
Numerical Algorithms25: 387–406, 2000.
 2000Kluwer Academic Publishers. Printed in the Netherlands.

Adaptive use of iterative methods in predictor–corrector
interior point methods for linear programming∗

Weichung Wanga and Dianne P. O’Learyb

a Department of Mathematics Education, National Tainan Teachers College, Tainan 700, Taiwan
E-mail: wwang@ipx.ntntc.edu.tw

b Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742, USA
E-mail: oleary@cs.umd.edu

Received 8 April 1999; accepted in revised form 8 May 2000

Dedicated to Richard Varga, for making the use of iterative methods a science, without
diminishing the artistry

In this work we devise efficient algorithms for finding the search directions for interior
point methods applied to linear programming problems. There are two innovations. The
first is the use of updating of preconditioners computed for previous barrier parameters. The
second is an adaptive automated procedure for determining whether to use a direct or iterative
solver, whether to reinitialize or update the preconditioner, and how many updates to apply.
These decisions are based on predictions of the cost of using the different solvers to determine
the next search direction, given costs in determining earlier directions. We summarize earlier
results using a modified version of the OB1-R code of Lustig, Marsten, and Shanno, and we
present results from a predictor–corrector code PCx modified to use adaptive iteration. If
a direct method is appropriate for the problem, then our procedure chooses it, but when an
iterative procedure is helpful, substantial gains in efficiency can be obtained.
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1. Introduction

Interior point methods (IPMs) are now widely used to solve linear programming
problems

minimizecTx

subject to Ax = b, x > 0,
(1)
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wherec, x are realn-vectors,b is a realm-vector, andA is a realm × n matrix of
rankm, with m 6 n. These methods typically solve a sequence of logarithmic barrier
subproblems with the barrier parameter decreasing to zero. Newton’s method is applied
to solve the first-order optimality conditions for each of the logarithmic-barrier subprob-
lems. The bulk of the work in such algorithms is the determination of a search direction
for each step.

Gonzaga [19] and Wright [40] surveyed IPMs, and many computational issues are
addressed by Lustig et al. [27] and Andersen et al. [1]. Therefore, in this section we
focus only on the linear systems arising in IPMs. For definiteness, we consider the
primal–dual formulation of IPMs, but the linear algebra of primal formulations and dual
formulations is similar.

The search direction is usually determined by solving either the reduced KKT
(Karush–Kuhn–Tucker) system,(−X−1Z AT

A 0

)(
1x

1y

)
=
(
t

rp

)
, (2)

or the normal equations, formed by eliminating1x from this system. Herez is the vector
of dual slack variables,y is a vector of Lagrange multipliers, andX andZ are diagonal
matrices containingx andz, respectively, on their main diagonals. We have also defined
rp = b−Ax, t = c−ATy−µX−1e, andD2 = Z−1X, whereµ is the barrier parameter.
Eliminating1x, we obtain (

AD2AT
)
1y = AD2t + rp. (3)

Once1y is determined from the normal equations,1x may be easily computed from

−(X−1Z
)
1x + AT1y = t. (4)

Comparing the normal equations (3) and the KKT system (2), we observe that
the matrix for the normal equations is positive definite and symmetric, has smaller size
(m × m), and may be more dense. In contrast, the KKT matrix is symmetric indefinite
and usually more sparse.

One nice feature of these problems is that onlyD and the right-hand side of the
system change from step to step. Thus, the sparsity structure of the problem remains the
same, in contrast to the linear systems arising in the simplex algorithm which differ by
exchanges of columns ofA. Some IPMs (e.g., OB1-R [25]) solve one linear system with
each matrix, while others (e.g., PCx [7]) solve multiple systems.

