.j, j = 1, . . , m, 
span the Kylov subspace 2$ Mi ‘N,, Ml: ‘(b - AG k ), m>. The iterates satisfy 

Proof. Task, generates iterates 

M,,j = N,zj-l + b, 

where Z’ = Gk, so the direction vectors Azj = ,j - zjP1 are 

Azj = Mi-lNi A.&’ 
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forj=Z,...,m,with 

= Mi-‘Ni;k + &f-lb - Gk 

= (M,‘N, - Z)X^k + M,‘b 

= -M;‘tik + M,:‘b, 

and thus we generate the Krylov subspace 35$ M,‘N,, - Mi l&k + M,: ‘b, m). 
The expression for the iterates is a standard result, easily verified by 

induction. W 

The following theorem shows that the subspace over which we minimize 
includes the standard Krylov subspace used by preconditioned algorithms. 
This is the key to applying standard convergence results. 

THEOREM 3.1. Given ik (2’ = O), the m steps of the multisplitting 

iteration generate iterates 

*k+l x = Bgk + 6, (11) 

where 

B = i D,(M;lNj)m 
i=l 

and 

& = i Dimcl (M;‘N#M;‘b. 
i=l j=O 

Thus, the directions 

(12) 

(13) 

span the Kylov subspace a B, &, k). 
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Proof. From (10) and (4) we see that for k 2 0, 

m-l 

m?k + C (M~+NJ~M;% 
j=O 

and 

Al = 
x A;’ = t Qm~‘(M;‘Nj)‘M;‘b = 6. 

i=l j=O 

Thus, for k > 0 we have the expression 

AX *k+l = BAX^k, 

and the vectors A x^j, j = 1, , k, span the subspace B’( B, A x^‘, k ). W 

The following corollary rewrites Lemma 3.1 in terms of the notation 
introduced in Theorem 3.1. 

COROLLARY 3.1. After K outer iterations with i?’ = 0, the directions 

{Az,!~j} generated by the m&splitting tasks span the Kylov subspaces 

for-i = l,...,p and k = l,.. ., K. 

The next two corollaries specialize the theorem to the case of a single 
iteration between communication, and to two-stage methods. 

COROLLARY 3.2. Zf m = 1 (i.e., each multisplitting task per_#orms a 

single iteration between communications), then the directions {A z,!,jJ gener- 

ated by the m&splitting span the space M,: ‘AS5 B, 6, K) in union with the 

span of {M;‘b}, i = 1,. . . , p. 

COROLLARY 3.3. Zf m = 1 and s steps of splittings Mi = F, - Gi are 

used as in (8) then after K outer iterations with Go = 0, the directions {AhX^k) 
span the Kylov subspace a H, b, K ), where 
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6 = fi Di[ Z - (F;‘G,)“]M;‘b. (15) 
i=l 

Proof. From Algorithm KMS, the ith task generates its first iterate 

s-1 

z,! = c ( Fi- ‘G,)‘E;-‘b 
j=O 

= [I - (F,lGi)‘](Z - F,-lGi)-lF,lh 

= [I - (F;~G~)~]TVZ;~~. 

Thus 

31 = L D~[ z - (F;~G,)‘] ~;lb = &. 
i=l 

The (k + 1)st iterate is 

s-1 

.Q+l = (F;~G~) ‘zk + C (Fi-l~i)jFi-l(~i;k + b) 
j=O 

= (F1-lG)S~k + [I - (F;~G,)~]M;QV~;~ + [z - (~,;l~,)“]M;lb, 

Hence 

*k+l = 5 DiZ;+‘,’ x 
i=l 

= i~lDi(F,‘ci)‘ik + ~~lD.[I-(F;'~,)"]M;l~~;k +il. 
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-k x *k+1 --x + 2’ = i Dj2k - i Di(F,-‘G,)s~k 
i=l i=l 

- 5 Di[ I - (F,-lG,)S]M;lNix^L 
i=l 

= i Di[ I - (F,-‘G,)‘];” 
i=l 

- i Di[ I - (F;lG,)s]M;lNiX^k 
i=l 

= i Di[ I - (F;‘Gi)“] Miltik 
i=l 

= H?k. 

From this relation we see that the directions {A x^ k} span the Krylov subspace 

.-%?H, b, K). n 

3.2. Convergence Bounds 

Now we have tools to analyze the rate of convergence of Algorithm KMS. 

