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URV ESPRIT for Tracking Time-Varying Signals 
K. J. Ray Liu, Senior Member, IEEE, Dianne P. 

Abstruct- ESPRIT is an algorithm for determining the fixed 
directions of arrival of a set of narrowband signals at an array 
of sensors. Unfortunately, its computational burden makes it 
unsuitable for real time processing of signals with time-varying 
directions of arrival. In this work we develop a new implemen- 
tation of ESPRIT that has potential for real time processing. It 
is based on a rank-revealing URV decomposition, rather than 
the eigendecomposition or singular value decomposition used in 
previous ESPRIT algorithms. We demonstrate its performance on 
simulated data representing both constant and time-varying sig- 
nals. We find that the URV-based ESPRIT algorithm is effective 
for estimating time-varying directions-of-arrival at considerable 
computational savings over the SVD-based algorithm. 

I. INTRODUCTION 

SPRIT [l] is a method for determining directions-of- E arrival (DOA) of a set of narrowband signals impinging 
on an array of m sensors. It handles array geometries almost as 
general as those of the MUSIC algorithm 121 at a significant 
computational savings. 

A key limitation of both the MUSIC and ESPRIT algorithms 
is the work required to process a new sample. At the heart of 
the algorithms is the separation of the m dimensional sample 
space into an approximate signal subspace and an approximate 
noise subspace. Usually this separation is done by computing 
the eigendecomposition of the estimated covariance matrix, or 
part of the singular value decomposition of the data matrix. 
Unfortunately, these decompositions require O( m3) operations 
to update, making the algorithms unsuitable for real-time 
computation. Some attempts have been made to reduce the 
updating complexity by maintaining an approximate singular 
value decomposition (e.g., [ 3 ] ,  [4]), but we believe that better 
results can be obtained using an altemate decomposition. 

Recently, Stewart [5] has introduced the rank-revealing 
URV decomposition, a new matrix decomposition that pro- 
duces the signal and noise subspaces, but can be updated 
in O ( m 2 )  time sequentially and in O ( m )  time on an array 
of m processors. This means that algorithms that previously 
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depended on eigendecomposition or singular value decompo- 
sition may now be practical in real time applications, provided 
the URV decomposition can be successfully substituted. Bo- 
man, Griffin, and Stewart [6] have already exploited this fact 
to accelerate the MUSIC algorithm. The purpose of this paper 
is to investigate the use of the URV decomposition in time- 
varying signal processing using ESPRIT. 

11. THE ESPRIT ALGORITHM 

Roy and Kailath [1] noted that the ESPRIT idea is inde- 
pendent of the choice of matrix decompositions used in its 
implementation. In this section we discuss alternatives for 
these decompositions. 

The Buckground 

We consider d narrow-band plane waves simultaneously 
incident on a planar array of m sensors (7n even), arranged in 
r n / 2  doublet pairs. The displacement between sensors in a pair 
is constant in both direction and magnitude A, but the location 
of each pair is arbitrary. The wave sources are assumed to be 
located in the same plane, and the location of each source is 
specified by a single parameter OZ E [-71-, T ] ,  the DOA of the 
ith source. Quantities related to the first and second sensors in 
each pair are subscripted by 1 and 2,  respectively. All vectors 
are column vectors. 

Given data from the array of sensors, the DOA estimation 
problem is to locate the directions of the sources. If the 
narrowband signals have the same known center frequency W O ,  

then the DOA problem can be described by a simple model. 
The relationship between the unknown signal s ( t )  E Cd and 
the sensor output zl(t) E Cnl/’ and z:z(t) E C””’ is given by 

or 

(3) 

where e ( t )  is the measurement noise, and A E is the 
unknown matrix of array responses or array steering vectors. 
The diagonal matrix is also unknown, and is related to the 
phase delays between the sensors in each doublet pair: 

, i = l )  ..., d. (4) 4. - e jdoAsin@,/c  
a -  

Our task is to estimate the number of signals d and the 
directions-of-arrival, 6;. For this it is sufficient to estimate the 
matrix @, which is the idea underlying ESPRIT. 
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Let the 71 columns of SVD ESPRIT 

x =  (2) The SVD ESPRIT algorithm finds the required bases us- 
ing the singular value decomposition. We determine unitary 
matrices U and V such that 