The roots of IPMs date back to Fiacco and McCormick [10], but ever since IPMs
first gained prominence in 1984 [20], researchers have given attention to speeding up
each iteration through efficient solution of the linear system. Direct methods that rely
on sparse matrix factorizations have been the most popular approaches (e.g., [25,35]),
although iterative methods for solving linear systems have also received a fair amount of
attention.
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Karmarkar and Ramakrishnan reported computational results of Karmarkar’s dual
projection algorithm using preconditioned conjugate gradients (PCG) as a linear system
solver [21]. An incomplete Cholesky factorization of the matrixAD2AT was computed
for one interior point step and then used as a preconditioner over several subsequent
steps. In their experiments, Cholesky factorization was performed on average every
2–3 steps. Mehrotra used PCG to solve the normal equations in a dual affine scaling
IPM [28]. He addressed issues such as the stopping criterion and the stability of the im-
plementation. At each interior point step, an incomplete Cholesky factor was computed
and used as the preconditioner. Carpenter and Shanno used a diagonal preconditioner
for a conjugate gradient solver for the normal equations in an IPM for quadratic and
linear programs [3]. They also considered recomputing the preconditioner every other
step. Portugal et al. introduced a truncated primal-infeasible dual-feasible IPM, focus-
ing on network flow problems [34]. PCG was used to solve the normal equations. They
initially used the diagonal of the matrixAD2AT as a preconditioner and replaced it by
spanning tree preconditioners in later steps. Mehrotra and Wang [30] used an incomplete
Cholesky factor ofAD2AT as a preconditioner for conjugate gradients in a dual IPM for
network flow problems. Gill, Murray, Saunders, Tomlin, and Wright established the
equivalence between Karmarkar’s projective method and their projected Newton barrier
method [15]. They used LSQR [33], preconditioned by an approximation toAD2AT,
to find the search directions. Goldfarb and Mehrotra developed a relaxed version of
Karmarkar’s method that allows inexact projection [17]. They applied CGLS [33] to
determine the search direction. Nash and Sofer investigated the choice of a precondi-
tioner in the positive definite systemZTGZ, whereZ is rectangular andG is general
symmetric [31].

Chin and Vannelli [5] solved a reduced KKT system using PCG and Bi-CGSTAB
with incomplete factorization. In a different paper [4] they used an incomplete factoriza-
tion as a preconditioner for the normal equations (3). Freund and Jarre [11] employed
a symmetric variant of the quasi-minimal residual (QMR) method to solve the KKT
systems. They suggested using indefinite SSOR preconditioners to accelerate the con-
vergence.

Despite all of this work, the use of iterative methods has so far produced limited
success. The obstacles to the use of these methods are considerable.

• Over the course of the interior point steps, the requirements on accuracy change
greatly; approximate solutions can be allowed early in the steps but can cause the
algorithm to fail later when the iterates are near the boundary.

• The matrixD changes quite rapidly and becomes highly ill-conditioned in the final
steps.

For these reasons, it is difficult to find a preconditioning strategy that produces good
performance of iterative methods over the entire course of the interior point computation.

In this paper we develop an adaptive algorithm that changes strategy over the
course of the IPM. It determines dynamically whether the preconditioner should be held
constant, updated, or recomputed, and it switches to a direct method when it predicts
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that an iterative method will be too expensive. In our experiments, we use PCG on the
linear system involving the matrixADAT, but our ideas could be extended to iterations
involving the KKT formulation as well.

The idea of choosing among various numeric algorithms depending on the timing
performance or timing prediction of algorithmic components for a particular problem
on a particular machine architecture was summarized in a 1995 report by O’Leary and
Wang [38] and elaborated by Wang in his 1996 thesis [37]. This idea has proved quite
useful in other numeric algorithms, such as a 1997 algorithm of Frigo and Johnson for
computing Fourier transforms [12] and a 1998 proposal by Whaley and Dongarra for
linear algebra computations [39], although these works use static rather than dynamic
timings in order to choose algorithms.

In the next section, we discuss the characteristics of direct and iterative methods
and present our preconditioner. Section 3 focuses on our algorithm for the adaptive
choice of direct vs. iterative methods and the adaptive choice of a preconditioner. Nu-
merical results are presented in section 4. Final comments are made in section 5.

2. The linear system solvers

The most expensive part of an IPM is determining the search direction by solving
one or more linear systems. Either direct or iterative methods may be used for these
systems. In this section, we focus on the solution of the normal equations (3). This
discussion sets the goals to be accomplished in designing an efficient algorithm.

We assume that the rows and columns ofA have been permuted using standard
techniques in order to improve sparsity in the Cholesky factor ofAD2AT (e.g., [9,24]).

2.1. Direct solvers: Cholesky factorization

Most existing linear programming IPMs solve the normal equations by direct meth-
ods. The implementations OB1-R of Lustig et al. [25] and PCx of Czyzyk et al. [7] are
representative of these methods, and the iterative methods will be compared with these
implementations.

