
PIVOTED CAUCHY-LIKE PRECONDITIONERS FOR
REGULARIZED SOLUTION OF ILL-POSED PROBLEMS∗

MISHA E. KILMER† AND DIANNE P. O’LEARY‡

SIAM J. SCI. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 21, No. 1, pp. 88–110

Abstract. Many ill-posed problems are solved using a discretization that results in a least
squares problem or a linear system involving a Toeplitz matrix. The exact solution to such problems
is often hopelessly contaminated by noise, since the discretized problem is quite ill conditioned,
and noise components in the approximate null-space dominate the solution vector. Therefore we
seek an approximate solution that does not have large components in these directions. We use
a preconditioned conjugate gradient algorithm to compute such a regularized solution. A unitary
change of coordinates transforms the Toeplitz matrix to a Cauchy-like matrix, and we choose our
preconditioner to be a low rank Cauchy-like matrix determined in the course of Gu’s fast modified
complete pivoting algorithm. We show that if the kernel of the ill-posed problem is smooth, then
this preconditioner has desirable properties: the largest singular values of the preconditioned matrix
are clustered around one, the smallest singular values, corresponding to the lower subspace, remain
small, and the upper and lower spaces are relatively unmixed. The preconditioned algorithm costs
only O(n lgn) operations per iteration for a problem with n variables. The effectiveness of the
preconditioner for filtering noise is demonstrated on three examples.

Key words. regularization, ill-posed problems, Toeplitz, Cauchy-like, preconditioner, conjugate
gradient, least squares

AMS subject classifications. 65R20, 45L10, 94A12

PII. S1064827596308974

1. Introduction. In fields such as seismography, tomography, and signal pro-
cessing, the process describing the acquisition of data can often be described by an
integral equation of the first kind,∫ βup

βlo

t(α, β)f̂(β) dβ = ĝ(α),

where t denotes the kernel, f̂ the unknown input function, and ĝ the output. Often,
it is assumed that values of ĝ are known at the points αi, i = 1, . . . , n. Hence, when
a numerical integration rule is used to discretize the integral equation, the equation
becomes a system of n linear equations of the form

T f̂ = ĝ.

In applications, the kernel is often assumed to be spatially invariant; that is, t(α, β) =
t(α−β). Discretization using a variety of numerical integration rules (e.g., rectangle,
trapezoidal, etc.) results in a matrix T having Toeplitz structure when the support

∗Received by the editors September 6, 1996; accepted for publication (in revised form) November
17, 1997; published electronically August 16, 1999. This research was supported by National Science
Foundation grant CCR 95-03126.

http://www.siam.org/journals/sisc/21-1/30897.html
†Applied Mathematics Program, University of Maryland, College Park, MD 20742. Present

address: Department of Mathematics, Tufts University, Medford, MA 02155 (na.mkilmer@na-
net.ornl.gov).
‡Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742 (oleary@cs.umd.edu).

88

PIVOTED CAUCHY-LIKE PRECONDITIONERS 89

abscissas βj and the αi are both uniformly spaced with mesh width h.1 In the case of
n equations and n unknowns we have Tij = ti−j for 1 ≤ i, j ≤ n, and T is therefore
constant along diagonals. For simplicity in the operation counts, we shall assume
that T is a square n × n Toeplitz matrix, where n is assumed to be a power of 2.
Thus operation counts involving FFTs can be written in terms of O(n lgn).2 The
case where T is N × n,N > n, can be treated analogously to the square case, as we
discuss in section 6.

The discrete inverse problem is to recover f̂ , given ĝ and T . However, the con-
tinuous problem is generally ill posed; i.e., small changes in ĝ cause arbitrarily large
changes in f̂ . This is reflected in the discrete problem by ill-conditioning in the ma-
trix T . The recovery of f̂ then becomes a delicate matter since the recorded data will
likely have been contaminated by noise e. In this case, we have measured g rather
than ĝ, where

T f̂ + e = ĝ + e = g.(1)

Due to the ill-conditioning of T and the presence of noise, exact solution of the linear
system will not lead to a reasonable approximation of f̂ . Rather, regularization is
needed in order to compute an approximate solution f . Regularization can be thought
of as exchanging the original, ill-posed problem for a more well-posed problem whose
solution approximates the true solution. Many regularization methods, both direct
and iterative, have been discussed in the literature; see, for example, [12, 17, 9, 5]. In
this paper we will primarily be concerned with regularization via conjugate gradient
iterations [7, 27, 34], where the regularization parameter is the number of iterations.

Toeplitz matrices have several properties convenient for iterative methods like
conjugate gradients: multiplication of a Toeplitz matrix times a vector can be done in
O(n lgn) operations, and circulant preconditioners can be quite efficient [30, 3]. There
are some difficulties, though. The inverse of a Toeplitz matrix does not generally have
Toeplitz structure, and the fast factorization algorithms for Toeplitz matrices can
require as many as O(n3) flops if pivoting is used to improve stability; see [32, 11, 4],
for example.

To overcome these difficulties, we make use of the fact that Toeplitz matrices are
related to Cauchy-like matrices by fast unitary transformations [19, 8, 10]. Cauchy-
like matrices, discussed in detail in section 2, permit fast matrix-vector multiplication.
In contrast to Toeplitz matrices, the inverse of a Cauchy-like matrix is Cauchy-like,
and complete pivoting can be incorporated in its LDU factorization at a total cost of
O(n2). However, for the special Cauchy-like matrices of interest to us, matrix-vector
products with their inverses can be computed in O(n lgn) operations (see section 4).

The focus of this paper is the development of a Cauchy-like preconditioner that
can be used to accelerate convergence of the conjugate gradient (CG) iteration to a

1At each meshpoint, the integration weights can be different depending on the integration rule.
We assume the weights have been absorbed into f̂ , so that T is Toeplitz in (1). When t is spa-
tially invariant, discretizing via Galerkin’s method will sometimes also yield a matrix with Toeplitz
structure (see section 5.2).

2When n is a product of small primes, the Winograd FFT algorithms can be used for slightly
higher cost. If n is neither a product of small primes nor a power of 2, we suggest that one extend
the problem to the desirable dimension, say n∗, by augmenting T with an n∗−n identity matrix and
extending the vectors f̂ and ĝ by some vector with length n∗−n. (In this case, T is actually block
Toeplitz with two Toeplitz blocks on the diagonal; the only difference in the remainder of the paper
is that the variable ` defined in section 2 will now have value at most 4, as opposed to 2 for Toeplitz
matrices.)

90 MISHA E. KILMER AND DIANNE P. O’LEARY

filtered approximate solution of a problem involving a Toeplitz matrix. The regular-
izing properties of conjugate gradients and our choice of preconditioner are discussed
in section 3. Each iteration of our algorithm takes O(n lgn) operations, and compu-
tational issues are discussed in section 4. Section 5 contains numerical results and
section 6 presents conclusions and future work.

