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Abstract. The total least squares (TLS) method is a successful method for noise reduction in
linear least squares problems in a number of applications. The TLS method is suited to problems in
which both the coefficient matrix and the right-hand side are not precisely known. This paper focuses
on the use of TLS for solving problems with very ill-conditioned coefficient matrices whose singular
values decay gradually (so-called discrete ill-posed problems), where some regularization is necessary
to stabilize the computed solution. We filter the solution by truncating the small singular values of
the TLS matrix. We express our results in terms of the singular value decomposition (SVD) of the
coefficient matrix rather than the augmented matrix. This leads to insight into the filtering properties
of the truncated TLS method as compared to regularized least squares solutions. In addition, we
propose and test an iterative algorithm based on Lanczos bidiagonalization for computing truncated
TLS solutions.
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1. Introduction. The TLS method is a technique for solving overdetermined
linear systems of equations. It was independently derived in several bodies of work,
and is known by statisticians as the errors in variables model. Numerical analysts
came to know it through the work of Golub and Van Loan [10] and Van Huffel and
Vandewalle [24, 25, 26], and this literature has advanced the algorithmic and theoret-
ical understanding of the method.

1.1. Motivation. The development of the TLS technique was motivated by
linear models A x ≈ b in which both the coefficient matrix A and the right-hand side
b are subject to errors. In the TLS method one allows a residual matrix as well as a
residual vector, and the computational problem becomes

min
Ã,b̃
‖(A , b)− (Ã , b̃)‖F subject to b̃ = Ã x .(1)

Throughout the paper we assume that A is m × n with m > n. In contrast to the
TLS formulation, the ordinary least squares (LS) method requires that Ã = A and
minimizes the 2-norm of the residual vector b− b̃.
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The TLS technique has been traditionally applied to problems that are numeri-
cally rank deficient, i.e., where (A , b) has one or more small (nonzero) singular values
well separated from the large ones. The idea is to simply treat the small singular values
of (A , b) as zeros, reducing the problem to an exactly rank-deficient one [5, 26]. We
shall call this technique truncated TLS. The technique is similar in spirit to truncated
SVD, a natural generalization of the ordinary LS method for nearly rank-deficient
problems that treats small singular values of A as zeros. In both methods, the al-
most redundant information in (A , b) and A, respectively, associated with the small
singular values, is discarded and the original ill-conditioned problem is replaced with
another nearby and more well-conditioned problem with an exactly rank-deficient ma-
trix. The major difference between the methods lies in the way that this is done: in
truncated SVD the modification depends solely on A, while in truncated TLS the
modification depends on both A and b.

Fierro and Bunch [5, 6] made a sensitivity analysis for the truncated TLS tech-
nique applied to a nearly rank-deficient A and showed how subspace sensitivity trans-
lates to solution sensitivity. The conclusion from their analysis is that truncated TLS
is superior to truncated SVD when the right-hand side has large components cor-
responding to the small singular values that are retained (as in the full-rank case).
An underlying assumption of this analysis is that the resulting rank-deficient system,
obtained by deleting the small singular values, is well conditioned.

A related analysis which also focuses on the similarities between the truncated
SVD and truncated TLS solutions of problems with well-defined numerical rank has
been given by Wei [29, 30].

Many ill-conditioned problems arising in practical applications do not have a
well-determined numerical rank; instead the singular values decay gradually to zero.
Typically, these problems arise in connection with the numerical treatment of ill-posed
problems, e.g., in spectroscopy, image processing, and nondestructive testing [12].
The discrete systems A x ≈ b derived from such ill-posed problems are often called
discrete ill-posed problems, as they inherit many of the difficulties of the underlying
ill-posed problem and therefore require a specialized treatment including some form
of regularization [13] to suppress the effects of errors.

Most regularization methods used today assume that the errors are confined to the
right-hand side b. Although this is true in many applications there are also problems in
which the coefficient matrix A is not precisely known. For example, A may be available
only by measurement or may be an idealized approximation of the true operator.
Discretization typically also adds some errors to the matrix A. Hence, there is a need
for developing methods that take into account the errors in A and their size relative to
those in b. Since there is no gap in the singular value spectrum, the previous analyses
have little to say about these problems, and the first goal of our work is to study
properties of the truncated TLS solutions of discrete ill-posed problems. Our second
goal is to develop practical computational algorithms for producing these solutions.

Thus, in this paper we investigate the truncated TLS technique and show that it
produces a filtered solution. Moreover, we propose an iterative algorithm for comput-
ing the truncated TLS solution, based on Lanczos bidiagonalization. Our algorithm
is efficient when the number of retained singular values of (A , b) is small compared
with the dimensions of A.

1.2. Stabilization by filtering. Most previous results about TLS have been
stated in terms of the SVD of (A , b), making comparisons with regularized least
squares solutions difficult. The basis for our analysis in this paper is the SVD of A,
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given by

A = U Σ V T =
n∑

i=1

ui σi vT
i ,(2)

where U = (u1, . . . , un) and V = (v1, . . . , vn) have orthonormal columns, Σ =
diag(σ1, . . . , σn) with σ1 ≥ · · · ≥ σn ≥ 0, and the rank r of A is the number of
strictly positive singular values.

The instabilities associated with discrete ill-posed problems can easily be illus-
trated. Consider the ordinary LS solution, which can be written as

xLS =
r∑

i=1

uT
i b

σi
vi .

Due to the division by small singular values σi, the solution xLS may be dominated by
components associated with the errors in b. Therefore, regularization is necessary to
stabilize the solution. For example, in truncated SVD this is achieved by truncating
the above sum at k < n:

xk =
k∑

i=1

uT
i b

σi
vi .(3)

Tikhonov regularization [12, 13] is another well-known technique in which one solves
the problem (with a given λ)

min
{ ‖A x− b‖22 + λ2‖L x‖22

}
,(4)

where L is a matrix of full row rank used to control the size of the solution vector. It
is easy to prove that if L = I, then the solution to (4) is given by

xλ =
r∑

i=1

σ2
i

σ2
i + λ2

uT
i b

σi
vi ,(5)

showing that this approach suppresses (filters) the components of the solution corre-
sponding to the small singular values of A; see, e.g., [12, Section 5.1] or [15]. In this
paper we prove that the same is true for truncated TLS.