Theorem 3.1 guarantees that the subspace over which we minimize contains 
the standard Krylov subspace, and thus standard results for the convergence 
of algorithms such as preconditioned conjuga!e gradient or preconditioned 
GMRES [8] are applicable. For example, if M and A are symmetric and 
positive definite, andif we minimize the error function 11 x - x*11 A over the 
Krylov subspace a M-‘A, M-lb, k), then the error is bounded as 

IleollA, (16) 

where K is the condition number of klA, the ratio of its largest to its 
smallest eigenvalue. (See, for example, [8].) 
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For the multisplitting algorithm, 

and 

&IA = 

= 

= 

Here are the conditions 
preconditioners 6. 

z~lDim~l(M;~Nj)‘(I - M,‘N,) 
j=O 

i Dj[ I - (My’iy)“] 
i=l 

I - B. 

that naturally lead to symmetric positive definite 

23 

(17) 

THEOREM 3.2. Zf m = 1, if A and Mi are symmetric and positive 
definite, if Dj = ail, w h ere cq is a positive scalar (i = 1, . . , p), and if we 
minimize II x - x * 11 A over the KyZ ov subspace generated by Algorithm KMS, 

then the bound (16) applies, where K is the condition number of Z - B. 

Proof. This follows from (171, since each term in the second sum is 
symmetric. n 

In the nonsymmetric case, we obtain bounds like the standard 
result [ 181. 

GMRES 

THEOREM 3.3. Suppose that we minimize the norm of the residual 
over the Kyloy subspace generated by Algorithm KMS, and that the 
preconditioner M- 1 satisfies 

6) (v, @C1v), > &11vlli all v; 

(ii) II AM-‘4 < 6211vll 2, all v, for some positive constant a,, 6,. 

Then the multisplitting algorithm converges monotonically and the residual 
norms satisfy the bound 

llrkllz < dl - ( 6,/62)211rk_111~, k = 1,2,. . . . (18) 
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4. PARALLEL IMPLEMENTATION 

In designing a parallel implementation of Algorithm KMS, our first obser- 
vation is that the nature of the multisplitting tasks is fundamentally different 
from that of the minimization task. The multisplitting will generally be 
working with sparse matrices Mi and A, while the matrix AS for the 
minimization task may be dense. Thus, the use of a heterogeneous parallel 
computer may be possible, using, for example, a hypercube for the multisplit- 
ting and a systolic array (or Connection Machine) for the minimization task. 

The implementation of the multisplitting is quite problem dependent, but 
the minimization task is somewhat easier to characterize. The main work is 
the updating of a matrix using a QR or URV decomposition. Parallel versions 
of these algorithms have been discussed in [I3, 191. 

Huang [9] has p e r-f ormed a detailed analysis of Algorithm KMS using a 
2 x 2 block partitioning of the SSOR splitting on a model problem, Laplace’s 
equation on a rectangle with Dirichlet boundary conditions. For convenience, 
assume that the matrix A is N2 X N2 and that the two-dimensional mesh of 
multisplitting processors consists of 2s X s processors. We assign N2/2s2 
unknowns to each processor. The computation and communication time for 
each “outer” iteration (s inner iterations) is 

N2 N N 
-++&+NT~ +/3+--T+-, 

s S S 

where the time for a typical floating point operation is 1, & is the startup 
time for communication within the multisplitting processors, TV is the per 
word transmission time for these processors, and p and r are the correspond- 
ing times for communication between the multisplitting and the minimization 
task. After k directions are generated, the time for the minimization is 
0((kN2 + k2)/t) on t processors. 

5. NUMERICAL EXAMPLES 

The purpose of this section is to illustrate the behavior of Algorithm KMS 

as compared with standard implementations of conjugate gradients or GMRES, 
and indicate some of the problem solving strategies that become possible 
when the minimization task is decoupled from the direction-generating tasks. 
Both the test problem and the preconditioning strategies are oversimplified, 
but they suffice for illustration. 
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Consider a convection-diffusion equation 

-u,, - u yy + uu, + 7uy =f onfl, u=g on dfl. 

Let R be a square, and use the second order accurate five-point finite 
difference method and upwind differencing of the first order terms to 
discretize the equation with m equally spaced interior mesh points in each 
direction. This gives the algebraic equation Au = b where A is an m2 X m2 
matrix. Using the standard column by column ordering of mesh points, the 
matrix is block tridiagonal, with tridiagonal matrices ( - (1 + 271, 4 + 2( 6 + 
y), - 1) on the main diagonal, and -Z and -(l + 2 6)Z above and below, 
where y = crh/2, 6 = rh/2, and h = l/(m + 1). 

Two test problems were used. Both used 50 X 50 meshes. The first was a 
symmetric problem (u = T = 01, and the second was nonsymmetric (a = 1, 
T = 2). The initial guess was taken to be all zeros, and the right hand side was 
a random vector with normally distributed entries and standard deviation 1. 
The tolerance for the rank determination in the QR decomposition was 10m5. 