( 5 )  

XH = UDVH ( 1  1) 
form an ensemble of n snapshots, and let S be the correspond- 
ing matrix of signals. For noise free signals, X has rank d, 
and if the d columns of where the diagonal elements of D = diag(61,&,. . . ~ 6,) 

are nonnegative and in descending order of magnitude. If 6 d  

is judged to be sufficiently large and S d + l  is judged to be 
sufficiently small, then we conclude that there are d signals, 

(6) 

and the first d columns of V furnish the required (approximate) 
basis for the signal subspace. 

A basis for the row space of (VI V.) can also be determined 

form a basis for the column space of X, it follows from (1) 
and ( 2 )  that 

where S B  is a nonsingular matrix of order d. 
Next let the rows of 

by calculating an SVD. Specifically, let 
(7)  

(VI v2j = TDvWH 

be the SVD of (VI Vz). Then the first d rows of WH form 
the required basis (Wl W Z ) .  

The matrices V and D can be computed directly from 
the original matrix X ,  and this is the best algorithm in 
applications with very small singular values and high accuracy 
demands. However, for the DOA problem there are less costly 
alternatives: from (1 l), it follows that 

(Wl Wz) (’) 

from (7) form a basis for the row space Of 

that W can be written in the form 
h)- It 

(W1 Wz) = (CASB C-4WBj (9) XXH = V D 2 V H .  (13) 

where CA is a nonsingular matrix of order d. Since CA and 
S B  are nonsingular and @ is diagonal, the diagonal elements 
of @ are the eigenvalues of the pencil 

W2 - Afl’1 = (CA)@(SB) - A(CA)(SB). (10) 

Given @, the directions of arrival can be found from (4). 
The above description of ESPRIT leads to many algorithms, 

even in the absence of noise, since there are many choices of 
bases. For example, if the bases (VF V,”)” and (VI; W Z )  
are chosen to be orthonormal, then the resulting pencil is 
orthogonally equivalent to the pencil resulting from using 
the singular value decomposition to implement total leust 
squares ESPRIT (the variant studied in this paper). In the 
presence of noise, one is faced with the additional problem 
of estimating the subspaces and their dimensions. The role 
of specific decompositions in ESPRIT algorithms is to make 
these estimations possible. 

Thus the computational burden in ESPRIT is in choosing the 
matrices B and C that define the required bases. In particular, 
in the absence of noise, virtually any full rank matrices B and 
C will do (technically, any full rank matrices except those in a 
set of measure zero). Although we do not pursue this approach 
here, we feel it has the potential to yield fast algorithms that 
will work when there is a good signal-to-noise ratio. 

When noise is present, then no matter how the matrices 
B and C are chosen, the computed basis matrices are only 
approximations to the true bases. It is necessary to choose 
these two matrices in a way that controls the effects of the 
noise. 

Thus V is the matrix of eigenvectors of the Hermitian cross- 
product matrix XXH. This computational approach is particu- 
larly attractive, because the cross-product matrix can be easily 
updated as signals arrive. 

Even with these economies, the SVD ESPRIT algorithm 
is expensive, requiring the O(m3) solution of an eigen- 
value problem with each snapshot. Unfortunately, updating 
the eigendecomposition results in another O( 7n3) algorithm, 
though the order constant is smaller [7]. Recently, techniques 
for approximately updating an eigendecomposition have been 
proposed [3] ,  [4], and they show some promise. However, in 
this paper we consider an alternative decomposition that can 
be updated in O(rn2) time. 