Our paper is organized as follows. Section 2 summarizes the truncated TLS
algorithm, and the filtering properties of this algorithm are analyzed in section 3.
In section 4 we present an iterative algorithm based on Lanczos bidiagonalization
that avoids the computation of the complete SVD of (A , b). Regularization problems
in general form are briefly discussed in section 5. Finally, in section 6 we present
numerical results. We do not address the important issue of scaling of A and b
(see instead [26, Section 3.6.2] for some details); neither do we address the choice of
regularization parameter as it is beyond the scope of this paper.

2. Truncated TLS. We shall first explain what we mean by a truncated TLS
solution, and in the next two sections we analyze this solution by means of the SVD.

The standard approach to TLS, developed by Golub and Van Loan [10], is based
on the SVD of (A , b). Recently, computationally cheaper techniques based on rank-
revealing orthogonal decompositions have also appeared [2, 28]. For clarity, in this
section we shall confine ourselves to the SVD-based approach and return to compu-
tational and algorithmic aspects in sections 4 and 5.
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As mentioned in the Introduction, the approach taken in the truncated SVD
technique is simply to neglect the small singular values of A. A similar approach is
used in the truncated TLS method by neglecting the small singular values of (A , b).
To determine the number k of large singular values we can require a user-specified
threshold or determine k adaptively; cf. section 4.2. The truncated TLS algorithm,
given in [26, Section 3.6.1], can be summarized as follows.

ALGORITHM T-TLS.
1. Compute the SVD of the augmented matrix (A , b):

(A , b) = Ū Σ̄ V̄ T =
n+1∑
i=1

ūi σ̄i v̄T
i(6)

with σ̄1 ≥ · · · ≥ σ̄n+1.
2. Choose a truncation parameter k ≤ min(n, rank(A , b)) such that

σ̄k > σ̄k+1 and V̄22 ≡ (v̄n+1,k+1, . . . , v̄n+1,n+1) 6= 0 .(7)

3. Partition the matrix V̄ such that (with q = n− k + 1)

V̄ =

k q
←→ ←→(
V̄11 V̄12
V̄21 V̄22

) l n
l 1 .(8)

4. Compute the minimum-norm TLS solution x̄k as

x̄k = −V̄12 V̄ †
22 = −V̄12 V̄ T

22 ‖V̄22‖−2
2 .(9)

In (9), V̄ †
22 = V̄ T

22 ‖V̄22‖−2
2 denotes the pseudoinverse of V̄22 which exists because

‖V̄22‖2 6= 0. The norms of x̄k and the corresponding TLS residual matrix are given
by

‖x̄k‖2 =
√∥∥V̄22

∥∥−2
2 − 1(10)

and

‖(A , b)− (Ã , b̃)‖F =
√

σ̄2
k+1 + · · ·+ σ̄2

n+1 ,(11)

where Ã and b̃ are defined in (1). We see that ‖x̄k‖2 increases with k while the residual
norm decreases with k.

If the second condition in (7) is violated, then k corresponds to a nongeneric
problem (cf. [26, Section 3.4] for a definition). A more difficult situation is when the
TLS problem is near nongeneric, for then ‖V̄22‖2 can become arbitrarily small and
thus the solution norm ‖x̄k‖2 can become arbitrarily large. For this reason, it may
be convenient to require that ‖V̄22‖2 is greater than some specified threshold τ which
then limits the solution norm.

3. Filtering properties of the truncated TLS solution. In this section we
take a closer look at the truncated TLS solution x̄k and show how the SVD components
corresponding to the small singular values are filtered. We will assume that the TLS
problem associated with A x ≈ b is not near nongeneric—otherwise ‖V̄22‖2 can be
very small and ‖x̄k‖2 therefore very large.
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From [6, Theorem 4.1] we learn that

‖xk − x̄k‖2 ≤ O
((

σ̄k+1

σk

)2
)√

1 + ‖xk‖2
√

1 + ‖x̄k‖2 .

If k < n and there is a well-defined gap between σk and σk+1 of A and if σ̄k+1 is
close to σk+1 (e.g., if the system A x ≈ b is almost consistent), then σ̄k+1/σk � 1
and hence the truncated TLS and the truncated SVD solutions are guaranteed to
be similar (provided that the problem is not near nongeneric). Since xk is a filtered
solution we conclude that x̄k is also a filtered solution.

For the discrete ill-posed problems that we are interested in, there is no gap in
the singular value spectrum, and therefore we must use a different approach in our
analysis of the filtering properties of x̄k. In order not to clutter our presentation with
technical details and studies of special cases, we will assume that the nonzero singular
values of A and (A , b) are simple, i.e., σ1 > σ2 > · · · > σr > 0, and similarly for
the σ̄i. In this way, we can concentrate on the insight that we get from the derived
results.

3.1. Technicalities. Our goal is to relate the truncated TLS solution x̄k to the
SVD of A by writing x̄k as a filtered sum

x̄k =
r∑

i=1

fi
uT

i b

σi
vi ,(12)

where fi are the filter factors for truncated TLS. In order for this relation to be mean-
ingful, we must show that x̄k has no components along the vectors vi corresponding
to either uT

i b = 0 or i > r. In the rest of this subsection, we prove this in a series of
technical lemmas.

LEMMA 3.1. If the nonzero singular values of A are simple, then a nonzero
singular value of (A , b) is equal to a singular value of A, i.e., σ̄j = σi 6= 0, if and
only if uT

i b = 0.
Proof. First, we write (A , b)T (A , b) in the form

(A , b)T (A , b) =
(

V 0
0 1

)
Λ̄
(

V 0
0 1

)T

with Λ̄ being a bordered diagonal matrix

Λ̄ =
(

Σ2 Σ UT b
bT U Σ ‖b‖22

)
.