2. Transformation from Toeplitz to Cauchy-like structure. A Cauchy-
like, or generalized Cauchy, matrix C has the form

C =

(
aTi bj
ωi − θj

)
1≤i, j≤n

(ai, bj ∈ C`×1;ωi, θj ∈ C).(2)

It can also be defined as the unique solution of the displacement equation

ΩC − CΘ = ABT ,(3)

where

Ω = diag(ω1, . . . , ωn), Θ = diag(θ1, . . . , θn), A =

aT1
...
aTn

 , B =

 bT1
...
bTn

 .

The pair (A,B) is the generator of C with respect to Ω and Θ, and ` ≤ n is called
the displacement rank. For the matrices and displacement equations of interest here,
` = 1 or 2 [8].

We exploit three important properties of Cauchy-like matrices.
Property 1. Row and column permutations of Cauchy-like matrices are Cauchy-

like, as are leading principal submatrices.
This property allows pivoting in fast algorithms for factoring Cauchy-like matrices

[19, 8].
Property 2. The inverse of a Cauchy-like matrix is Cauchy-like:

C−1 = −
(
xTi wj
θi − ωj

)
1≤i, j≤n

(xi, wj ∈ C`×1).(4)

Heinig [19] gives an O(n lg2 n) algorithm to compute X (with rows xTi) and W
(with rows wTi) given A, B, Θ, and Ω, and explains how, using the FFT, a system
involving a Cauchy-like matrix can be solved in O(n lg2 n). However, the algorithm
is very fragile. It can be unstable for large values of n and, even when used on a well-
conditioned matrix, may require pivoting to maintain stability [20, 1]. Alternatively,
X and W can be determined from the relations

CX = A, WTC = BT .(5)

The third important property is that Toeplitz matrices also satisfy certain dis-
placement equations [24, 8] which allow them to be transformed via fast Fourier
transforms into Cauchy-like matrices [19, 8].

Property 3. Every Toeplitz matrix T satisfies an equation of the form

R1T − TR−1 = ABT ,(6)

PIVOTED CAUCHY-LIKE PRECONDITIONERS 91

where A ∈ Cn×`, B ∈ Cn×`, and

Rδ =



0 0 . . . 0 δ
1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

...
0 · · · 0 1 0

 .

The Toeplitz matrix T is unitarily related to a Cauchy-like matrix

C = FTS∗0F
∗

that satisfies the displacement equation

S1C − CS−1 = (FA)(BTS∗0F
∗),(7)

where

S1 = diag(1, e
2πi
n , . . . , e

2πi
n (n−1)),

S−1 = diag(e
πi
n , . . . , e

(2n−1)πi
n),

S0 = diag(1, e
πi
n , . . . , e

πi
n (n−1)),

and F is the normalized inverse discrete Fourier transform matrix defined by

F =
1√
n

[
exp

(
2πi

n
(j − 1)(k − 1)

)]
1≤j, k≤n

.

Gohberg, Kailath, and Olshevsky [8] suggest a stable O(`n2) partial pivoting
algorithm to factor C = PLU . Sweet and Brent [31] show, however, that element
growth in this algorithm depends not only on the magnitude of L and U , but on the
generator for the Cauchy-like matrix. For our test matrices, partial pivoting alone
did not provide the rank-revealing information that we need.

Gu [10] presents an algorithm that can perform a fast O(`n2) variation of LU
decomposition with complete pivoting. Recall that in complete pivoting, at every
elimination step one chooses the largest element in the current submatrix as the
pivot in order to reduce element growth. Gu proposes instead that one find an entry
sufficiently large in magnitude by considering the largest 2-norm column of ĀB̄T

corresponding to the part that remains to be factored at each step. This algorithm
computes the factorization C = PLUQ [10, Alg. 2] using only the readily determined
generators (see section 4), and Gu shows that it is efficient and numerically stable,
provided that element growth in the computed factorization is not large. For our
purposes it was convenient to set D = diag(u11, . . . , unn) and U ← D−1U to obtain
the equivalent factorization C = PLDUQ.

3. Regularization and preconditioning. If we wanted to solve the linear
system Tf = g exactly, we would be finished: using the transformation to Cauchy-
like form and the fast factorization algorithms described above, computing this solu-
tion would be an easy task. But the solution we seek is an approximate one, hav-
ing noise filtering properties, so we choose to use an iterative method called CGLS

92 MISHA E. KILMER AND DIANNE P. O’LEARY

which, in conjunction with an appropriate preconditioner, produces suitably filtered
solutions.

Three assumptions will guide our analysis:
1. The matrix T has been normalized so that its largest singular value is of

order 1.
2. The uncontaminated data vector ĝ satisfies the discrete Picard condition; i.e.,

the spectral coefficients of ĝ decay in absolute value like the singular values
[35, 16].

3. The additive noise is zero-mean white Gaussian. In this case, the components
of the error e are independent random variables normally distributed with
mean zero and variance ε2.

We need to define the upper and lower subspaces. Using (1), let T = ŪΣV̄ T be
the singular value decomposition of T , and expand the data and the noise in the basis
created by the columns of V̄ :

ĝ =

n∑
i=1

γ̂ivi, e =
n∑
i=1

ηivi,

with γ̂ = V̄ T ĝ and η = V̄ T e. Under the white noise assumption, the coefficients ηi
are roughly constant in size, while the discrete Picard condition tells us that the γ̂i
go to zero at least as fast as the singular values σi.

Assumptions 2 and 3 imply the existence of an integer m̄ > 0 such that for all
i > m̄, γ̂i are of the same order as ηi and hence these γ̂i are obscured by noise. In
addition, assumption 2 ensures that there exists 0 < m ≤ m̄ such that if i > m,
|γ̂i| 6� |ηi|. We partition the columns of V̄ in accordance with these indices as follows.
The space spanned by the first m columns of V̄ we call the upper subspace, while
the space spanned by the last n − m̄ columns of V̄ we define as the lower subspace.
Hence the upper subspace corresponds to the largest m singular values and the lower
subspace corresponds to the smallest n − m̄ singular values. Finally, we define the
transition subspace as the space spanned by the remaining m̄ − m columns of V .
Since the transition subspace usually corresponds to midrange singular values, the
components of the solution lying in this subspace are generally difficult to resolve
unless there is a gap in the singular value spectrum.

3.1. Regularization by preconditioned CGs. The standard CG method [22]
is an iterative method for solving systems of linear equations for which the matrix is
symmetric positive definite. If the matrix is not symmetric positive definite, one can
use a variant of standard CG which solves the normal equations in factored form. We
refer to the resulting algorithm as CGLS [22]. If the discrete Picard condition holds,
then CGLS acts as an iterative regularization method with the iteration index taking
the role of the regularization parameter [7, 14, 17]. Convergence is governed by the
spread and clustering of the singular values [33]. Therefore, preconditioning is often
applied in an effort to cluster the singular values, thus speeding convergence.