To solve (3), the OB1-R implementation computes a sparse Cholesky factorization
of the matrix

M = AD2AT

asLLT, whereL is a lower triangular matrix.1 Forward and backward substitution is
then applied to compute the search direction1yk . The OB1-R algorithm then checks
whetherA1xk is close enough to the artificial variables(b − Axk). If not, iterative
refinement using the factored matrixLT is employed repeatedly until the one-norm of
the difference is sufficiently small. To deal with the dense columns inA, the OB1-R
algorithm adopts the method suggested by Choi et al. [6].

1 OB1-R actually computes anLDLT factorization, whereD is diagonal andL has a unit diagonal, but for
notational convenience we will incorporateD into theL factors.
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The PCx implementation uses a similar strategy for the solution of linear systems,
using the Ng–Peyton [32] sparse Cholesky code, with modification by replacing small
pivots by a very large number, and again dealing with dense columns separately. The
algorithm also performs iterative refinement using PCG with the factorization as a pre-
conditioner.

There are three main disadvantages to direct methods. First, the iterative refinement
used in the OB1-R code may fail if the matrixM is very ill-conditioned, because the
factorization may not be accurate enough to produce an iteration matrix with spectral
radius less than one. Such a situation can occur when the primal and dual variables
are near to the optimal solution, since then the matrixD is quite ill-conditioned. The
iteration can also be affected by ill-conditioning inA.

Another potential problem of direct methods is fill-in. Although the dense columns
of A can be treated separately, the remaining Cholesky factor may still be rather dense.
This might be caused by difficulty in detecting “dense" columns or by the nature of the
problem. For example, network problems solved by linear programming may lead to a
Cholesky factor that is much more dense thanM even thoughA has no dense columns.

Lastly, the direct algorithms must form and factor the matrixM each timeD is
changed by a reduction inµ. This procedure may be expensive in time, especially when
the problem size is large. Ifm � n, the resulting matrixM may be small and easy to
factor, but forming it can still be costly.

2.2. Iterative solvers: preconditioned conjugate gradients

A variety of iterative methods can be used to solve the normal equations or the KKT
system. For definiteness, we focus on PCG for solving equation (3). In this method, we
compute a sequence of approximate solutions that converge to the true solution. The
work during each iteration involves one product ofM with a vector, one solution of a
linear system involving the preconditioner, and several vector operations. More details
about the method can be found in [18].

The storage requirement for PCG is quite low, amounting to a few vectors of
lengthm. Although a matrix–vector multiplicationMv = (AD2AT)v is required at
each iteration, we may computeMv as(A(D2(ATv))) and thus need only to store the
nonzeros ofA and the diagonal ofD rather than the matrixM, which can be quite dense.
The preconditioner should also be chosen to conserve storage.

Since accuracy requirements for the search direction in the beginning phase of the
IPM are quite low, only a few PCG iterations are required. As the primal and dual
variables approach the optimal solution, the convergence tolerance must be tightened
and more iterations are needed.

The crucial issue in PCG is to find a preconditioner for each step of the IPM.
A good preconditioner may dramatically accelerate the convergence rate and gain great
computational savings. We consider some strategies for choosing the preconditioners
next.
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2.3. The preconditioner

Convergence of the PCG iteration will be rapid if the preconditioned matrix has
either a small condition number or strong clustering of eigenvalues [18, chapter 10]. We
discuss our strategy for preconditioning.

The basic preconditioner is the Cholesky factorization of one of the matrices that
has been generated in the course of the IPM. PCx always uses the sparse piece of the
current matrix, but this requires frequent factorizations.

An alternative to computing a new Cholesky factorization on every interior point
step is to reuse the preconditioner that was computed for one value of the barrier para-
meterµ in order to solve systems for several successive values ofµ [3,21]. This reduces
the computational work in forming the factorization.

An incomplete Cholesky factorization, originally proposed by Varga [36], could be
used in place of Cholesky if the density of the matrix factors is too great, but we do not
pursue that idea in our implementations.

Rather than keeping the preconditioner fixed whenµ changes, though, we can
update it by a small-rank change, since the normal equations matrix is a continuous
function ofµ. Let D̂ be the current diagonal matrix andD be the one for which we have
a factorizationAD2AT = LLT. Define1D = D̂2−D2 and letai be theith column of
matrixA. Since

AD̂2AT = AD2AT + A1DAT = LLT +
n∑
i=1

1diiaia
T
i , (5)

we may obtain an improved preconditionerL̂ L̂T by applying a rank-α change toLLT,
whereα 6 n. This update or downdate may be computed as in [2,8], and it is important
to note that the sparsity structure of the Cholesky factor is not changed. We choose
α large enough to include most of the large magnitude terms in the summation. Then
we have factored a matrix that differs fromAD̂2AT by a matrix of rankn − α. This
difference matrix can be expressed as a matrix of small norm plus one of small rank, and
we can hope for rapid convergence of the PCG iteration.