For σi 6= 0 we consider the matrix

Λ̄− σ2
i I =

(
Σ2 − σ2

i I Σ UT b
bT U Σ ‖b‖22 − σ2

i

)
,

where the ith diagonal element of Σ2 − σ2
i I is zero. The matrix Λ̄ − σ2

i I is singular
if σi is a singular value of (A , b). We now use Gaussian elimination to annihilate the
last row of Λ̄− σ2

i I, except for the ith and the last element, and we obtain(
Σ2 − σ2

i I Σ UT b
σiu

T
i beT

i,n γ

)
,
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where ei,n is the ith unit vector of dimension n, and γ is given by

γ = ‖b‖22 − σ2
i −

n∑
j=1
j 6=i

σ2
j (uT

j b)2

σ2
j − σ2

i

.

We now interchange the ith and the last rows to obtain
Σ2

1:i−1,1:i−1 − σ2
i I 0 0 Σ1:i−1,1:i−1U

T
:,1:i−1b

0 σiu
T
i b 0 γ

0 0 Σ2
i+1:n,i+1:n − σ2

i I Σi+1:n,i+1:nUT
:,i+1:nb

0 0 0 σiu
T
i b

 .

Obviously, if σi 6= 0, then this matrix is singular (i.e., σi = σ̄j for some j) if and only
if uT

i b = 0.
LEMMA 3.2. If the nonzero singular values of both A and (A , b) are simple, then

uT
i b = 0⇔ σi = σ̄j ⇔ v̄T

j = (vT
i , 0).

Proof. From [26, Theorem 3.11] it follows that if the nonzero singular values of
(A , b) are simple and if σi = σ̄j 6= 0, then uT

i b = 0 ⇔ v̄T
j = (vT

i , 0). Moreover,
from Lemma 3.1 we know that if the nonzero singular values of A are simple, then
σi = σ̄j 6= 0⇔ uT

i b = 0. These two results lead to the result in Lemma 3.2.
LEMMA 3.3. If the nonzero singular values of A and (A , b) are simple, and if

σi 6= 0, then uT
i b = 0 implies that vT

i x̄k = 0.
Proof. Let σi = σ̄j 6= 0 define the relation between i and j that we use throughout

this proof. From Lemma 3.2 we have v̄T
j = (vT

i , 0), and from the orthogonality of V̄
it then follows that

v̄T
j

(
V̄12
V̄22

)
= vT

i V̄12 =
{

0 , if j ≤ k,
eT
j−k,n+1−k , if j > k ,

where eT
j−k,n+1−k is the (j − k)th unit vector of dimension n + 1 − k. If j ≤ k, we

therefore have vT
i V̄12 V̄ T

22 = 0, and if j > k, we have vT
i V̄12 V̄ T

22 = eT
j−k,n+1−kV̄ T

22 =
v̄n+1,j = 0. Hence, we get vT

i x̄k = −vT
i V̄12 V̄22 ‖V̄22‖−2

2 = 0, and since σi = σ̄j ⇔
uT

i b = 0 we have proved that uT
i b = 0 ⇒ vT

i x̄k = 0.
LEMMA 3.4. If σi = 0, then vT

i x̄k = 0.
Proof. If σi = 0, then obviously (A , b) also has a zero singular value with corre-

sponding singular vector (vT
i , 0)T . Hence, following the proof for Lemma 3.3, we have

that vT
i x̄k = 0.

LEMMA 3.5. If σi 6= 0 and uT
i b 6= 0, then v̄n+1,j 6= 0 implies that σ̄j 6= σi.

Proof. We begin with the eigenequation (A , b)T (A , b)v̄j = σ̄2
j v̄j , which implies

(AT A− σ̄2
j I)v̄1:n,j = −v̄n+1,jA

T b and

(Σ2 − σ̄2
j I) V T v̄1:n,j = −v̄n+1,jΣ UT b

which is equivalent to the system of equations

(σ2
i − σ̄2

j ) vT
i v̄1:n,j = −v̄n+1,j σi uT

i b , i = 1, . . . , n .

If we assume that σi 6= 0 and uT
i b 6= 0, then for any j we see that v̄n+1,j 6= 0 implies

that the left-hand side is different from zero, and therefore σ̄j 6= σi.
We have thus proved that (12) is a valid expression for x̄k. Moreover, we have

shown that a singular value σi of A coincides with a singular value of (A , b) if and
only if uT

i b = 0, and that v̄n+1,j 6= 0 implies that σ̄j is not a singular value of A.
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3.2. Main result: Filter factors. We can now state our main results about
the filter factors fi for truncated TLS.

THEOREM 3.6. Let (2) be the SVD of the coefficient matrix A and (6) be the SVD
of (A , b), and suppose that the nonzero singular values of A and (A , b) are simple.
Then the filter factors fi for x̄k corresponding to uT

i b 6= 0 and σi 6= 0 are given by

fi =
n+1∑

j=k+1

v̄2
n+1,j∥∥V̄22
∥∥2

2

σ2
i

σ2
i − σ̄2

j

(13)

=
k∑

j=1

v̄2
n+1,j∥∥V̄22
∥∥2

2

σ2
i

σ̄2
j − σ2

i

.(14)

Proof. We see from (9) that the only columns v̄j that contribute to the solution
x̄k are those for which v̄n+1,j 6= 0, i.e.,

x̄k = −
n+1∑

j=k+1
v̄n+1,j 6=0

v̄n+1,j∥∥V̄22
∥∥2

2

v̄1:n,j .

Moreover, due to our assumptions and Lemma 3.5, the corresponding σ̄j satisfy σ̄j 6=
σi for all i. By considering (A , b) as an update of A, and using the secular equations
from [1, Section 4.2], these columns can be written

v̄j =
w̄j

‖w̄j‖2 with w̄j =
(

w̄1:n,j

−1

)
and with w̄1:n,j given by

w̄1:n,j = V (Σ2 − σ̄2
j I)−1Σ UT b =

n∑
i=1

σi (uT
i b)

σ2
i − σ̄2

j

vi =
r∑

i=1

σ2
i

σ2
i − σ̄2

j

uT
i b

σi
vi .

Using this relation and the fact that v̄n+1,j = −‖w̄‖−1
2 , the expression for x̄k then

takes the form

x̄k = −
n+1∑

j=k+1
v̄n+1,j 6=0

(
v̄n+1,j∥∥V̄22
∥∥2

2 ‖w̄j‖2

r∑
i=1

σ2
i

σ2
i − σ̄2

j

uT
i b

σi
vi

)

=
r∑

i=1

 n+1∑
j=k+1

v̄n+1,j 6=0

v̄2
n+1,j∥∥V̄22
∥∥2

2

σ2
i

σ2
i − σ̄2

j

 uT
i b

σi
vi .