In the context of an ill-conditioned matrix T , we require a preconditioner for
CGLS which clusters the largest m singular values while leaving the small singular
values, and with them the lower subspace, relatively unchanged. In this case, the first
few iterations of CGLS will quickly capture the solution lying within the subspace
spanned by the first m columns of V . A modest number of subsequent iterations will
provide improvement over the transition subspace, without significant contamination
from the lower subspace.

PIVOTED CAUCHY-LIKE PRECONDITIONERS 93

3.2. The preconditioner. Given the Toeplitz matrix T , let C̃ = FTS∗0F
∗ be

its corresponding Cauchy-like matrix. Solving Tf = g is then equivalent to solving

C̃FS0f = Fg.

Note that since F and S0 are unitary matrices, then

C̃ = (FŪ)ΣV̄ T (S∗0F
∗),

where T = ŪΣV̄ T is the singular value decomposition of T . Thus T and C̃ have the
same singular values, and there is no mixing of upper and lower subspaces.

A factorization of C̃ using a modified complete pivoting strategy may lead to an
interchange of rows (specified by a permutation matrix P) and columns (specified by
a permutation matrix Q). Setting C = PT C̃QT , y = QFS0f , and z = PTFg, the
problem Tf = g is equivalent to

Cy = z.(8)

We choose a preconditioner M for the left so that

M−1Cy = M−1z

and apply CGLS to the corresponding normal equations

(M−1C)∗(M−1C)y = (M−1C)∗M−1z.(9)

Our choice of preconditioner M is derived from the leading m×m submatrix of
Gu’s modified complete pivoting LDU factorization of the matrix C as follows. Let
C = LDU and write this equation in block form, where the upper left blocks are
m×m: [

C1 C2

C3 C4

]
=

[
L1 0
L2 L3

] [
D1 0
0 D2

] [
U1 U2

0 U3

]
.(10)

Here L1 and L3 are lower triangular, U1 and U3 are upper triangular, and D1 and D2

are diagonal. We choose as our preconditioner the matrix

M =

[
L1 0
0 I

] [
D1 0
0 I

] [
U1 0
0 I

]
=

[
C1 0
0 I

]
.

3.3. Properties of the preconditioner. We begin with some theorems about
the clustering of the singular values of M−1C. It is useful to decompose the matrix
(M−1C)∗(M−1C) into the matrix sum[

I C−1
1 C2

(C−1
1 C2)∗ (C−1

1 C2)∗(C−1
1 C2)

]
+

[
C∗3C3 C∗3C4

C∗4C3 C∗4C4

]
≡ E1 + E2(11)

using the block partitioning of the previous section.
Let εi be the sum of the absolute values of the entries in row i of C−1

1 C2, let εmax
be the largest of these quantities, and let ŝ be the largest such row sum for E2. The
case of interest to us is when these quantities are reasonably small.

We denote the kth largest singular value of a matrix Z by σk(Z) and the kth
largest eigenvalue by λk(Z).

94 MISHA E. KILMER AND DIANNE P. O’LEARY

Theorem 3.1. The m largest singular values of M−1C lie in the interval

[1,
√

1 + εmax + ŝ].

Proof. The upper bound can be obtained by applying Gershgorin’s theorem [29,
IV.2.1] to bound the eigenvalues of the matrix (M−1C)∗(M−1C), and then taking
square roots. The lower bound is somewhat more interesting.

The matrices E1 and E2 are Hermitian positive semidefinite, and from the repre-
sentations

E1 =

[
I 0

(C−1
1 C2)∗ 0

][
I (C−1

1 C2)

0 0

]
and E2 =

[
C∗3 0

C∗4 0

][
C3 C4

0 0

]
,

it is clear that they have rank at most m and n−m, respectively.
By Corollary IV.4.9 in [29], we know that

λi(E1) ≤ λi((M−1C)∗(M−1C)).(12)

We need to show that λk(E1) ≥ 1. If Y1 and Y2 are two n×n matrices and the rank
of Y2 is n–m, then a theorem of Weyl [23, Thm. 3.3.16] implies σn(Y1 +Y2) ≤ σm(Y1).
Now set

Y1 =

[
I C−1

1 C2

0 0

]
, Y2 =

[
0 −C−1

1 C2

0 I

]
,

and notice that the eigenvalues of E1 are the squares of the singular values of Y1. But
Y1 +Y2 is the n×n identity matrix, so by Weyl’s result we obtain σm(Y1) ≥ 1. Thus,
λi(E1) ≥ 1 for i = 1, . . . ,m, and our conclusion follows from (12).

We now study the extent to which preconditioning by M mixes the upper and
lower subspaces.

Theorem 3.2. Let k be the dimension of the lower subspace, and let

C = [Q1Q2Q3]

Σ1 0 0

0 Σ2 0

0 0 Σ3


V

∗
1

V ∗2
V ∗3

 ,

M−1C =
[
Q̂1 Q̂2 Q̂3

] Σ̂1 0 0

0 Σ̂2 0

0 0 Σ̂3


 V̂

∗
1

V̂ ∗2
V̂ ∗3



be singular value decompositions with V3, V̂3 ∈ Cn×k and V1, V̂1 ∈ Cn×m. Then

‖V ∗1 V̂3‖2 ≤ σ̂n−k+1

σm
max{1, ‖C1‖2}.(13)

Proof. Using the decompositions we have

V ∗1 V̂3 = (V ∗1 C
−1)M(M−1CV̂3)

= Σ−1
1 Q∗1MQ̂3Σ̂3.

PIVOTED CAUCHY-LIKE PRECONDITIONERS 95

Since Q1 and Q̂3 have orthonormal columns, it follows that

‖V1V̂3‖2 ≤ σ̂n−k+1

σm
‖M‖2 =

σ̂n−k+1

σm
(max{1, ‖C1‖2}) .

Next we show that σ̂j ≈ σj for σj corresponding to the lower subspace, and thus
σ̂n−k+1 is small. Thus, if C1 is well conditioned, then we are guaranteed that the
upper and lower subspaces remain unmixed.

Theorem 3.3. The (m+i)th singular value of each of the matrices C and M−1C
lies in the interval [0, σi(E2)] for i = 1, . . . , n−m.

Proof. Two theorems due to Weyl for Hermitian matrices Z, Y1, and Y2 with
Z = Y1 + Y2 say

λk+j−1(Z) ≤ λk(Y1) + λj(Y2) [29, p. 210],

λn(Y2) + λk(Y1) ≤ λk(Z) [29, Cor. IV.4.9].

Now from the decomposition in (11), we see λn(E2) = 0 and λm+1(E1) = 0, and
thus

0 ≤ λm+i((M
−1C)∗(M−1C)) ≤ λm+1(E1) + λi(E2) = λi(E2)

for i = 1, . . . , (n−m).
Also,

C∗C =

[
C∗1 0
C∗2 0

] [
C1 C2

0 0

]
+ E2.

We therefore likewise obtain

0 ≤ λm+i(C
∗C) ≤ λi(E2).