We now turn our attention to criteria for deciding when to keep or update or reini-
tialize the current preconditioner and how many iterations to perform.

3. The adaptive algorithm

Our IPM chooses the initial variables, the step lengths, the barrier parameterµ, and
convergence criteria following standard strategies [7,25]. Each step requires the solution
of one or more linear systems, and that is where the bulk of the computational work
lies. The difference between our algorithm and standard ones is that for each step of the
IPM (each distinct value ofµ), we choose an efficient linear equation solver adaptively.
Our aim is to make the linear system solver transparent to the IPM iteration, so the
convergence tolerance for the iterative method will be chosen rather small.
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We need to specify when to use an iterative method, when to refactor the matrix,
how many updates to use in the preconditioner, and how to terminate the iteration.

3.1. When to use the iterative method

In the first step of the algorithm, the normal equations (3) are solved directly by
factoringM = AD2AT = LLT. Starting from the second step, the algorithm uses PCG.
The preconditioner for each step is determined by factoring the current matrixM or by
updating the current preconditioner. This “factor-update cycle” will be continued up
to the “end-game”, entered when the relative duality gap (the relative difference in the
primal and dual objective function values) is small enough. In the end-game, the iterates
are close to the optimal solution and accuracy requirements are high. The elements
in D vary significantly and make the matrixM very ill-conditioned. The Cholesky
factorization ofM may not generate a good preconditioner, even if stable methods such
as [14] are used. For all of these reasons, a direct method is used to determine the final
search directions.

We also switch to a direct method when OB1-R computes a Cholesky factorization
with a zero on the diagonal. This contingency could be avoided by using a modified
Cholesky factor; see, for example, [16, chapter 4].

For IPMs like PCx that use the predictor-corrector strategy [26,29], the “factor-
update cycle” is modified when the number of differentµ values between refactorization
drops to 3 or fewer. At that point (the middle stage), we begin to force a refactorization
at least every 3 steps, updating on the other two. This continues until the relative duality
gap drops below a user-defined tolerance (10−8 in the current implementation) at which
time a refactorization is performed at least every other step (the late stage), and then the
algorithm proceeds with the end-game as above.

While the adaptive algorithm monitors the cost of the iterative method, it separates
out problems that are not well suited to iterative methods. If twice in a row the updated
preconditioner is inefficient in the step after the preconditioner is reinitialized, then the
algorithm will use only the direct method from then on. An example of such a situation
is illustrated in figure 5.

In summary, our algorithm uses direct methods for linear systems in the first step,
in the final (end-game) steps, periodically in the middle and late stages of predictor-
corrector methods, and at other times when the iterative method is estimated to be more
expensive than the direct method.

3.2. Deciding whether to refactor or to update the preconditioner

We make decisions regarding refactorization or update of the preconditioner based
on the actual cost incurred in determining previous search directions, as measured in
seconds by a system timing program:

drct_cost = the cost of factoring and solving the system directly;
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updt_cost = the cost of each rank-one update;
pcgi_cost = the cost of each PCG iteration.

(For simplicity, we neglect the fact that updates and downdates, adding or subtracting
a rank-1 matrix, have slightly different costs.) We initialize each of these estimates to
zero, but after the first few steps of the IPM, we have accurate estimates of each. In order
to reduce the effects of variability from the timer output, though, we suggest that these
estimates continue to be updated over many steps.

The decision to update the current preconditioner or refactor the matrixM to ob-
tain a new preconditioner is based on the approximate cost of the preceding iteration,
including the cost of any updates that were made to the preconditioner. This cost is

prev_cost = (updt_cost × updt_nmbr )+ (pcgi_cost × pcgi_nmbr )

+ (overhead),

whereupdt_nmbr is the number of updates that were performed andpcgi_nmbr is
the number of PCG iterations. The overhead includes operations such as initializing the
solution to zeros, computing the norm of the right-hand side, deciding on the number of
rank-one updates, etc.

• If the cost of determining the previous search direction was high, we reinitialize the
preconditioner by factoring the current matrixM. We take this action when the cost
of the previous iteration exceeds 80% of the cost of direct solution:

prev_cost > 0.8× drct_cost .