The expression in parentheses is the ith filter factor fi in (12). From Lemma 3.5
we know that if uT

i b 6= 0 and i ≤ r, then σ̄j 6= σi and therefore we can remove the
requirement v̄n+1,j 6= 0 in the j-summation without worrying about dividing by zero.
Hence, we have proved (13).

The proof for (14) is based on the secular equations associated with downdating
the SVD of (A , b) when b is deleted [1, Section 5]. For all the values of i that we
consider, we know that σ̄j 6= σi, and the corresponding secular equations are

1−
n+1∑
j=1

(ūT
j b)2

σ̄2
j − σ2

i

= 0 .
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From the relation ŪT (A , b) = Σ̄ V̄ T it follows immediately that ūT
j b = σ̄j v̄n+1,j for

j = 1, . . . , n + 1. Hence, the secular equations become

1−
n+1∑
j=1

v̄2
n+1,j

σ̄2
j

σ̄2
j − σ2

i

= 0 .

Since σ̄2
j /(σ̄2

j −σ2
i ) = 1+σ2

i /(σ̄2
j −σ2

i ), and since the v̄2
n+1,j sum to one, this becomes

n+1∑
j=1

v̄2
n+1,j

σ2
i

σ̄2
j − σ2

i

= 0 .

Using this relation and rewriting (13) for the filter factors, we obtain

fi =
∥∥V̄22

∥∥−2
2

n+1∑
j=1

v̄2
n+1,j

σ2
i

σ2
i − σ̄2

j

− ∥∥V̄22
∥∥−2

2

k∑
j=1

v̄2
n+1,j

σ2
i

σ2
i − σ̄2

j

=
∥∥V̄22

∥∥−2
2

k∑
j=1

v̄2
n+1,j

σ2
i

σ̄2
j − σ2

i

.

This is (14).
Remark. If k = n or σ̄k+1 = · · · = σ̄n+1, then (13) reduces to fi = σ2

i /(σ2
i −σ̄2

n+1),
consistent with [26, Theorem 2.7].

3.3. Bounds for the filter factors. We shall now give a further characteriza-
tion of the filter factors for truncated TLS and thus show that x̄k is indeed a filtered
solution.

THEOREM 3.7. Suppose that the nonzero singular values of A and (A , b) are
simple. Then the filter factors fi for i ≤ k corresponding to uT

i b 6= 0 increase mono-
tonically with i and satisfy

0 ≤ fi − 1 ≤ σ̄2
k+1

σ2
i − σ̄2

k+1
.(15)

Moreover, the filter factors fi for k < i ≤ r corresponding to uT
i b 6= 0 satisfy

0 ≤ fi ≤
∥∥V̄22

∥∥−2
2

σ2
i

σ̄2
k − σ2

i

.(16)

Proof. To prove (15) we first rewrite (13) in the form

fi =
n+1∑

j=k+1

v̄2
n+1,j∥∥V̄22
∥∥2

2

+
n+1∑

j=k+1

v̄2
n+1,j∥∥V̄22
∥∥2

2

(
σ̄2

j

σ2
i − σ̄2

j

)
= 1 +

n+1∑
j=k+1

v̄2
n+1,j∥∥V̄22
∥∥2

2

(
σ̄2

j

σ2
i − σ̄2

j

)
.

It follows from the interlacing inequalities for the singular values of A and (A , b) that
σi ≥ σ̄k+1 for i = 1, . . . , k, and the inequality is sharp due to Lemma 3.2. Hence, the
second term in the above equation is positive and we have proved the left inequality
in (15). We also see that the filter factors increase with i because the singular values
σi decrease with i. The right inequality follows from

∑n+1
j=k+1 v̄2

n+1,j =
∥∥V̄22

∥∥2
2 and

the relation σ̄2
j /(σ2

i − σ̄2
j ) ≤ σ̄2

k+1/(σ2
i − σ̄2

k+1) for j = k + 1, . . . , n + 1.
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The proof for (16) is based on (14). With our assumptions we have σk 6= σ̄k+1,
thus ensuring that fi is positive for i > k. Inserting the relation

∑k
j=1 v̄2

n+1,j =∥∥V̄21
∥∥2

2 ≤ 1 into (14), we obtain

fi ≤
∥∥V̄22

∥∥−2
2

σ2
i

σ̄2
k − σ2

i

k∑
j=1

v̄2
n+1,j ≤

∥∥V̄22
∥∥−2

2

σ2
i

σ̄2
k − σ2

i

.

Thus, we have proved (16).
COROLLARY 3.8. The norms of x̄k and xk satisfy

‖x̄k‖2 ≥ ‖xk‖2 , k = 1, . . . , n .(17)

Proof. Equation (17) is an immediate consequence of the fact that fi ≥ 1 for
i = 1, . . . , k, and fi ≥ 0 for i = k + 1, . . . , n. The corresponding filter factors for xk

are one and zero.
From Theorem 3.7 we obtain the following expression for the first k filter factors:

1 ≤ fi ≤ 1 +
σ̄2

k+1

σ2
i

+O
(

σ̄4
k+1

σ4
i

)
, i = 1, . . . , k ,

showing that the larger the ratio between σi and σ̄k+1, the closer the bound on fi is
to one. Similarly, for the last n− k filter factors we obtain

0 ≤ fi ≤ ‖V̄22‖−2
2

σ2
i

σ̄2
k

(
1 +O

(
σ2

i

σ̄2
k

))
, i = k + 1, . . . , n ,

showing that the smaller the ratio between σi and σ̄k, the closer fi is to zero. Hence,
Theorem 3.7 guarantees that the first k filter factors will be close to one and that the
last n − k filter factors will be small, even in the case where there is no large gap in
the singular value spectrum, provided that ‖V̄22‖2 is not very small.

Thus, we have shown that x̄k is a filtered solution because the contributions to
x̄k corresponding to all the small σi are filtered out while the remaining, significant
contributions are retained in x̄k.