The proof is completed by taking square roots.
These theorems show that the preconditioner will be effective if C1 is well con-

ditioned and if the row sums of C−1
1 C2 and E2 are small. We now discuss to what

extent these conditions hold for integral equation discretizations.
Property 4. Let C̃ be a Cauchy-like matrix corresponding to a real Toeplitz

matrix T that results from the discretization of a smooth, spatially invariant kernel t,
normalized so that the maximum element of T is one. Then for n sufficiently large,
there exists ε� 1 and m� n such that all elements of C̃ are less than ε in magnitude
except for those located in four corner blocks of total dimension m×m.

To understand why this is true, recall that if Ã and B̃ are the generators of C̃,
where G̃ = ÃB̃T , the magnitude of the (k, j)-entry of C̃ is

|C̃kj | = |ãTk b̃j |
|ωk − θj | .

Thus the largest entries in C̃ appear where the numerator is large or the denominator
is small.

The denominator of C̃kj is |ωk−θj | = |1−eπin (2(j−k)+1)|, which is bounded above
by 2. Its smallest entries are attained for |k − j| ≈ 0 or n, but there are very few
small values. In fact, direct computation shows that for n ≥ 100, at least 95% of the

96 MISHA E. KILMER AND DIANNE P. O’LEARY

0 50 100

0

20

40

60

80

100

nz = 200

Elements > 30

0 50 100

0

20

40

60

80

100

nz = 400

Elements > 10

0 50 100

0

20

40

60

80

100

nz = 1000

Elements > 3

0 50 100

0

20

40

60

80

100

nz = 3400

Elements > 1

Fig. 1. Plot revealing

[
1

|ωk−θj |

]
k, j=1,..., n

> tol, n = 100 for tol = 30, 10, 3, and 1.

entries in the first row have denominators in the range [10−1, 2], and the other rows
have even more in this range. Figure 1 plots values of the matrix[

1

|ωk − θj |
]
k, j=1,..., n

above given tolerance levels for n = 100. As expected, there are very few large values,
and these occur only near the diagonal and the corners of the matrix.

Now consider the numerators. The formulas for A and B are determined from
direct computation in (6). The first column of A is the first unit vector, and the
second column is given by

[0, tn−1, tn−2, . . . , tp−1, . . . , t1]T + [t0, t−1, t−2, . . . , t−(q−1), . . . , t−(n−1)]
T .(14)

The first column of B is

[t−(n−1), t−(n−2), . . . , t−(q−1), . . . , t−1, t0]T − [t1, t2, . . . , tp−1, . . . , tn−1, 0]T ,(15)

and the second column is the last unit vector. The generators for C̃ are then Ã ≡ FA
and B̃ ≡ conj(FS0)B, where conj(·) denotes complex conjugation, with F and S0 as
described in Property 3. Therefore, the numerators are

|ãTk b̃j | =
∣∣∣∣ 1√
n
conj(ζ)j +

1√
n
e

(n−1)
n πi(1−2j)νk

∣∣∣∣ ,
where νk is the kth entry in the second column of Ã and ζj is the jth entry in the
first column of FS0B. Thus it is the normalized inverse Fourier coefficients of
the second column of A and first column of S0B which determine the magnitude
of the numerators, and if t is smooth, these will be large only for small indices j
and k.

PIVOTED CAUCHY-LIKE PRECONDITIONERS 97

Therefore,

|ãTk b̃j |
|ωk − θj | ≤

1√
n

(|νk|+ |ζj |)� 1

away from the corners. Thus C̃ can be permuted to contain the large elements in
the upper left block, and any pivoting strategy that produces such a permutation will
give a suitable preconditioner for our scheme.

We have observed that if Gu’s algorithm is applied to a matrix with this structure,
then C1 will contain the four corner blocks. The interested reader is referred to [10]
for details on the complete pivoting strategy, but the key fact is that Gu makes his
pivoting decisions based on the size of elements in the generator ĀB̄T corresponding
to the block that remains to be factored. The resulting Cauchy-like preconditioner
C1 for the matrix C then has the property that the first m singular values of the
preconditioned matrix are clustered, and that the invariant subspace corresponding
to small singular values of C is not much perturbed. Thus we expect that the initial
iterations of CGLS will produce a solution that is a good approximation to the noise-
free solution.

4. Algorithmic issues. Our algorithm is as follows.

Algorithm 1 (Solving Tf = g).

1. Compute the generators for the matrix C̃ = FTS∗0F
∗ using (14)

and (15).
2. Determine an index m to define the size of the partial factorization

of C̃ and factor C̃ = PLDUQ.

3. Set C = PT C̃QT and z = PTFg.
4. Determine the m × m leading principal submatrix, C1, of C and

let M =
[
C1 0
0 I

]
. (See (10).)

5. Compute an approximate solution ỹ to M−1Cy = M−1z using a
few steps of CGLS.

6. The approximate solution in the original coordinate system is
f = S∗0F

∗QT ỹ.

When to stop the CGLS iteration in order to get the best approximate solution
is a well-studied but open question (for instance, see [18] and the references therein).
We do not solve this problem, but we consider the other algorithmic issues in the
following subsections.

4.1. Determining the size of C1. The choice of the parameter m determines
the number of clustered singular values in the preconditioned system. It influences
the amount of work per iteration and, perhaps more importantly, the mixing of upper
and lower subspaces. We use a simple heuristic in our numerical experiments. We
compute the Fourier transform of the data vector ĝ and determine the index m for
which the Fourier coefficients start to level off. This is presumed to be the noise level,
and the factorization is truncated here.

98 MISHA E. KILMER AND DIANNE P. O’LEARY

4.2. Computing the preconditioner. Since C̃ satisfies the displacement equa-
tion (3), with Ω = S1 and Θ = S−1, it follows that C1 satisfies

Ω1C1 − C1Θ1 = A1B
T
1 ,

where Ω1 and Θ1 are the leading principal submatrices of PTΩP and QΘQT , respec-
tively, and A1 and B1 contain the first m rows of PT Ã and QT B̃, respectively.

Thus the matrix C−1
1 has entries

C−1
1 = −

(
xTi wj

θ̃i − ω̃j

)
1≤i, j≤n

,(16)

where θ̃i and ω̃j are the elements of Θ and Ω that appear in Θ1 and Ω1, respectively,
and, from (5), the vectors xTi and wTj are rows of X1 and W1 defined as

C1X1 = A1, WT
1 C1 = BT1 .(17)

Computing X1 and W1 costs O(m2) operations, given the factorization of C1 and the
matrices A1 and B1. The factorization of C1 is obtained during the modified complete
pivoted partial factorization of C̃ in O(mn−m2/2+m/2) operations. Since O(n lgn)
operations are required to compute A1 and B1 by means of FFTs, the total cost to
initialize our preconditioner is O(mn+ n lgn) operations.