URV ESPRIT 

The rank-revealing URV decomposition expresses XH in 
the form 

where the columns of C’ and V are orthonormal, R and G 
are upper triangular of orders d and 7ri - d, and F and 
G are small in norm. This decomposition reveals that X is 
within JIIFIIz + llG112 of the matrix X of rank d obtained by 
setting F and G in (14) to zero. The U and I/ of the URV 
decomposition are different than those of the SVD, but still 
provide approximate bases (exact in the absence of noise) for 
the required spaces. The sine of the largest canonical angle 
between the SVD noise space and the URV noise space is 
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bounded by 

where oIrlin denotes the smallest singular value and the quan- 
tity in parentheses in the denominator is assumed to be less 
than one [8]. Thus, although both bases are only approxima- 
tions to theAtrue basis, they are close to each other. The column 
space of X is the space spanned by the first d columns of 
V ,  and those columns are therefore a natural candidate for 
the basis required by the ESPRIT algorithm. The matrix U is 
unnecessary and is not stored or updated. 

In the same way, the URV decomposition of the matrix 
(VI V2) can be used to determine the matrices Wl and W2 
of the ESPRIT algorithm. We call the resulting algorithm the 
URV ESPRIT algorithm. 

The URV decomposition can be updated in 0 ( r n 2 )  time 
(and in O ( m )  time on a linear array of ~n processors). The 
updating procedure consists of two parts: an incorporation step 
and a deflation step. The incorporation is analogous to the 
standard update of a QR decomposition [9]; however, special 
care is taken that only the first column of F and G increases 
in norm. This corresponds to the fact that the addition of a 
row to a matrix can increase its rank by at most one. After the 
update, a condition estimator [IO] is used to test R for rank 
degeneracy,-and a deflation step reduces the norm of the last 
column of R. If a degeneracy is detected, a refinement step is 
performed to bring the decomposition closer to diagonal form. 
All transformations are accomplished by plane rotations, and 
the algorithm is stable. For complete details, see Section 111. 

Determining the Number of Signals 

In the time dependent problem, the sensors receive a new 
data sample at each time unit. We consider two common 
approaches to discounting the old data in order to develop 
reliable estimates of the current DOA's. 

The first is rectangular wiiidouing. In this method only the 
most recent ri data samples are retained, the earlier ones being 
discarded as irrelevant. Thus, at time N ,  we work with the 
data samplec 

x = ( .r lv-Tl+l .  ..... I ' & l , J & T ) .  (16) 

This approach requires that we be able to downdate as well 
as update our decompositions. 

The second approach is exponential windowing, which uses 
forgetting factors to discount the data in a more gradual way. 
As each new data sample is received, all old data is multiplied 
by a number / I  between 0 and 1, so that at time N we work 
with the data samples 

For exponential windowing, rounding error does not accu- 
mulate in the R factor [ l  11, [ 121. Moreover, provided that 
orthogonality is maintained, neither does it accumulate in the 
V factor [13]-[15]. 

Recent results on QR and URV downdating using the 
Linpack algorithm [ 161 or Chamber's algorithm [ 171 have 
shown that a sequence of updates and downdates can be 
quite stable [18]. Provided the sequence can be carried to 
completion, any well-conditioned leading principal submatrix 
of the final R factor will be computed accurately. Ironically, 
computational difficulty arises only in low-noise problems: 
relative to llRll the noise level should be above d m  
times the rounding unit; otherwise the downdate can fail to 
exist. 

Since the above analysis considers only one-sided orthogo- 
nal transformations of the data, it does not, strictly speaking, 
apply to the URV algorithm. However, the modifications 
are obvious, and the results of our simulations confirm the 
stability. 

The two forms of windowing represent two distinct algo- 
rithms, even when rounding error does not enter the picture. 
In evolving systems they will cause different numbers to be 
computed, and the errors in those quantities will have different 
statistical properties. Since neither can be excluded on grounds 
of numerical instability, it is desirable to place them side by 
side and see how they behave. 

For the SVD, the sum S:+, + . . .  + SA approximates 
the sum of squares of the projection of the error onto the 
orthogonal complement of the signal subspace (i.e., onto the 
noise subspace). If the individual components of the noise 
have (known) variance rs', then the statistical properties of the 
sum are well-understood. Its expected value is n(m - d)a2 for 
rectangular windowing and approximately ( m  - d ) 0 2 / (  1 - p 2 )  
for exponential windowing. Consequently, it is reasonable to 
choose the smallest d satisfying 

' $ d o  J- for rectangular windowing, 

{ $dg@ for exponential windowing. (18) 

Here '?/)d > 1 is a factor chosen to make it unlikely that the 
dimension of the signal subspace is overestimated. 