If k = n and the errors in A and b are small, then the difference ‖xLS − x̄n‖2
between the LS and the TLS solutions is small [23], and our experience is that the
same is true for ‖xk − x̄k‖2 when k < n. However, when the noise is large, then x̄k

can be very different from xk, and the filter factors fi for i ≤ k—especially fk—can
differ considerably from one (we have observed fk ≈ 1.2 in our experiments).

4. A bidiagonalization algorithm for large-scale problems. When the di-
mensions of A are not too large, one can compute the complete SVD of (A , b) and
then experiment with various choices of k. This is particularly useful if no a priori
estimate of a suitable k is known.

When the dimensions of A become large, this approach becomes prohibitive be-
cause the SVD algorithm is of complexity O(mn2). We shall therefore describe an
alternative technique that is much better suited for large-scale problems whenever
k � n, which is indeed the case in most discrete ill-posed problems.

A fairly straightforward approach would be to choose a sufficiently large kmax and
compute a partial SVD of (A , b), namely, the first kmax singular triplets (σ̄i, ūi, v̄i)
of (A , b). Then x̄k can be computed by the alternative formula

x̄k = (V̄ T
11)

†V̄ T
21 .(18)
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The partial SVD can be computed by a technique similar to the PSVD algorithm
described in [27] for computing the last few singular triplets. However, for large
sparse or structured matrices (e.g., Toeplitz matrices, which arise in connection with
discretization of many convolution problems) the partial SVD approach is prohibitive
because this algorithm initially performs a reduction of (A , b) to bidiagonal form,
and the sparsity or structure of the matrix is lost in the first step of this reduction.

4.1. The Lanczos T-TLS algorithm. The above considerations lead us to
consider iterative methods, based on Lanczos bidiagonalization, that do not alter the
matrix A. It is well known that Lanczos bidiagonalization can be used to compute
good approximations to the singular triplets associated with the largest singular values
of a matrix; see, e.g., [9, 20]. We refer to the original papers and omit a discussion of
the Lanczos bidiagonalization algorithm here. Again, we could choose some integer
kmax and perform kmax Lanczos iterations applied to the augmented matrix (A , b),
after which we could compute approximate truncated TLS solutions for various k less
than kmax by means of (18).

Here we propose an alternative technique based on Lanczos bidiagonalization of
the matrix A rather than (A , b). The key to our algorithm is to recognize that after
k iterations, the Lanczos process with starting vector u1 = b/‖b‖2 has produced two
sets of vectors Uk = (u1, . . . , uk+1) and Vk = (v1, . . . , vk) and a (k + 1)× k bidiagonal
matrix Bk such that

A Vk = UkBk and β1u1 = b .

Thus, after k Lanczos iterations we can project the TLS problem onto the subspaces
spanned by Uk and Vk, in the hope that for large enough k we have captured all the
large singular values of A that are needed for computing a useful regularized solution.
The projected TLS problem is equivalent to

min
∥∥∥∥UT

k ((A , b)− (Âk , b̂k))
(

Vk 0
0 1

)∥∥∥∥
F

subject to UT
k Âk Vk y = UT

k b̂k ,

or

min ‖(Bk , β1e1)− (B̂k , êk)‖F subject to B̂k y = êk ,(19)

where e1 = (1, 0, . . . , 0)T , and B̂k and êk are generally full. Our algorithm reduces to
the LSQR algorithm [21] if we require B̂k = Bk in each step.

In each Lanczos step we can now compute an approximate truncated TLS solution
x̃k by applying the Algorithm TLS to the small-size problem in (19). Hence, we
compute the SVD of the matrix (Bk , β1e1),

(Bk , β1e1) = ¯̄U
(k) ¯̄Σ

(k) ( ¯̄V
(k))T

, ¯̄V
(k)

=

k 1
←→ ←→(
¯̄V

(k)
11

¯̄V
(k)
12

¯̄V
(k)
21 ¯̄v(k)

22

)
l k
l 1 ,

and the standard TLS solution ȳk to (19) is

ȳk = − ¯̄V
(k)
12

(
¯̄v(k)
22

)−1
.

Then the approximate TLS solution x̃k is given by

x̃k = −Vk ȳk = −Vk
¯̄V

(k)
12

(
¯̄v(k)
22

)−1
.(20)
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For convenience, we can permute the vector β1e1 in front of Bk such that, in each
step, we merely need to compute the last singular triplet of the (k+1)× (k+1) upper
bidiagonal matrix (β1e1 , Bk). This can be done in O(k2) operations by means of the
PSVD algorithm [27].

We remark that it is easy to augment the above algorithm to include the com-
putations of the LSQR algorithm [21]. Approximate truncated SVD solutions can be
computed together with the approximate T-TLS solutions with little extra overhead.

4.2. Stopping criterion. During the iterations it is helpful to display the norms
of the solution vector x̃k and the corresponding TLS residual matrix. Both norms are
easy to express in terms of the SVD of (Bk , β1e1) and require very little computational
effort.

THEOREM 4.1. The norms of the solution and the residual matrix in the Lanczos
T-TLS algorithm satisfy

‖x̃k‖2 =

√(
¯̄v(k)
22

)−2
− 1(21)

and

‖(A , b)− (Âk , b̂k)‖2F = ‖(A , b)‖2F − ‖(Bk , β1e1)‖2F + (¯̄σ(k)
k+1)

2 ,(22)

where ¯̄σ(k)
k+1 is the smallest singular value of (Bk , β1e1). Moreover, ‖x̃k‖2 is a non-

decreasing function of k and the residual norm in (22) is a nonincreasing function
of k.

Proof. Equations (21) and (22) follow immediately from the SVD of (Bk , β1e1).
That the residual norm cannot increase is an immediate consequence of the interlacing
inequalities for the singular values of (Bk , β1e1) and (Bk+1 , β1e1). To prove that
‖x̃k‖2 cannot decrease with k we must show that |¯̄v(k)

22 | ≥ |¯̄v(k+1)
22 | for all k. This is

proved in the Appendix.
We remark that for the LSQR algorithm, the norm of the residual vector is mono-

tonically decreasing, since we minimize over an expanding subspace [21]. Further,
since LSQR is mathematically equivalent to applying the conjugate gradient method
to the normal equations, the fact that the solution norm is monotonically increasing
follows from equation (6:3) of Hestenes and Stiefel [19].