4.3. Applying the preconditioner. Let r be a vector of length m and assume
that no pivoting was done when C̃ was factored. Heinig [19] states that C−1

1 r may
be written as

C−1
1 r =

∑̀
j=1

−(X1)j · (C0(W1)j · r),

where (X1)j is the jth column of X1, (W1)j is the jth column of W1, and C0 is the
Cauchy matrix C0 = (1

θi−ωj)1≤i, j≤m. The notation · denotes the componentwise

product of two vectors.
Fast multiplication by the matrix C0 requires finding the coefficients of a polyno-

mial whose roots are the elements of Θ1 and Ω1 [6], and this process can be unstable.
To avoid this difficulty, realizing that the elements of S−1 and S1 are roots of unity,
we extend C0 to a matrix of size n× n satisfying the displacement equation (2) with
Ω = S−1 and Θ = S1. Now multiplication of a vector by the extended matrix C0 can
be reduced to multiplication by diagonal and antidiagonal matrices and FFTs. This
observation allows us to develop a mathematically equivalent algorithm for computing
s = C−1

1 r which costs only O(n lgn) operations.

Algorithm 2 (Forming s = C−1
1 r).

Set s = 0.
For j = 1, . . . , `, do
1. Compute r̂ = Wj · r.
2. Extend r̂ by zeros so that r̂ is of length n.
3. Set r̂ ← C0r̂ (see below).
4. Truncate r̂ to length m.
5. Set s = s+Xj · r̂.

PIVOTED CAUCHY-LIKE PRECONDITIONERS 99

The product C−∗1 r can be computed similarly.
If pivoting was done during factorization, the vector r̂ should be multiplied by P

after step 2 and by Q before step 4.
This formulation allows C−1

1 r to be computed in O(n lgn) operations in a stable
manner, using an observation of Finck, Heinig, and Rost [6] that any Cauchy-like
matrix can be factored as

C0 = diag(h(θ1), . . . , h(θn))−1V (θ)HV (ω)T ,(18)

where V (ω) and V (θ) are the Vandermonde matrices whose second columns contain
the diagonal elements of Ω and Θ, respectively. The matrix H is a Hankel matrix,
i.e., one in which elements on the antidiagonals are constant. The first row is equal
to the coefficients of the polynomial h(u) =

∏n
i=1(u− ωi) except for the leading one.

Since, from Property 3, Ω and Θ contain roots of unity, products of the matrix C0

with a vector are very simple to compute:
• h(u) = un − 1, so H has a single nonzero diagonal extending from southwest

to northeast.
• V (ω)T is

√
nF , where F is the normalized, discrete, inverse Fourier transform

matrix defined in Property 3.
• V (θ) is the matrix product

√
nFS0, where the diagonal matrix S0 is defined

in Property 3.
Thus products C0r̂ can be computed stably in O(n lgn) operations. Since ` = 2 at
most, the preconditioner can be applied to a vector in O(n lgn) operations, given
X1 and W1 that have been computed according to (17). This is the same order as
the number of operations to apply C to a vector, since C = PFTS∗0F

∗Q and the
product of a Toeplitz matrix with a vector can be computed in O(n lgn) operations
by embedding the matrix in a circulant matrix [2]. Thus, each iteration of CGLS
costs O(n lgn) operations.

5. Numerical results. In this section we summarize results of our algorithm
on three test problems using Matlab and IEEE floating point double precision arith-
metic. Our measure of success in filtering noise is the relative error, the 2-norm of
the difference between the computed estimate f and the vector f̂ corresponding to
zero noise, divided by the 2-norm of f̂ . Since one does not usually know the exact
solution, other measures, such as the norm of the residual, must be monitored in order
to determine when to stop iterating. Choosing the optimal regularization parameter
is a difficult task and the interested reader is referred to [15, 18, 17] for heuristics
to determine the regularization parameter. In each experiment, we apply the CGLS
iteration with Cauchy-like preconditioner of size m. The value m = 0 corresponds to
no preconditioning.

We compare our method to the preconditioning scheme of Hanke, Nagy, and
Plemmons [14]. In the one-dimensional case, their preconditioner is determined by
forming the T. Chan circulant matrix approximant to T , computing the eigenvalues
via one-dimensional FFTs, and then replacing all the eigenvalues below a certain
tolerance with ones. When cutoff = 20, for example, the largest 20 eigenvalues remain
unchanged and the last n− 20 are replaced by 1s. It requires O(n lgn) operations to
initialize their preconditioner by means of FFTs.

Our method is similar to their method in that we also rely on a rank-revealing
factorization to determine an appropriate cutoff which is used to form the precon-
ditioner. However, our preconditioner does not require preliminary approximation
of the Toeplitz matrix by a circulant matrix, and therefore we expect our method

100 MISHA E. KILMER AND DIANNE P. O’LEARY

to outperform theirs in cases when the Toeplitz matrix is not well approximated by
its T. Chan circulant approximant; for example, in cases when the |tj | do not decay
sufficiently quickly as j increases (in particular, see Example 2).

We note that the value m depends on the noise level ‖e‖2/‖ĝ‖2 and the rate of
decay of the singular values (related to the smoothness of the kernel). For smooth
kernels t and large values of n, we therefore expect m � n. In this case, the cost
of initializing our preconditioner, O(mn + n lgn) operations, will not be much more
than initializing the preconditioner in [14] (see Example 2).

5.1. Signal processing example (Example 1). As mentioned in the intro-
duction, Toeplitz matrices often arise in signal processing (one-dimensional image
reconstruction problems). As an example, we consider the 256× 256 Toeplitz matrix
T whose entries are defined by

ti, j =

{
4
51φ(αi − βj) if |i− j| ≤ 15,
0 otherwise,

where

αi = βi =
4i

51
, i = 1, 2, . . . , 256,

and

φ(γ) =
1

2
√
πδ

exp

(
− γ2

4δ2

)
, δ = 0.3.

This matrix is the one used in Example 4 of [2]. The authors note that such matrices
may occur in image restoration contexts as “prototype problems” and are used to
model certain degradations in the recorded image.

The condition number of T is 6.16× 107. We wish to solve the equation Tf = g,
where g denotes the noisy data vector for which ‖e‖2/‖ĝ‖2, the noise level, is about

10−3. The uncorrupted data, ĝ, and exact numerical solution,3 f̂ , are displayed in
Figure 2. The Fourier coefficients of g are shown in Figure 3. Using these coefficients,
an appropriate cutoff value m was determined as explained in section 4.1.

The solid line in Figure 4 shows the convergence of CGLS on the unpreconditioned
Toeplitz system. The minimal value of the relative error, 2.18 × 10−1, was achieved
at 117 iterations. Convergence of CGLS on the preconditioned system involving the
Cauchy-like matrix is also shown in Figure 4 for two different values of m. Table 5.1
gives an idea of the sensitivity of the algorithm to the choice of m. By increasing
m from 41 to 51, for example, we slightly increase the minimum relative error in
favor of the fewer number of iterations required to reach a regularized solution. From
Table 5.1 we observe that the number of iterations for the preconditioned system is
substantially less than for the unpreconditioned when m is chosen appropriately.