The URV quantity IlGll is the analogue of d w  
for the SVD. Consequently we choose the smallest d satisfying 

,$dad- for rectangular windowing, 
for exponential windowing. l i c ' l l  { , $ d o F  1 - P  

(19) 
These criteria are applied at the deflation step. 

However, during the incorporation step a decision must be 
made as to whether G has grown in norm due to an increase 
in rank. Here we use the same criterion, but with a different 
factor replacing $d.  As grows, the signal subspace 
changes less frequently. Thus, can be seen as a factor that 
controls the accuracy of the approximate signal subspace. In 
applications where only low accuracy is required, it may be 
taken large with a resulting savings in work. An alternative of 
this kind is not available for the SVD. 

The advantage of our computational procedure is speed 
and simplicity, important features when tracking time-varying 
signals. Our simulations will show that such a scheme per- 
forms fairly well under a reasonable signal-to-noise ratio. If 
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the variance of the noise is not known, or if the signals 
are moving rapidly, then the above procedure is no longer 
justified. Alternate schemes such as the well-known Akaike 
information criterion (AIC) and minimum description length 
(MDL) approaches [ 191 can be incorporated to obtain a better 
estimate of d at the expense of additional computations. 
The use of parametric methods [20] can provide even better 
performance. 

The AIC and MDL approaches both involve minimizing, 
with respect to k ,  a function of the sum and the product of 
the k smallest eigenvalues of the sample covariance matrix 
XXH. Suppose that in (14) we have partitioned so that G has 
dimension k .  Denote the smallest eigenvalues of XXH by A;, 
i = 1, ...: k ,  and denote the eigenvalues of GHG by A;. Then 
Mathias and Stewart [8] have shown that 

(20) A i  = (1 - 7& 

c) Estimate the number of sources d (i.e., the rank of X) 
using a tolerance of +d times the expected value of the 
noise. (The parameter +d is chosen by the user.) 

d) The basis for the signal subspace (the range of X )  is 
E s ,  equal to the first d columns of the V factor in the 
URV decomposition. 

e) Partition E x  into m/2 x d blocks corresponding to the 
two sets of sensors: 

E x  = (g;) 
and compute a rank-revealing URV decomposition of 
(El E2 ) : 

(EIE2) WQVH. (25) 

f, Partition V into d x d blocks as 

where (26) 
O_<.r;L--- 11m- r = +  

urnin (R)  
(21) 

where T is defined in (15). Thus, the product of the k 
eigenvalues satisfies 

and calculate the eigenvalues 4; of -V12VG1 (or, equiv- 
alently, the eigenvalues of V,TH VE). 

g) Estimate the DOS'S from 6% using (4). 

Similarly, the sum of the eigenvalues satisfies 

(22) The URV Decomposition Algorithm 

Suppose A is the current matrix, factored as LrRVH, where 

Thus, the accuracy with which we approximate the sum and 
product depends on the effort expended in keeping F small 
in norm, and this can be adjusted as necessary. The sum and 
product of the eigenvalues of GHG is, of course, available 
without computing the eigenvalues: we only require the sum 
of the main diagonal elements of GHG and the square of the 
absolute value of the determinant of the triangular matrix G. 

It is important to note that even though each of these 
methods can be easily applied using the URV, none of them 

U is unitary (and neither stored nor updated), 
R is right triangular, 
V is unitary, and 
d is the estimated rank of A. 

(Initially, set R to a square matrix of zeros, d to zero, and V to 
the identity matrix.) R is maintained with a graded structure, 
so that the column norms tend to form a decreasing sequence. 
We denote the incoming row by z H ,  and the outgoing one (if 
there is one) by y H .  