Notice that (22) is only guaranteed to hold in exact arithmetic while it fails to
hold in inexact arithmetic when spurious singular values of (A , b) start to appear in
(Bk , β1e1). The cure is either to use selective reorthogonalization or to identify the
spurious singular values; see the discussion in [3, Chapter 2].

The Lanczos iteration gives us a sequence of truncated TLS solutions {x̃k}.1 We
need a criterion for choosing a good stopping index k. If explicit knowledge about
the errors in A and b is available, then this information can be used to stop when the
norm of the TLS residual matrix equals its expected value—similar to the so-called
discrepancy principle for LS problems; see [13, Section 5.3]. Here we are concerned
with the situation where no knowledge about the noise in A and b is available, so that
this information, in a sense, has to be extracted from the given data.

A conceptually simple stopping criteria is to stop when the norm of the residual
vector—in our case ‖A x̃k − b‖2—is considered small, e.g., when it levels off at some

1At each iteration we could also truncate at singular value k̂ < k, producing a set of T-TLS
solutions {x̃k̂,k} for k = 1, 2, ... and k̂ = 1, 2, ..., k, but we do not pursue this idea here.
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value reflecting the errors. This is a quite useful stopping rule for well-conditioned
least squares problems because the solution vector for such problems changes slowly
from step to step, and hence the precise choice of k is not so important. On the other
hand, for discrete ill-posed problems this criterion is more likely to fail because the
solution vector for such problems may change dramatically in each iteration step as
the residual norm approaches its stalling phase. Nevertheless, we have actually had
some success with this stopping rule; see section 6.

Another popular method for choosing the regularization parameter is the method
of generalized cross-validation due to Golub, Heath, and Wahba [8]. Currently, we do
not have any experience with this method when applied to our algorithms.

A third possible stopping criterion can be based on the L-curve criterion studied
recently in [16, 18]. The idea in this method is to plot in log–log scale the solution
norm versus the residual norm, in our case ‖x̃k‖2 versus ‖(A , b) − (Âk , b̂k)‖F , and
choose as the optimal k the truncation parameter at which this curve has an L-shaped
corner. Essentially, the corner is defined by locating the point with greatest curvature
in the log–log scale. For more information on this technique, see [18].

Of course, the L-curve’s corner cannot be identified without going a few steps too
far, but we believe that any good stopping criterion for discrete ill-posed problems
(including generalized cross-validation) will suffer from this mild inconvenience.

5. Regularization in general form. Theorems 3.6 and 3.7 show that the T-
TLS solution x̄k is a filtered solution whose main contributions come from the first k
right singular vectors vi. It is common knowledge that these vectors are not always
the best basis vectors for a regularized solution. This is the reason for using a matrix
L 6= I in Tikhonov regularization (4), commonly called regularization in general
form. Then it is convenient to introduce the quotient SVD (QSVD)2 of the matrix
pair (A, L):

A = Ŭ diag(αi) W−1 , L = V̆ diag(βi) W−1 ,(23)

for then the regularized solution is expanded in terms of the columns wi of W , and the
main contributions come from the vectors wi associated with the largest generalized
singular values αi/βi; see, e.g., [14], [13, Section 4], or [17, Section 6] for details.

In connection with our T-TLS algorithms it may also be convenient to implicitly
use regularization in general form with L 6= I. This is done in the same way as
general-form regularization is treated in connection with Tikhonov regularization and
other methods. First, transform the problem involving A, L, and b into a standard-
form problem with matrix Asf and right-hand side bsf. Then apply T-TLS or Lanczos
T-TLS to the standard-form problem to obtain a regularized solution xsf. Finally,
transform xsf back to the general-form setting.

There are several ways to transform a problem into standard form. The following
transformation originally due to Eldén [4] is well suited. Let

L†
A = W diag(β−1

i ) V̆ T

denote the A-weighted generalized inverse of L; cf. [4] for a formal definition. Then
Asf and bsf are given by

Asf = A L†
A = Ŭ diag(αiβ

−1
i ) V̆ T , bsf = b−A x0 ,(24)

2The QSVD is also commonly referred to as the generalized SVD (GSVD).
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where x0 is the component of the solution in the null space of L (this vector can easily
be computed a priori). Moreover, the transformation back to the general-form setting
essentially requires a multiplication with L†

A:

x = L†
Axsf + x0 .(25)

When the T-TLS algorithm is applied to the standard-form problem, then

x̄sf,k =
∑̀
i=1

fsf,i
ŭT

i bsf

αiβ
−1
i

v̆i ,

where ` is the row rank of L, and fsf,i are the filter factors associated with the
application of T-TLS to (Asf , bsf). Moreover, we get

x̄k =
∑̀
i=1

fsf,i
ŭT

i bsf

αi
wi + x0 .

When L is well conditioned (which is the usual case in regularization problems), then
the generalized singular values of (A, L) decay gradually to zero in the same manner
as the singular values of A. Some insight into this phenomenon can be found in [14],
and as a consequence the filter factors fsf,i essentially filter out the contributions
to x̄k corresponding to the small generalized singular values. Hence, x̄k is indeed a
general-form regularized solution.

The key to the efficiency of this method in connection with the Lanczos T-TLS
algorithm is that the matrix Asf is never formed explicitly; we only need to be able to
perform matrix–vector multiplications with A, AT , L†

A, and (L†
A)T . Given a basis N

for the null space of L, the latter two matrix multiplications can be done inO((n−`)n)
operations, as long as L is a banded matrix, by means of the following algorithms:

COMPUTE y = L†
Ax COMPUTE y = (L†

A)T x

1. y ←
(

In−` 0
L

)−1( 0
x

)
1. x← x− TT NT x

2. y ← y −N T y 2.
(

y
z

)
←
(

L
0 In−`

)−T

x

where the (n − `) × n matrix T = (AN)†A is computed only once in O(mn(n − `))
operations. The work in the computation of x0 is dominated by n− ` multiplications
with A. We omit the details here and refer to the discussion of implementation details
given in [13, Section 4.3].