For a cutoff of 51, the method of [14] gives a solution with relative error of
2.19 × 10−1 in 25 iterations. In contrast, for m = 51, our method took only 15
iterations to reach almost the same relative error value. For any cutoff value it took
the method of [14] more iterations to reach a reasonable regularized solution in general
than it took our method. To further compare the two methods, we computed the
average decrease in relative error per iteration by dividing the minimum relative error

3We first determined f̂ using Matlab’s square function f̂ = square(2πv∗ .3) with v = [0:.1:25.5],

then computed ĝ = T f̂ .

PIVOTED CAUCHY-LIKE PRECONDITIONERS 101

50 100 150 200 250
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

index

va
lue

rhs

50 100 150 200 250

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

index

va
lue

solution

Fig. 2. Uncontaminated data vector (left) and exact solution vector (right) for Example 1.

50 100 150 200 250
10

−1

10
0

10
1

10
2

index

valu
e

Fig. 3. Fourier coefficients of the noisy data for Example 1.

by the number of iterations required to achieve it. This tells us how much we gain,
on average, for the price of one iteration for a given preconditioner. For m and the
cutoff set to 51, these numbers are .0147 and .0088 for our method and the method of
[14], respectively. For m and the cutoff set to 31, these numbers are .0044 and .0034.
So in both cases, our method is slightly better.

The singular values of T and of the preconditioned matrix M−1C for m = 51 are
shown in Figure 5. As predicted by the theory in section 3.3, the first 51 singular values
of M−1C are clustered very tightly around one and the smallest singular values have
been left virtually untouched. To test the robustness of the theorems, we computed
the quantities appearing in the theorems. In Theorem 3.1, for example, εmax =
‖C−1

1 C2‖∞ = 2.91×101 and ŝ = ‖E2‖∞ = 3.79×10−2, giving an upper bound of 5.49
on the largest singular value of the preconditioned matrix; in fact σ1(M−1C) = 2.79,
but we found σ2(M−1C), . . . , σ51(M−1C) ∈ [1, 1.07]. In Theorem 3.2, ‖C1‖2 = 9.94
and the quantity 1

σ51
(max{1, ‖C1‖}) was equal to 1.57 × 102. (This quantity was

approximately equal to the condition number of C1, which was 2.74 × 102.) Since,
as Figure 5 indicates, the preconditioned matrix has singular values more than four
orders of magnitude smaller than 102, Theorem 3.2 does imply that the upper and
lower subspaces remain relatively unmixed.

102 MISHA E. KILMER AND DIANNE P. O’LEARY

0 20 40 60 80 100 120
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

iteration

rela
tive

 err
or

m=51 cutoff=51

m=0

m=31

Fig. 4. Relative error in computed solution for our preconditioner when m = 0, m = 31, and
m = 51 and relative error in computed solution for the method in [14] with cutoff = 51 eigenvalues;
Example 1.

50 100 150 200 250
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

index

va
lue

m=51

Fig. 5. Singular values of C (solid line) and M−1C (×’s) for Example 1, m = 51.

Table 5.1
Minimum relative errors achieved for various values of m; Example 1.

Our method Method of [14]

Minimum Achieved Minimum Achieved
m (cutoff) rel. error at iter. rel. error. at iter.

0 2.18× 10−1 117

31 2.18× 10−1 50 2.18× 10−1 65

41 2.19× 10−1 27 2.19× 10−1 48

51 2.20× 10−1 15 2.19× 10−1 25

61 2.32× 10−1 8 2.32× 10−1 30

5.2. Phillips test problem (Example 2). Next we consider the discretized
version of the well-known first-kind Fredholm integral equation studied by Phillips [28].
The kernel of the integral equation is given by t(α, β) = φ(α−β) where φ is defined by

φ(γ) =

{
1 + cos(γπ3), |γ| < 3,
0 |γ| ≥ 3,

PIVOTED CAUCHY-LIKE PRECONDITIONERS 103

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

index

va
lue

rhs

0 100 200 300 400
−60

−40

−20

0

20

40

60

index

va
lue

solution

Fig. 6. Uncontaminated data vector (left) and exact solution vector (right) for Example 2.

50 100 150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

index

va
lue

50 100 150 200 250 300 350 400

0.02

0.04

0.06

0.08

0.1

index

va
lue

Fig. 7. Fourier coefficients of the noisy data for Example 2, two different scales.

and the limits of integration are −6 and 6. We used Hansen’s Matlab Regularization
Toolbox, described in [17], to generate the corresponding 400×400 symmetric Toeplitz
matrix whose condition number was approximately 6.8 × 108. T was then scaled
by 6. In this code, the integral equation is discretized by the Galerkin method with
orthonormal box functions. The uncorrupted data vector4 is shown in Figure 6. The
noise level was 1× 10−2 for this problem.

It was difficult to determine the appropriate cutoff value m, as Figure 7 indicates,
but Table 5.2 and Figure 8 show that the savings in the number of iterations to
convergence can be substantial. In addition, for several values of m, the minimum

4We set ĝ = [s, s, s, s] with s = (φ(v,−1))2 + (φ(v, 1))2, where v = [−5:0.1:4.9] and φ(v, λ) =

1√
2π

exp

(
−(v−λ)2

2

)
. Then f̂ was taken to be the exact numerical solution of the problem.

104 MISHA E. KILMER AND DIANNE P. O’LEARY

Table 5.2
Minimum relative errors achieved for various values of m, Example 2.

Our method Method of [14]

Minimum Achieved Minimum Achieved
m (cutoff) rel. error at iter. rel. error. at iter.

0 5.71× 10−2 301

33 5.64× 10−2 66 5.83× 10−2 485

36 5.63× 10−2 54 5.72× 10−2 474

39 5.56× 10−2 53 5.85× 10−2 458

42 5.82× 10−2 46 5.83× 10−2 490

45 5.81× 10−2 32 6.22× 10−2 425

48 4.79× 10−2 21 5.48× 10−2 433

51 4.68× 10−2 23 2.70× 10−2 295

54 4.90× 10−2 17 3.01× 10−2 260

57 5.02× 10−2 10 3.80× 10−2 220

60 3.57× 10−2 10 3.93× 10−2 236

63 4.21× 10−2 3 3.67× 10−2 136

66 5.06× 10−2 11 5.04× 10−2 200

0 50 100 150 200 250 300
10

−2

10
−1

10
0

iteration

rela
tive

 er
ror

m=60 cutoff=63

m=34

Fig. 8. Relative error in computed solution for our preconditioner when m = 0, m = 34, and
m = 60 and relative error in computed solution for the method in [14] with cutoff = 63 eigenvalues;
Example 2.

relative error is somewhat lower than the minimum obtained for the unpreconditioned
problem. For example, after 302 iterations, CGLS on the unpreconditioned problem
achieved a minimum relative error of 5.71× 10−2. For m = 60, however, a minimum
relative error of 3.57 × 10−2 was reached in only 10 iterations. Again, we note that
the method of [14] achieves similar, and sometimes lower, relative error values, but
the number of iterations required to achieve these values, and thus the total cost, is
very high in comparison.