The conjugate gradient (for the symmetric problem) and GMRES algo- 
rithms were run with block (column by column) SSOR preconditioning. These 
algorithms require three matrix-vector products per basis vector, although 
this complexity can be reduced somewhat by using the Eisenstat algorithm 
[15]. Algorithm KMS was used with three preconditionings: 

1. KMS(BSSOR): Block SSOR preconditioning column by column. The 
resulting change in the iterate was used as a direction vector (d = 1 direction 
vector per iteration). Alternatively, we used two direction vectors per itera- 
tion (d = 2), one from the forward sweep and one from the backward sweep. 
There are three matrix-vector products per basis vector for the d = 1 
method, and two for the d = 2 method. 

2. KMS(ADBGS): Block Gauss-Seidel preconditioning. The first task runs 
the standard column by column ordering, but the second uses the row by row 
ordering. The two direction vectors are sent to the minimization task, and the 
average of the row and column iterates is used to initialize the next block 
Gauss-Seidel step. This requires two matrix-vector multiplications per direc- 
tion vector. 

3. KMS(PartBGS): Task, forms updates of the even grid columns by the 
block Gauss-Seidel iteration. At the same time, Tusk, forms updates of the 
even grid rows by block Gauss-Seidel. Values for the duplicated grid points 
(approximately m2/4> are averaged, and values for the omitted grid 
points (approximately m2/4) are computed by point Gauss-Seidel, using the 
updated neighboring values. This requires 2.25 matrix-vector products per 
direction vector. 
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The directions received by the minimization task were used to generate 
an orthonormal basis for the minimization subspace, and the product of 
the matrix A with these basis vectors (included in the counts above) was 
performed by the minimization task. Upon restart, the current residual was 
used as the right hand side. 

Algorithm KMS was run in two modes: no communication from Task,, to 
the other tasks, and communication every 20 iterations in order to have the 
splitting tasks work with the best solution vector found thus far. The maximal 
size for the minimization subspace in the KMS and GMRES algorithms was 20. 
The conjugate gradient algorithm, of course, was run without restarts. 

Results of the experiments are given in Figures 1 and 2, in which the 
norms of the residuals for the various algorithms are plotted as a function of 
number of matrix-vector multiplications. 

There are two curves for each KMS algorithm. The upper ones correspond 
to no communication from Task, to the other tasks and indicate that the 
algorithms stall and fail to converge. This is due to the generation of 
directions that are effectively random when Gram-Schmidt orthogonalization 
is applied to a long sequence of Krylov vectors. The same problem limits the 
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FIG. 1. 50 x 50 grid, Problem 1. 
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FIG. 2. 50 x 50 grid, Problem 2 

number of steps that can be performed in the s-step conjugate gradient 
algorithm of Chronopoulos and Gear, and can be somewhat alleviated by 

using Householder orthogonalization [20]. With feedback every 20 iterations, 
all KMS algorithms converged. 

These experiments lead us to believe that Algorithm KMS is an effective 
alternative to standard implementations of Krylov subspace methods even on 
sequential computers, and the KMS formulation enables us to take advantage 
of multisplitting preconditioners. On parallel computers, the Algorithm KMS 

has the further advantage of not requiring frequent communication from 
Task, to the multisplitting tasks, and in balancing the number of matrix-vector 
multiplications among the tasks. 

6. CONCLUSIONS 

We have presented a nontraditional implementation of Krylov subspace 
methods that does not use an orthogonal basis to compute the subspace. 
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If only the vectors Af are used for minimization, then this algorithm is 
equivalent to preconditioned conjugate gradients or GMRES; if additional 
vectors are used, then the minimization is performed over a larger subspace 
that includes the standard Krylov subspace. This algorithm has more flexibility 
than standard implementations and many advantages for parallel computation: 

1. The number of synchronization points between the multisplitting 
tasks and the minimization task is greatly reduced. 

2. Additional vectors can be added to the subspace if the Krylov 
generators are not working fast enough to keep the minimization task busy. 

3. Vectors can be dropped if they do not provide a sufficient decrease. 
4. We have the option of creating several vectors from any particular 

basis vector by partitioning it into subvectors and creating a vector from each 
of these padded with zeros. This might improve the convergence if the 
preconditioner is locally good but normalization between pieces of the vector 
is not so good. 

5. The minimization task can reinitialize the direction generators at any 
time by sending the updated x vector. If the minimization has been 
performed using only the A; vectors, then this has no effect on the 
computation, but if other directions have been added, then convergence can 
be accelerated without significant synchronization penalty. 

6. There are natural extensions of these ideas to nonlinear problems [9]. 

Clearly, further work remains to be done in developing effective multisplit- 
tings and in implementing the algorithm on parallel machines. 

In the special case of p = 1 (i.e., a single splitting), the idea behind 

Algorithm KMS should be attributed to Gene Golub, who frequently asks the 

question, “But why do you need an orthogonal basis?” 

Bob Plemmons made useful comments on a draft of the manuscript. 
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