6. Numerical examples. In this section we illustrate the use of the T-TLS and
Lanczos T-TLS algorithms for solving discrete ill-posed problems. We compare the
solutions computed by these two methods with the solutions from three classical meth-
ods for discrete ill-posed problems, namely, Tikhonov regularization, truncated SVD,
and LSQR. Our experiments were carried out in MATLAB using the REGULARIZATION
TOOLS package [17].

Our test problems were generated as follows. The matrix A is 64× 32 and comes
from discretization of Phillips’s test problem (cf. [17, phillips]). Two right-hand sides
b[1], b[2] were generated artificially by means of the SVD of A. The Fourier coefficients
η
[1]
i = uT

i b[1] of the first satisfy
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η
[1]
1 , . . . , η

[1]
8 are geometrically spaced between 10−4 and 1,

η
[1]
8 , . . . , η

[1]
32 are geometrically spaced between 1 and 10−20.

For the second,
η
[2]
1 , . . . , η

[2]
32 are geometrically spaced between 1 and 10−16.

Here geometrically spaced means that the ratio η
[p]
i /η

[p]
i+1 is a constant. Only b[1]

has coefficients η
[1]
i that increase with i, and from the theory in [5, 6] we therefore

expect that TLS is superior to LS for b[1] only. Both systems are scaled such that
maxij |aij | = maxi |b[p]

i | = 1 and the corresponding exact solutions are x
[p]
exact = A†b[p].

Then we add perturbations E and e with elements from a Gaussian distribution with
zero mean and standard deviation chosen such that ‖E‖2 = ‖e‖2 = ε, where ε is a
specified constant.

When we perturb the matrix A randomly as described above, and if the noise
level is large, then the singular vectors of the perturbed A are approximately equal to
the corresponding unperturbed singular vector plus a high-frequency component that
clearly resembles the Gaussian noise added to the unperturbed matrix. This follows
from a Taylor expansion of the singular vectors with respect to the elements of the
perturbation matrix E.

An important consequence of the above perturbation of the SVD is that standard-
form regularization with L = I is not suited because the high-frequency component
appearing in all singular vectors also appears in the regularized solutions, no matter
which regularization method is used and how the regularization parameter is chosen.
The only way to avoid the high-frequency part in the regularized solutions is to use
a different regularization matrix. We have chosen L equal to the approximate second
derivative operator; i.e., L is (n−2)×n and has rows of the form (. . . , 0, 1,−2, 1, 0, . . .).
The transformation to and from standard form was carried out as explained in section
5 using the implementations gen form and std form from [17].

For each combination of ε and right-hand side b we generated 1000 test problems,
and each test problem was solved by means of the following regularization methods:

1. T-TLS with k = 1, . . . , 12.
2. Lanczos T-TLS with kmax = 12 iterations and complete reorthogonalization.
3. Tikhonov regularization with λ in the range (10−8, 102).
4. Truncated SVD with k = 1, . . . , 12.
5. The LSQR algorithm with kmax = 12 iterations.

First, we want to compare the optimal accuracy that can be attained by any of the
above methods. To do this, for each method we define the optimal regularized solution
xopt as the one closest to the exact solution. For example, for T-TLS,

‖x̄opt − xexact‖2 ≤ ‖x̄k − xexact‖2 , k = 1, . . . , 12 .

In this way, we can investigate under which circumstances the TLS approach is capable
of outperforming the LS approach.

Test 1. This test was carried out with a relatively “large” noise level ε = 5 · 10−2

and with the first right-hand side b[1] for which the first eight coefficients η
[1]
i increase.

Figure 1 shows histograms of the relative errors ‖xopt − xexact‖2/‖xexact‖2 for all five
regularization methods. It is evident that for this test problem, both the T-TLS and
the Lanczos T-TLS algorithms are able to produce more accurate solutions than the
three classical regularization methods. Moreover, we see that T-TLS and Lanczos
T-TLS produce almost the same histograms—and the same is true for the other three
methods.
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FIG. 1. Test 1: error level ε = 5 · 10−2 and right-hand side b[1]. Histograms for the optimal
relative errors of 1000 test problems solved by five different regularization methods. Algorithms
T-TLS and Lanczos T-TLS are superior to the three classical methods.
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FIG. 2. Test 2: error level ε = 10−3 and right-hand side b[1]. Histograms for the optimal
relative errors of 1000 test problems solved by five different regularization methods. All five methods
give essentially the same results.

Test 2. Our second test problem is identical to the first problem, except that the
noise level is now smaller, ε = 10−3. It is well known that for small noise levels, we
should not expect much difference in the TLS and LS solutions. The results in Fig. 2
confirm this: even though the right-hand side is the same as in Test 1, the histograms
for all five methods are now almost identical. Notice, in particular, the resemblance
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TABLE 1
Average flop counts for three test problems.

Test 1 Test 2 Test 3

Full SVD 7.8 · 105 6.7 · 105 7.9 · 105

Bidiagonalization 4.0 · 105 4.0 · 105 4.0 · 105

Lanczos T-TLS 0.9 · 105 1.7 · 105 0.5 · 105

of T-TLS, Tikhonov and truncated SVD, and the resemblance of Lanczos T-TLS and
LSQR.

Test 3. Our final test problem uses the second right-hand side b[2] for which all
the Fourier coefficients uT

i b[2] decay, and the same “large” noise level as in Test 1. All
five histograms (not shown here) are almost identical, illustrating that for this class
of problems, we cannot expect the TLS approach to outperform the LS approach.

These examples illustrate that the TLS technique can indeed produce results that
are superior to those computed by the classical regularization methods, when the noise
is large and the right-hand has large SVD components corresponding to the smallest
retained singular values. Moreover, we have seen that the iterative Lanczos T-TLS
algorithm can produce results which are very similar to those obtained by the much
more expensive T-TLS algorithm that requires a (partial) SVD computation.

We have also illustrated that when the right-hand side does not have large SVD
components corresponding to the smallest retained singular values, or when the errors
are “small,” then there is no advantage in using the TLS approach over the classical
methods.