• If the cost of the previous iteration was not that high, then we base our decision on
a prediction of the cost of the current iteration, refactoring if the predicted cost is
greater than the cost of the direct method.
Our prediction method is simple and requires only a few arithmetic operations. We
fit a straight line to the number of iterations required to determine two preceding
search directions. We choose the previous number, and the latest other one that
gives a line with positive slope, and use this line to predict the number of iterations,
predi_nmbr , required to determine the current search direction. If the solver refac-
tored on the previous step, or if we cannot obtain a positive slope with data since the
last refactorization, then our predicted number of iterations is one more than the num-
ber taken last time,predi_nmbr = pcgi_nmbr + 1.
Given this predicted number of iterations, our predicted cost for computing the search
direction, neglecting overhead, is

pred_cost = (updt_cost ×updt_nmbr )+ (pcgi_cost ×predi_nmbr ).

If this cost is less thandrct_cost , then the preconditioner is obtained by updating
the previous one. Otherwise it is obtained by factoringM.
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3.3. The adaptive updating strategy

We adopt the strategy discussed in section 2.3: we update the Cholesky factors
using theupdt_nbmr = α “largest" outer product matrices as determined by|1dii |.
(We could have used|1dii |‖ai‖2 instead.)

We change the number of Cholesky updates adaptively over the course of the al-
gorithm in order to improve efficiency. The number is increased if the previous search
direction took many iterations, and decreased if it took a very small number.

Two parameterssml < lrg are initially set to 20 and 30, respectively. The
parametersml denotes a number of PCG iterations that takes time much less than
drct_cost , while lrg denotes a number that requires a more substantial fraction
of drct_cost . After timing data is available, we set

lrg = 0.15× drct _cost

pcgi _cost
; sml = 0.12× drct _cost

pcgi _cost
.

To decide the number of rank-one updates,updt_nmbr , to be performed, let
pcgi_slope be the slope of the line connecting last twopcgi_nmbr s.

Theupdt_nmbr is

 increased, iflrg 6 pcgi _nmbr andpcgi_slope > 0,
decreased, ifpcgi _nmbr 6 sml andpcgi_slope < 0,
unchanged, otherwise.

Increases or decreases inupdt_nmbr are proportional to thepcgi_slope :

(to increase)updt_nmbr = updt _nmbr ×max

(
1.2,

pcgi _slope

8.0

)
,

(to decrease)updt_nmbr = (updt _nmbr × 0.9)+ 1.

Note that the sparsity of the Cholesky factors remains the same, no matter how many
updates are used.

3.4. Terminating the PCG iteration

After computing the preconditioner, we solve the normal equations using PCG. We
start from an initial guess of zero, and iterate until the computed residual norm is less
than a parameterεpcg times the norm of the right-hand side. We choose the parameter
εpcg adaptively: for OB1-R,

εpcg=
{

10−8, if relgap > 10−2;
10−8 × (relgap )1/2, otherwise,

whererelgap is the relative duality gap for the previous value ofµ. This is similar to
the stopping criterion in [30]. For PCx, we use

εpcg=


5.0× 10−3, for the beginning stage,
min

(
relgap × 103,10−3

)
, for the middle stage,

min
(
relgap × 104,10−4

)
, for the late stage.
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If the PCG iteration number exceeds the maximum number of iterations allowed,
then the current preconditioner is abandoned and a new preconditioner is determined
by Cholesky factorization. If this happens twice, the iterative method is unsuitable and
we switch to a direct method. Unfortunately, PCG might be stopped just before con-
vergence, thereby making the refactoring wasteful, but we consider such a safeguard
bounding the number of iterations to be important.

The maximum number of iterations is set to the number that produces a cost of 1.2
times the cost of a direct method:

max_pcg _itn = 1.2 × drct_cost

pcgi_cost
.

To summarize, our algorithm solves the normal equations directly to determine the
first search direction, uses PCG starting from the second search direction, and switches
back to the direct method for the final search directions. PCG solves the normal equa-
tions by first choosing and computing a preconditioner using an adaptive strategy to
decide whether to refactor the matrix or update the factorization, and to choose the rank
of any update. The algorithm automatically sets all parameters expected to influence
performance, based on actual time performance of the components of the algorithm.

4. Numerical results

4.1. OB1-R

We modified the code OB1-R to choose the linear system solver adaptively, and
we performed numerical experiments comparing the results of this modified version of
OB1-R to the standard OB1-R code, dated December 1989.