Assuming that the standard deviation 0 of the noise is 
known, we assign two tolerances. We set the tolerance for 
increasing the estimate of the rank of A to 

takes account of the movement of the signals, and thus none 
,&a d w  for rectangular windowing, can be justified theoretically for tracking of nonstationary 

signals. for exponential windowing. 
tol-u = 

(27) 

for rectangular windowing, 

algorithms we use. tol-d = { $ d u , / w  for exponential windowing. 
(28) 

The Time-Vnrying URV ESPRIT Algorithm We define the procedures for updating, downdating, and 
Suppose that we already have a rank-revealing URV de- 

composition of the data matrix from the previous time. For 
rectangular windowing, we also save the most recent n data 
samples. One step of the URV ESPRIT algorithm is defined as: 

a) Obtain the new data sample 2. 
b) Update the previous rank revealing URV decomposition 

of the matrix of data samples (XH) by downdating and 
updating the previous factors if rectangular windowing 
is used, or updating the previous factors if exponential 
windowing is used. 

111. THE COMPUTATIONAL ALGORITHMS The tolerance for decreasing the estimate is 

In this section we give a more detailed specification of the @ d a J n ( r n  - d + 1) 

deflating the decomposition. 

Update-URV: 

1) If a row y H  is to be deleted from A ,  downdate the 

2) If exponential windowing is used, multiply R by the 

3) Transform coordinates in the incoming row by multi- 

factorization. 

forgetting factor. 

plying by V: z H  = zHV. 
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30 
SVD-ESPRIT via exponential windowing 

020 22 24 26 28 30 32 34 

damp factopO.9 
sample range=[21,7201 

.... estimated track(23dB) 1oD trials 
--- estimated track(2odB) 

failure ave. errod.4092deg points=29 

Perform a condition number estimation on the leading 
principal submatrix of R of dimension d, to compute an 
approximate null vector w.  
Compute rotations to reduce 'w to a multiple of the last 
unit vector. Apply these rotations to R from the right 
and to V from the left. Let i denote the element of R 
in position ( d ,  d ) .  

then 
If Jm < tol-d, 

d = d - 1  
Perform a polishing step: 

Compute right rotations to reduce the d + 1st 
column of R to 0 in rows 1 to d. Apply these 
rotations to R from the right and to V from 
the left. 

Algorithm 1 signal 1 ] signal 2 
SVD .ESPRIT I 23.9982 f 0.0822 I 2 9 . 0 0 ~ 0  + 0.1148 
WRY .ESPRIT I 24.0007 f 0.2384 I 28.9957 + 0.3454 

25 

20 

Fig. 1. 
and ESPRIT (URV) for fixed sources. 

Histogram and estimated means and variances from ESPRlT (SVD) 
15-  

B g 10-  

$ 
4) Let 2 denote the vector formed by deleting the first d 

5 )  If JllGl12 + [li112 > tol-u, 

2 
components of z .  

then there is a potential increase in rank: 
0 -  

5 -  

Tentatively increase the rank estimate: d = d + 1. 

DO WNDATE : 
1) Following Chambers' algorithm, compute a sequence of 

left rotations to transform the matrix 

URV-ESPRIT via exponential windowing 
- 

- 

( 
damp facto~O.9 failure points=26 
sample range=[21,720] ave. erro~0.4383deg { 
sample step=2 points -actual tracks ,',+'"- t.. 

--- estimated uack(20dB) 
.... estimated track(23dB) 100 trials d -' 

k 

to the matrix 

2 )  Deflate. 

IV. EXPERIMENTAL RESULTS 

In this section, we present some simulation results that 
compare the performance of the two algorithms: SVD ESPRIT 
(using the estimated covariance matrix) and URV ESPRIT. 
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time 
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time 

Fig. 3. 
exponential windowing. 

Estimated time-varying DOA's for well-separated sources using 

We use a five-pair (m = 10) linear array with pair spacing 
A/4. The pairs are equally spaced on a line with relative 
locations [0 ,1 ,2 ,3 ,4]  A. The two signals are narrow-band with 
signal-to-noise ratio (SNR) 23dB and 20dB, respectively. The 
noise is white Gaussian, and the algorithms were tested with 
duplicate data samples in order to make a fair comparison. 

We say that an algorithm failed at a particular time if it 
estimated more or fewer than two signals. 