To illustrate that the Lanczos T-TLS procedure can be much more efficient than
the T-TLS procedure, Table 1 shows the average number of flops used in the Lanczos
T-TLS procedure as well as in a full SVD computation and in a full bidiagonalization
(excluding the standard-form transformation). The last two flop counts are lower
bounds for the computational work involved in computing the T-TLS solution via
a full and partial SVD, respectively. In the third test problem, the Lanczos T-TLS
procedure is almost 10 times faster than the T-TLS procedure using a partial SVD.
The ratio can easily be much bigger when the procedures are applied to sparse or
structured matrices.

Next, we briefly report on our experience with choosing a good regularization
parameter k for T-TLS and Lanczos T-TLS.

For Test 1, we found that plots of the solution norm versus the norm of the TLS
residual matrix or the TLS residual vector do not have any L-shape, as required in
the L-curve criterion. Instead, we obtained good results when stopping the iteration
process when the norm of the residual vector, ‖A x̃k − b‖2, levels off. In fact, in our
experiments ‖A x̃k − b‖2 always reached a minimum for some small value of k, after
which it increased slowly again, and this minimum was used to choose k. When we
compare the optimal errors with the errors obtained by using this simple parameter
choice rule, we obtain essentially the same results and histograms (not shown here).

For Tests 2 and 3, we find that the L-curve criterion works well when we plot the
norm of the solution versus the norm of the TLS residual matrix. We refer to [16, 18]
for numerical examples. Further research in this area is required.

7. Conclusion. We have demonstrated that the T-TLS method has a filtering
effect when applied to discrete ill-posed problems and that the method in some cases is
superior to the truncated SVD method. We have also presented an iterative algorithm
for computing approximate T-TLS solutions, based on Lanczos bidiagonalization,
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which can be much more efficient than the SVD-based T-TLS algorithm for sparse
and structured matrices.

Appendix. In this appendix we complete the proof of Theorem 4.1 by proving
that |¯̄v(k)

22 | ≥ |¯̄v(k+1)
22 | for all k > 0.3 We introduce the following notation:

Tk ≡ (β1e1 , Bk)T (β1e1 , Bk) , sk ≡ ¯̄σ(k)
k+1 , sk+1 ≡ ¯̄σ(k+1)

k+2 ,

and the first column of Bk is denoted (α1, β2, 0, . . .)T . Then Tk is a tridiagonal sym-
metric positive definite (k + 1)× (k + 1) matrix with eigenvalues (¯̄σ(k)

1 )2, . . . , (¯̄σ(k)
k+1)

2.
Due to the Lanczos process all elements of Bk are nonnegative, and it follows that
Tk is an oscillatory matrix [7, Chapter XIII, Section 9] and that the eigenvector w
associated with the smallest eigenvalue s2

k has k sign changes [7, p. 105], i.e.,

sign(wi+1) = −sign(wi) , i = 1, . . . , k .

Moreover, we can always choose w such that w1 ≥ 0. The following two lemmas lead
to the desired result.

LEMMA A.1. Let τi denote the diagonal elements of Tk. Then

s2
k ≤ min

i
τi for k > 0 .(A.26)

Proof. We know that s2
k ≤ zT Tkz for any vector z of length one. Choosing z as

the ith unit vector yields this familiar result.
LEMMA A.2. Fix k and let w and z be eigenvectors such that

Tkw = s2
kw and Tk+1z = s2

k+1z

with ‖w‖2 = ‖z‖2 = 1, w1 ≥ 0, and z1 ≥ 0. Then

w1 − z1 ≥ 0 .(A.27)

Proof. Our proof strategy will be to show that if we normalize so that wi = zi,
then |wi+1| < |zi+1|. It then follows that renormalization to ‖w‖2 = ‖z‖2 = 1 yields
(A.27).

Let w1 = z1 = 1. Denote the nonzeros in the ith row of Tk by (γi, τi, γi+1). Then
the first row yields the relations

τ1w1 + γ2w2 = s2
kw1 ,

τ1z1 + γ2z2 = s2
k+1z1 ,

so

w2 =
s2

k − τ1

γ2
,

z2 =
s2

k+1 − τ1

γ2
,

3This result can also be established as a consequence of equation (3.4.8) in Szegö [22] by noting
that |¯̄v(k)

22 | and |¯̄v(k+1)
22 | are the square roots of the Christoffel numbers λ1k and λ1,k+1 [11], but we

prefer a direct matrix algebra proof.
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so z2 < w2 < 0. A similar computation for the second row yields

w3 =
(τ2 − s2

k)(−w2)− γ2

γ3
,

z3 =
(τ2 − s2

k+1)(−z2)− γ2

γ3
,

and therefore 0 < w3 < z3.
There is a stronger monotonicity relation

z3

z2
− w3

w2
=

1
γ3

{
−(τ2 − s2

k+1)−
γ2

z2
+ (τ2 − s2

k) +
γ2

w2

}
=

1
γ3

{
(s2

k+1 − s2
k) + γ2

(
1
w2
− 1

z2

)}
< 0 ,

since both quantities in parentheses are negative.
This is the setup for an induction argument. Assume, for convenience, that we

renormalize so that wi = zi = 1 (i < k− 1), and assume that the renormalized vector
satisfies zi+1 < wi+1 < 0. Then the same argument, using the (i + 1)st row of the
matrix, yields 0 < wi+2 < zi+2 and

zi+2

zi+1
− wi+2

wi+1
< 0 ,

completing the induction.
The result about |¯̄v(k)

22 | ≥ |¯̄v(k+1)
22 | now follows immediately by recognizing that

the eigenvectors associated with s2
k = (¯̄σ(k)

k+1)
2 and s2

k+1 = (¯̄σ(k+1)
k+2 )2 are

w =

(
¯̄v(k)
22

¯̄V
(k)
12

)
and z =

(
¯̄v(k+1)
22

¯̄V
(k+1)
12

)
,

i.e., cyclic permutations of the last column of ¯̄V
(k)

and ¯̄V
(k+1)

from section 4.1. Thus,
|¯̄v(k)

22 | − |¯̄v(k+1)
22 | = w1 − z1 ≥ 0 for all k > 0.
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