Both OB1-R and the adaptive algorithm are coded in FORTRAN and use double-
precision arithmetic. Our experiments were performed on a SUN SPARCstation 20 with
64 megabytes of main memory, running SunOS Release 4.1.3. The FORTRAN opti-
mization level was set to-O3 . We report CPU time in seconds, omitting the time taken
by the preprocessor HPREP because it is the same for both codes.

Before comparing the two codes, we illustrate the behavior of the adaptive algo-
rithm on a large problem,pds-10 (with artificial variables) whose problem charac-
teristics are given in table 1. Figure 1 shows the number of iterations needed by PCG
for theµ values chosen by OB1-R. PCG is used forµ2 throughµ118, and then the al-
gorithm chooses to switch to direct solution because it detects a zero on the diagonal
of the preconditioner. The horizontal line at 169 marks the maximum number of PCG
iterations allowed (i.e.,max_pcg_itn ). The two dashed lines at 21 and 16 indicate
lrg andsml , respectively. The Cholesky factorization is recomputed 25 times, marked
by circles in the figure. This is a savings of 92 factorizations compared to the OB1-R
algorithm. In between refactorizations, the number of PCG iterations generally grows,
more quickly for later values ofµ than for earlier ones.
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Figure 1. Number of PCG iterations for the adaptive algorithm.

Figure 2 displays the time taken by each of these linear system solves. The dashed
line is drct_cost , the estimated direct solver cost based on its performance for the
first value ofµ. The solid line marks 0.8 timesdrct_cost .

We highlight the following observations from the figures.

• The adaptive algorithm produces significant savings in the beginning stage, especially
from the 11th to the 31st value ofµ.

• The frequency of reinitializing the preconditioner grows asµ is decreased.

• The preconditioner obtained from refactoring the matrixM from the previousµ value
is unsuitable in the late stage.

• The adaptive algorithm succeeds in keeping the cost near or better than the direct cost
on all iterations but three. On those, the predicted number of iterations is too low.

We now summarize computational results for the OB1-R algorithms on various
types of linear programs. If the total time for solution is small (i.e., 5 minutes or less),
then the performance of the two algorithms is similar. On more costly problems, the
adaptive method is faster: e.g., 9% faster onpilot87 , 16% faster ondfl001 , and
28% faster onmaros-r7 from the NETLIB collection.

More complete results can be found in [38].
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Figure 2. Timing performance for the adaptive algorithm.

4.2. PCx

We modified the code PCx to choose the linear system solver adaptively, and we
performed numerical experiments comparing the results of this modified version of PCx
to PCx version 1.1, dated November 1997.

Both PCx and the adaptive algorithm are coded in FORTRAN and C and use
double-precision arithmetic. Our experiments were performed on an HP C1100/9000
workstation with 128 megabytes of main memory, running HP-UX B.10.20 operating
system. The FORTRAN and C optimization level were set to-O . We report CPU time
in seconds, including the time taken by the preprocessor, which is the same for both
codes.

We report computational results on various types of linear programming problems
chosen from NETLIB, NETLIB’s Kennington problems, and some network problems.
We omit data for problems taking fewer than 10 seconds, since direct methods are quite
suitable for these.

Table 1 summarizes the problem characteristics. The numbers of rows and columns
indicated in the table refer to the output from the PCx preprocessor and may be different
from the data in [13]. The tabulated number of nonzero elements of the Cholesky fac-
tor L include the diagonal part ofL. The average number of nonzeros per column inL
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Table 1
Statistics of the test problems.

Problem LP size Cholesky factorL

Rows Columns Nonzeros Aver. nonzero numb.

NETLIB:
d2q06c 2132 5728 137349 64
degen3 1503 2604 120906 80
dfl001 5984 12143 1638085 274
fit2d 25 10524 324 13
greenbea 1933 4164 49055 25
maros-r7 2152 7440 534188 248
pilot 1368 4543 200812 147
pilot87 1971 6373 425654 216
stoch3 15362 22228 177936 12

Kennington:
cre-b 5336 36382 248629 47
cre-d 4102 28601 212094 52
ken-11 10085 16740 102906 10
ken-13 22534 36561 298417 13
ken-18 78862 128434 1928863 24
osa-07 1081 25030 28276 26
osa-14 2300 54760 60795 26
osa-30 4313 104337 115081 27
osa-60 10243 243209 265909 26
pds-06 91556 28472 589339 6
pds-10 15648 48780 1687660 108
pds-20 32287 106180 7089645 220