Figure 9 illustrates that, as in Example 1, the first m singular values of the
preconditioned matrix are clustered around one and the singular values corresponding
to the lower subspace remain almost unchanged. In particular, when m = 60 the

PIVOTED CAUCHY-LIKE PRECONDITIONERS 105

50 100 150 200 250 300 350 400
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

index

va
lue

m=60

Fig. 9. Singular values of C (solid line) and M−1C (×’s) for Example 2, m = 60.

quantities that play a role in the upper bound of Theorem 3.1 are εmax = ‖C−1
1 C2‖∞ =

6.73× 101 and ŝ = ‖E2‖∞ = 6.69× 10−3; in this case, the theorem predicts that the
largest singular value of the preconditioned matrix will be less than 8.3. In fact,
the largest singular value of M−1C was 5.5, with the second largest singular value
1.27. In Theorem 3.2, the quantity which premultiplies σ̂n−k+1 is 2.07 × 104, which
is about the same order of magnitude as the condition number of C1, 7.15 × 104.
However, for k = 175, the upper bound in (13) is already on the order of 10−3, and
so we observe that the upper and lower subspaces remain relatively unmixed as the
theorem predicts. So even when C1 is moderately ill conditioned, very small singular
values ensure that the upper and lower subspaces do not mix.

5.3. Nonsymmetric example (Example 3). Finally, since both previous ex-
amples involve symmetric Toeplitz matrices, for our third example we chose to work
with a 100× 100 matrix T . We first define the vectors

t
(1)
j =

{
4
51φ(.15, α1 − βj), 1 ≤ j ≤ 10,
0 otherwise,

t
(2)
j =

{
4
51φ(.18, α1 − βj), 1 ≤ j ≤ 11,
0 otherwise,

where αi, βj are as in Example 1 and

φ(δ, γ) =
10

3
√
π

exp

(−γ2

4δ2

)
,

and use the Matlab command toeplitz(t(1), t(2)) to generate the matrix T .

106 MISHA E. KILMER AND DIANNE P. O’LEARY

20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

index

va
lue

rhs

20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

index

va
lue

solution

Fig. 10. Uncontaminated data vector (left) and exact solution vector (right) for Example 3.

10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

index

val
ue

Fig. 11. Fourier coefficients of the noisy data for Example 3.

The condition number of T is approximately 4.67×107. We first defined the exact
solution5 shown in Figure 10. The uncorrupted data were obtained by calculating
ĝ = T f̂ and are also shown in Figure 10. White noise was added to ĝ to obtain the
noisy data whose Fourier coefficients are shown in Figure 11, where the noise level
was determined to be 1× 10−3.

As Figure 12 and Table 5.3 indicate, the minimum relative error obtained with no
preconditioning was 2.12×10−2 in 50 iterations. For values of m close to 33, however,
the preconditioned system converges in fewer than 10 iterations to the same minimum
relative error. The method of [14] compares about the same as in the other examples;
that is, a smaller relative error could be achieved, but at the expense of over twice the
number of iterations that our method requires to achieve its minimum relative error.
As in the first example, we can compare the average gain per iteration for particular
values of m/cutoff. The method of [14] achieves its smallest minimum relative error
value of 1.55 × 10−2 when the cutoff is 25; it takes 25 iterations, giving an average
gain of .00062 per iteration. In contrast, our method achieves its smallest minimum
relative error of 2.12× 10−2 after 9 iterations with m = 33, yielding an average gain

5f̂ = sin([1:0.1:10.9]2 · 3π
25

).

PIVOTED CAUCHY-LIKE PRECONDITIONERS 107

Table 5.3
Minimum relative errors achieved for various values of m; Example 3.

Our method Method of [14]

Minimum Achieved Minimum Achieved
m (cutoff) rel. error at iter. rel. error. at iter.

0 2.12× 10−2 50

21 2.13× 10−2 25 1.83× 10−2 34

25 2.12× 10−2 19 1.55× 10−2 25

29 2.19× 10−2 12 1.98× 10−2 24

33 2.12× 10−2 9 2.62× 10−2 23

37 2.15× 10−2 8 3.23× 10−2 20

41 2.50× 10−2 7 3.70× 10−2 19

0 10 20 30 40 50 60
10

−2

10
−1

10
0

iteration

rela
tive

 err
or

m=0

m=33 m=25

cutoff=25

Fig. 12. Relative error in computed solution for our preconditioner when m = 0, m = 25, and
m = 33 and relative error in computed solution for the method in [14] with cutoff = 25 eigenvalues;
Example 3.

of .00236 per iteration.

We also observe from Figure 13 that when our preconditioner is defined for m =
33, the largest 33 singular values cluster around 1, and the small singular values are
left almost unchanged. For m = 33 we found εmax = ‖C−1

1 C2‖∞ = 1.35 × 101, and
ŝ = ‖E2‖∞ = 5.10 × 10−2; thus Theorem 3.1 predicts the largest singular value of
M−1C is bounded above by about 3.8. In fact, the largest singular value is 2.4, while
the next largest singular value is only 1.09. In Theorem 3.2 we found ‖C1‖2 = 1.13 so
that the quantity multiplying σ̂n−k+1 on the right-hand side of (13) was 5.71 × 101,
just over half the condition number of C1. Thus, for a suitable value of k in (13), the
mixing between the upper and lower subspaces is small.

6. Conclusions. We have developed an efficient algorithm for computing regu-
larized solutions to ill-posed problems with Toeplitz structure. This algorithm makes
use of a unitary transformation to a Cauchy-like system and iterates using the CGLS
algorithm preconditioned by a rank-m partial factorization with pivoting. By exploit-
ing properties of the transformation, we showed that each iteration of CGLS costs only
O(n lgn) operations for a system of n variables, the same as the cost per iteration of
the method in [14].

Our theory predicts that for banded Toeplitz matrices we can expect the precon-

108 MISHA E. KILMER AND DIANNE P. O’LEARY

0 10 20 30 40 50 60 70 80 90 100
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

index

va
lue

m=33

Fig. 13. Singular values of C (solid line) and M−1C (×’s) for Example 3, m = 33.

ditioner determined in the course of Gu’s fast modified complete pivoting algorithm
to cluster the largest singular values of the preconditioned matrix around 1, keep the
smallest singular values small, and not mix the upper and lower subspaces. Thus
CGLS produces a good approximate solution within a small number of iterations.
Our results illustrate the effectiveness of our preconditioner for an optimal value of m
and for values in a neighborhood of the optimal one. The results further illustrate the
advantage of our method over the preconditioned scheme of [14] in terms of reaching
a reasonable regularized solution in many fewer iterations. Hence, our algorithm is
both efficient and practical.

Determining the optimal value of m can be difficult, and it appears better to
underestimate the value rather than to overestimate it. Advances in computing truly
rank-revealing factorizations of Cauchy-like matrices will yield corresponding advances
in our algorithm.