The first example concerns two fixed signal sources located 
at 24" and 29". For each trial, we estimated the DOA's based 
on 100 randomly generated data samples for each signal, with 
50% correlation between the two sets of samples. We ran 2000 
trials. Fig. 1 shows a histogram and tabular summary of the 
results. Both algorithms were quite successful. This shows that 
we are not sacrificing much accuracy by substituting the more 
economical URV for the SVD.. 

Other experiments concerned time-varying DOA's. We used 
exponential windowing, with a forgetting factor p = .9. Two 
data sets were used, one involving close sources located at 

n = 1 , 2 , .  . . ,719 (31) 
10" + 5" sin(2xn/360) 
20" + 5" sin(2xn/240) 

x) 

Fig. 4. 
using rectangular windowing. 

Estimated time-varying DOA's for instantaneously changing signals 

and one involving well-separated sources 

This corresponds to a sampling rate of 1 data point per .11", 
.08" , or .05" change in angle. Typical radar applications 
produce 1 point per 10(10-5)0 change, so our experimental setup 
is much more demanding. 

Experiments varying the rank determination tolerances $d E 
{3,6} and E {0,1,2} for signals of different signal-to- 
noise ratio, separation angle, and rate of change of DOA 
showed that results improved as was decreased, but that 
the value of 4 d  is more problem dependent. The error model 
we use assumes known variance accounting for random errors 
in the measurements, but not for movement of the sources. 
As the rate of change in the DOA increases, the value of $d 

must be increased in order to account for this extra source of 
error. The experiments presented here use the values +d = 3 
and = 1. 

Fig. 2 gives the results for the close sources, and Fig. 3 
gives the results for the well-separated sources. The DOA's 
were updated every two data samples. Both algorithms perform 
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Fig. 5. 
for r n  = 4, ..., 20 sensors. 

Number of floating point operations for processing a new data point 

quite well, and give similar numbers of failures. This gives 
us confidence that the two algorithms would have similar 
failure behavior even if the rank determination procedure was 
changed. Average error was also similar for both algorithms. 
There seems to be no reason to prefer the more expensive 
SVD-based algorithm over the URV, and the results indicate 
that, in practice, low sampling rates can be tolerated well. Extra 
data could be used for noise reduction through averaging over 
short time periods, feeding the time-averaged data to ESPRIT. 
Errors in both algorithms increase as the sources converge, 
with breakdown at approximately the same point. 

As a final example, to demonstrate tracking of instanta- 
neously changing signals, we assumed that there were two 
signal sources located at 24” and 29”, each with SNR 23 dB, 
and that the signals alternatively appear and disappear. We 
took a rectangular window of size 10. Fig. 4 shows the similar 
good performance of the two algorithms. 

We computed the costs required for both algorithms. We 
recorded the number of floating point operations needed for 
the well-separated sources problems with various number of 
sensors 711 = 4 , 6 , .  . . ,20. Fig. 5 gives the log-log plot of 
the average number of floating point operations required for 
processing one new data point for exponential and rectangular 

windowing. The slopes show that, as predicted, the costs of 
the SVD-based algorithm increase much faster than the URV. 

These experimental results lead us to believe that the URV- 
based ESPRIT algorithm can be successfully used for real-time 
tracking of time-varying signals. 

V. SUMMARY 

We have presented a new variant of the ESPRIT algorithm 
that has significant computational advantages over previous 
ones and that allows ESPRIT now to be used for real- 
time signal processing involving moving sources. It has the 
following features: 

The storage requirement is O ( m 2 )  (plus mn for rectan- 

The work per update is O ( m 2  + d’). 
Its performance is similar to SVD-based algorithms, at 
greatly reduced computational cost, and it admits an 
efficient parallel realization. 

We have explained the relation between the SVD and URV 
versions of the algorithm and the accuracy of the subspace 
determination. We also presented a downdating algorithm for 
URV, along with partial results on the stability of sequences 
of updates and downdates. We showed that the AIC and MDL 
schemes can also be used with the URV to estimate the 
number of signals, although further research is needed into 
rank determination for systems with moving sources. 

gular windowing). 
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