Network:
net0108 1000 8000 207560 208
net0116 1000 16000 280678 281
net0408 4000 8000 556366 139
net0416 4000 16000 1766394 442
net0816 8000 16000 2201390 275
net0832 8000 32000 7000874 875
net0864 8000 64000 12247346 1531
net1632 16000 32000 8653616 541

is computed as

(number of nonzeroes ofL)

m̂
,

wherem̂ is the number of rows ofA after presolving.
Minimum cost flow network problems may be solved using linear programming

algorithms (although it is generally more efficient to use a network algorithm like [22]).
We test our algorithm on this class of problems because the matrixAAT and its resulting
Cholesky factor tend to be much more dense than the original matrixA, even if there is
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Figure 3. Timing performance for the adaptive algorithm on problempds-20 .

no dense column inA. Forming and factoringAD2AT is thus quite expensive. We gen-
erated minimum cost flow network problems using NETGEN, developed by Klingman
et al. [23].

Before comparing the two codes, we illustrate the typical behavior of the adaptive
algorithm using three examples.

Figure 3 shows the time taken by linear system solves on problempds-20 .
The time for computing predictor and corrector are summed. The dashed line is
drct_cost , the estimated direct solver cost based on its performance for the first
value ofµ. PCG is used forµ2 throughµ54. The algorithm switches to the late stage
atµ33 and then to the ending stage atµ55 because it detects a relative duality gap that
is smaller than the parameterending_tol . The Cholesky factorization is recomputed
15 times, marked by circles in the figure. This is a savings of 38 factorizations compared
to the PCx algorithm. In between refactorizations, the number of PCG iterations gen-
erally grows, more quickly for late values ofµ than for earlier ones. We highlight the
following observations from the figure, similar to the observations for the OB1-R code.

• The adaptive algorithm produces significant savings in the beginning stage, especially
from the 2nd to the 10th value ofµ.

• The frequency of reinitialization of the preconditioner grows asµ is decreased.



W. Wang, D.P. O’Leary / Adaptive iterative method in IPM 401

Figure 4. Timing performance for the adaptive algorithm on problemdfl001 .

• The adaptive algorithm succeeds in keeping the cost at or better than the direct cost
on all iterations but two. On those, the timings are close todrct_cost .

Figure 4 shows that Problemdfl001 has a long middle stage. While computing
the predictor atµ9, the adaptive algorithm does not converge to the predefined tolerance
within the maximum number of iterations allowed. The algorithm thus decides to carry
out refactorization, resulting in high cost. The algorithm switches to the middle stage
atµ12 and remains there throughµ38. The adaptive algorithm keeps the cost close to or
better than the direct cost on all iterations in the middle stage except forµ14 andµ38.
The adaptive algorithm switches to late and ending stages atµ39 andµ45, respectively.

Problemcre-b is not suitable for the iterative method. The adaptive algorithm
discovers this atµ5 and switches to the direct method (figure 5). This happens because
twice in a row the updated preconditioner is inefficient right after the preconditioner is
reinitialized. Such behavior occurs in problems likecre-d , ken-11 , ken-13 , and
osa-07 . It is vitally important that this decision be made automatically.

Table 2 shows the computational results on the three problem sets, comparing the
number ofµ values needed by the IPM, the relative duality gap in the final answer,
and the CPU time required by PCx and the adaptive algorithm. The last column is the
difference between the PCx and the adaptive times. A positive difference means the
adaptive algorithm is faster.
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Figure 5. Timing performance for the adaptive algorithm on problemcre-b .

We summarize the following observations from the results in table 2.

• Both PCx and the adaptive algorithm converge to solutions satisfying the optimality
criteria defined in PCx except on the problemgreenbea , which is well known to
be difficult for IPMs [35]. Although we achieve a small duality gap for this prob-
lem, one of the optimality criteria (sufficiently small gap, primal feasibility, and dual
feasibility) is violated.

• The algorithms take a similar number ofµ values and achieve similar duality gaps
in most of the test problems. On some problems likepds-10 , pds-20 , degen3 ,
andmaros-r7 , however, the adaptive algorithm takes 1 or 3 additional steps and
achieves duality gaps several orders of magnitude smaller.

• In dfl001 , the adaptive algorithm achieves the optimality criteria in 10 fewer steps,
obtains a duality gap 1 order of magnitude smaller, and is faster than PCx by 880 sec-
onds.