We note a left preconditioner can be defined similarly in the case when T has
dimension N × n, where N > n. In this case we have C̃ = FNTS

∗
0F
∗
n , where the

subscript on F denotes the dimension of the normalized Fourier transform matrix
and S0 is n × n. We determine the square principal submatrix C1 as before and
augment it by an (N−m) × (N−m) identity matrix so that M is now N ×N . The
proofs of Theorems 3.1 and 3.3 remain the same. Theorem 3.2 can be adapted to the
N × n case by adding N−n rows of zeros to the Σ and Σ̂ matrices, appending the
N×(N−n) matrices Q4 and Q̂4 in the definition of the singular value decompositions,
and replacing C−1 in the proof with C†.

Similar ideas are valid for preconditioners of the formC1

C2

I

 ,
where C1 and C2 are both Cauchy-like. In practice, C2 can be determined by com-
puting a partial factorization of the trailing submatrix of C, remaining after C1 is
removed. This method saves time in the precomputation of M but more iterations
may be required for convergence.

There are other unitary and real orthogonal transforms relating Toeplitz and
Cauchy-like matrices (see [21, 25, 8], for instance). The particular transform exploited
here allows us to apply the preconditioner in a fast and stable way as discussed in

PIVOTED CAUCHY-LIKE PRECONDITIONERS 109

section 4.3. However, Hermitian structure is not preserved under this transformation,
and therefore a method such as CGLS which solves the normal equations must be
used. As an alternative, when T is Hermitian, one might apply a minimal residual
variant of CG called MR-II [13] with an appropriate symmetric preconditioner to the
original Toeplitz system.

Finally, we note that these ideas have been extended in [26] to the case of com-
puting regularized solutions to two-dimensional problems in which T is block Toeplitz
with Toeplitz blocks.

Acknowledgment. We would like to thank Dr. Gohberg for introducing us to
Cauchy-like matrices and giving us a preprint of [8], thus providing the inspiration
for this work.

REFERENCES

[1] A. Bojanczyk, personal communication, 1996.
[2] R. Chan, J. Nagy, and R. Plemmons, Circulant preconditioned Toeplitz least squares itera-

tions, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 80–97.
[3] T. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Com-

put., 9 (1988), pp. 766–771.
[4] T. F. Chan and P. C. Hansen, A lookahead Levinson algorithm for general Toeplitz systems,

IEEE Proc. Signal Processing, 40 (1992), pp. 1079–1090.
[5] R. D. Fierro, G. H. Golub, P. C. Hansen, and D. P. O’Leary, Regularization by truncated

total least squares, in Proceedings of the Fifth SIAM Conference on Applied Linear Algebra,
J. G. Lewis, ed., SIAM, Philadelphia, 1994, pp. 102–105.

[6] T. Finck, G. Heinig, and K. Rost, An inversion formula and fast algorithms for Cauchy-
Vandermonde matrices, Linear Algebra Appl., 183 (1993), p. 179.

[7] H. E. Fleming, Equivalence of regularization and truncated iteration in the solution of ill-posed
problems, Linear Algebra Appl., 130 (1990), pp. 133–150.

[8] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial pivoting
of matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1576.

[9] W. Groetsch, Theory of Tikhonov Regularization for Fredholm Equations of the First Kind,
Pitman, Boston, MA, 1984.

[10] M. Gu, Stable and efficient algorithms for structured systems of linear equations, SIAM J.
Matrix Anal. Appl., 19 (1998), pp. 279–306.

[11] M. H. Gutknecht and M. Hochbruck, Look-ahead Levinson and Schur Algorithms for Non-
Hermitian Toeplitz Systems, Numer. Math., 70 (1995), pp.181–227.

[12] M. Hanke, Regularization with differential operators: An iterative approach, Numer. Funct.
Anal. Optim., 13 (1992), pp. 523–540.

[13] M. Hanke and J. Nagy, Restoration of atmospherically blurred images by symmetric indefinite
conjugate gradient techniques, Inverse Problems, 12 (1996), pp. 157–173.

[14] M. Hanke, J. Nagy, and R. Plemmons, Preconditioned iterative regularization for ill-posed
problems, Numerical Linear Algebra, L. Reichel, A. Ruttan, and R. S. Varga, eds.,
de Gruyter, Berlin, 1993, pp. 141–163.

[15] M. Hanke and T. Raus, A general heuristic for choosing the regularization parameter in
ill-posed problems, SIAM J. Sci. Comput, 17 (1996), pp. 956–972.

[16] P. C. Hansen, The discrete Picard condition for discrete ill-posed problems, BIT, 30 (1990),
pp. 658–672.

[17] P. C. Hansen, Rank Deficient and Discrete Ill-Posed Problems, Ph.D. thesis, Technical Uni-
versity of Denmark, Lyngby, Denmark, 1995.

[18] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete
ill-posed problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503.

[19] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matri-
ces, in Linear Algebra in Signal Processing, IMA Vol. Math. Appl. 69, Springer-Verlag,
New York, 1994, pp. 95–114.

[20] G. Heinig, personal communication. 1996.
[21] G. Heinig and A. Bojanczyk, Transformation techniques for Toeplitz and Toeplitz-plus-

Hankel matrices. I. Transformations, Linear Algebra Appl., 254 (1997), pp. 193–226.

110 MISHA E. KILMER AND DIANNE P. O’LEARY

[22] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Natl. Bur. Standards, 49 (1952), pp. 409–436.

[23] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
Cambridge, UK, 1991.

[24] T. Kailath, S. Kung, and M. Morf, Displacement ranks of matrices and linear equations,
J. Math. Anal. Appl., 78 (1979), pp. 395–407.

[25] T. Kailath and V. Olshevsky, Displacement structure approach to discrete-trigonometric-
transform based preconditioners of the G. Strang type and of T. Chan type, Calcolo, 33
(1996), pp. 191–208.

[26] M. Kilmer, Cauchy-Like Preconditioners for Two-Dimensional Ill-Posed Problems, SIAM J.
Matrix Anal. Appl., 20 (1999), pp. 777–799.

[27] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Natl. Bur.
Standards, 49 (1952), pp. 33–53.

[28] D. L. Phillips, A technique for the numerical solution of certain integral equations of the first
kind, J. ACM, 9 (1962), pp. 84–97.

[29] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, New York,
1990.

[30] G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986), pp.
171–176.

[31] D. Sweet and R. Brent, Error analysis of a fast partial pivoting method for structured
matrices, Advanced Signal Processing Algorithms, Proc. SPIE, 2363 (1995), pp. 266–280.

[32] D. Sweet, The use of pivoting to improve the numerical performance of Toeplitz matrix algo-
rithms, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 468–493.

[33] A. van der Sluis and H. van der Vorst, The rate of convergence of conjugate gradients,
Numer. Math, 48 (1986), pp. 543–560.

[34] A. van der Sluis and H. van der Vorst, Sirt- and CG-type methods for the iterative solution
of sparse linear least-squares problems, Linear Algebra Appl., 130 (1990), pp. 257–302.

[35] J. M. Varah, Pitfalls in the numerical solution of linear ill-posed problems, SIAM J. Sci.
Statist. Comput., 4 (1983), pp. 164–176.