• If the total time for solution is small (i.e., 7 min or less), then the performance of the
two algorithms is similar. On more costly problems such asdfl001 , pilot87 ,
net0832 , andpds-20 , the adaptive method is faster. Figure 6 compares the tim-
ing of the problems. The log scale in the time axis actually underemphasizes the
superiority of the adaptive algorithm on the more costly problems.
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Table 2
Computational results for the test problems. A positive value in the last column means that the adaptive

algorithm is faster.

Problem IPM iter. Rel. dual. gap Time (s)

PCx Adap PCx Adap PCx Adap Diff.

NETLIB:
d2q06c 29 29 2.5e−07 2.6e−07 18.1 18.8 −0.7
degen3 16 19 1.2e−08 8.5e−12 18.1 20.7 −2.6
dfl001 58 48 5.6e−08 2.6e−09 2350.1 1470.1 880.0
fit2d 23 23 4.9e−07 3.7e−07 15.4 14.8 0.6
greenbea 48 50 1.9e−10 2.1e−09 10.9 11.3 −0.4
maros-r7 18 19 1.3e−08 3.0e−14 60.2 60.1 0.2
pilot 36 36 2.9e−07 2.9e−07 44.4 45.0 −0.6
pilot87 34 35 2.0e−07 2.3e−08 163.3 155.9 7.4
stoch3 31 31 6.1e−08 8.2e−08 26.2 29.9 −3.7

Kennington:
cre-b 40 40 9.7e−07 8.4e−07 70.0 71.5 −1.5
cre-d 40 40 1.2e−06 1.5e−06 58.4 60.3 −1.9
ken-11 21 21 6.4e−08 6.5e−08 14.4 15.3 −0.8
ken-13 26 26 5.4e−07 5.2e−07 44.3 16.3 28.0
ken-18 30 29 1.8e−06 5.8e−06 293.4 291.7 1.7
osa-07 25 25 2.6e−07 2.1e−07 15.4 16.3 −0.8
osa-14 27 27 1.8e−08 1.7e−08 40.6 42.2 −1.6
osa-30 27 26 2.2e−08 5.7e−08 94.7 94.9 −0.2
osa-60 30 31 3.6e−07 2.0e−07 346.7 359.7 −13.0
pds-06 37 36 8.5e−07 1.8e−06 197.4 194.4 3.0
pds-10 41 44 4.6e−06 8.3e−08 1081.8 973.8 108.0
pds-20 55 58 7.2e−06 9.8e−08 13268.1 8969.4 4298.7

Network:
net0108 16 16 7.7e−08 7.7e−08 30.4 29.2 1.1
net0116 18 19 1.6e−07 2.2e−09 61.9 58.0 3.9
net0408 20 21 4.4e−08 1.3e−08 193.7 151.0 42.8
net0416 19 20 5.7e−10 1.1e−13 1062.1 746.6 315.5
net0816 20 21 4.0e−07 2.8e−08 1575.7 1064.8 511.0
net0832 20 21 3.5e−07 3.9e−09 9067.5 5886.1 3181.4
net0864 20 21 1.0e−07 9.9e−09 20954.5 14905.9 6048.6
net1632 22 23 1.3e−07 2.5e−08 15344.1 8867.8 6476.3

5. Conclusion

For IPMs, with or without predictor–corrector strategies, we have presented an
adaptive automated procedure for determining whether to use a direct or iterative solver,
whether to reinitialize or update the preconditioner, and how many updates to apply, and
demonstrated that it can enhance performance of IPMs on large sparse problems.

Our preconditioning strategy is based on recomputing or updating the previous
preconditioner.
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Figure 6. Timing performance comparison for all test problems, sorted by the time taken by the PCx
algorithm.

Our numerical tests were performed using two specific codes, but it is possible to
implement this idea in other codes by adding three pieces:

(1) a mechanism to determine whether a direct or iterative solver should be used;

(2) a routine that performs updating and downdating of an existing Cholesky factoriza-
tion; and

(3) an iterative solver, such as PCG.

Further improvements could be made in the algorithm. Deeper understanding
of effective termination criteria for the iterative method may further enhance the effi-
ciency of the algorithm. A block implementation of the matrix updating and downdating
would reduce overhead. Finally, parameters such asmax_pcg_itn , lrg , sml , and
updt_nmbr might be tuned to particular problem classes.
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