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Approximating the number of monomer-dimer coverings in periodic lattices
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Our starting point is an algorithm of Kenyon, Randall, and Sinclair, which is built upon the ideas of Jerrum
and Sinclair, giving an approximation to crucial parameters of the monomer-dimer covering problem in poly-
nomial time. We make two key improvements to their algorithm: we greatly reduce the number of simulations
that must be run by estimating good values of the generating function parameter, and we greatly reduce the
number of steps that must be taken in each simulation by aggregating to a simulation with at most five states.
The result is an algorithm that is computationally feasible for modestly sized meshes. We use our algorithm on
two- and three-dimensional problems, computing approximations to the coefficients of the generating function
and some limiting values.
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[. INTRODUCTION We conclude with some experimental results in Sec. VI
and some final remarks in Sec. VII.

We consider the monomer-dimer covering problem for a
rectangular lattice with periodic boundary conditions. In
three dimensions, for example, the latticenis mX p, with Il. BACKGROUND
each vertex connected by an edge to its six nearest neigh- _ . . )
bors. An edge in this lattice corresponds to a possible posi- 1hiS Work is an instance of the general technique of re-
tion for a dimer. A dimer coveringis a choice ofN stating questions in statistical physics as combinatorial
=nmp/2 edges in this graph that defines a complete matchcounting problems for which reasonably efficient Monte
ing of vertices, i.e., each vertex in the graph is contained ifarlo approximation techniques may exist. The monomer-
exactly one edge of a dimer covering. tonomer-dimer dimer problem has its origin in crystal physics where it has
coveringis a selection of fewer thaN edges in which each been used to model behavior of systems of diatomic mol-
vertex is contained in at most one edge; the vertices nogcules(“dimers”) adsorbed on the surface of a crystal. In
contained in any edge are termed monomers. the three-dimensional case, it occurs in the theory of mix-

In this work, we concentrate on two- and three-tures and in the cell-cluster theory of liquids. A classical
dimensional lattices but the algorithms are applicable taeference is Kastelyf8]. More general dimer counting ques-
other dimensions. For simplicity of notation we assume tions occur in formulations of the Ising problem as counting
=n and, in three dimensiong,=n, but this is not essential matchings on a decorated lattice. A recent theoretical treat-
to the algorithms. ment for the Ising model is given by Regge and Zecchifja

Our starting point is an algorithm of Kenyon, Randall,  One of our principal results is based on the idea of “ag-
and Sinclair(KRS) [1], which is built upon the ideas of gregating” a Markov chain to one having many fewer aggre-
Jerrum and Sinclaif2], giving an approximation to crucial gated statefs,6]. In our case, we use aggregation to estimate
parameters of the covering problem in polynomial time. Wenow many steps to wait between collecting samples in the

make two key improvements to their algorithm: we greatlyoriginal chain and where to place the maximum of the prob-
reduce the number of simulations that must be run and thgpjlity distribution function. This has some similarities with

number of steps that must be taken in each simulation. Thehe notion of multicanonical Monte Car(@].
result is an algorithm that is computationally feasible for
modestly sized meshes.

In Sec. Il we give some background on this problem and
in Sec. lll we summarize the algorithm of Kenyon, Randall,
and Sinclair. Section IV presents the improved algorithm Jerrum and Sinclaif2] presented a randomized approxi-
A-PRE, (aggregation-predictionexplaining how to reduce mation scheme for approximating the permanent of a 0-1
the number of simulations. In Sec. V we make the key ob-matrix by studying the behavior of an associated Markov
servation that reduces the number of steps. chain. They showed that if the Markov chain had thpid

Ill. THE KRS ALGORITHM
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mixing property (i.e., within a short time after beginning a  The device of skipping the step with probability 0.5 is
random walk, the current state is independent of the initiaincluded to permit a bound on the mixing rate of the chain,
statg, then the approximation could be computed in polyno-which, in turn, gives a bound on the number of steps neces-
mial time. More precisely, they can approximate the permasary between independent samdl2k

nent with relative error bounded ky(with high probability This simulation is run for

in time that is polynomial in the size of the problem and in

1_/5. They_ proposed using this s_cheme to compute the parti- M1=iy 1)
tion function for the monomer-dimer covering problem. 2|E|

The ideas of Jerrum and Sinclair were extended by
Kenyon, Randall, and Sinclairl], and their paper is the _ 1+E ‘ =23 )
starting point for our work. They proved that the Jerrum and Hi N M- T

Sinclair scheme was applicable to a broad class of lattice

- where the largest value gk should be abouty_;/ay.
ﬁ(r:?frl]?sm(; J]r;eé/e%ae\;zt%gr%%%?iilnfor approximating the CoefFrom the equilibrium distribution, the probabilities of being

in a state with dimers after a large number of steps through
N the chain, they calculate ratiod(u;_41)/Z(u;), and from

these they obtain recursive estimates of ahaoefficients.
Z(,U«):SZ:O as(N) %, y

IV. THE A-PRE ALGORITHM

whereag(N) is the number of monomer-dimer coverings of  The KRS algorithm is costly for two reasons.

the lattice containing exactlg dimers. We will abbreviate (1) The authors determine the number of steps that must
as(N) by ag when the size is clear from the context. Thesebe taken between recorded samples, based on the mixing
coefficients are estimated through knowledge of the equilibfrate of the underlying Markov chait, to be Q uN?M).

rium distribution of a certain Markov chaiM in which ~ We show that it is sufficient to base this number on the
adjacent states correspond to monomer-dimer coverings thatixing rate of an aggregated chaivts.

differ by a single dimer. The equilibrium distribution gives  (2) The simulation must be run for many valuesuofThe

the probabilities of being in a state with dimers, i authors note that a sequence of suitaplevalues can be
=1,... N, after a large number of steps through the chaindetermined “by experiment,” but we reduce the number of
The structure of the Markov chain is determined by the latvalues foru; to justN by prediction of the next value based
tice of interest,G=(V,E), with |V|=2N vertices in the set on data gathered for the current value. Our method is in the
V and|E|=M edges inE. same spirit as multicanonical Monte Cafld).

Kenyon, Randall, and Sinclair gather data by taking a We will call this algorithm theaggregation-prediction al-
random walk controlled by the chaifM. In principle, a  gorithm, or the A-PRE algorithm.
single Markov chain suffices but in practice they use a se- We discuss the first cost reduction in Sec. V. To accom-
guence of chains, each having the same structure but withlish the second reduction, we use three key relations given
transition probabilities depending on a parametem order  in the Kenyon, Randall, and Sinclair paper.
to emphasize a certain range of states and get more accurate(1) Let t;() be the time that the simulation for=
estimates of their equilibrium probabilities.

For a fixed value ofu, Kenyon, Randall, and Sinclair
determine the equilibriungsteady-statedistribution by tak-
ing O(N?) independent samples from, with O(u'N?M)
steps between sampling wheug = max(u,1). a1 t(g)

The simulation proceeds as follows: =t

With probability 0.5, skip this step; otherwise choose, at mtiog(p)
random, one of the edges. ~ i i

(1) If the edge can be added to the match, then add it with (2) Although any value of suffices, there is less uncer-

spent in states withdimers. Thert;(x) is an estimate of the

quantitya; 2Z(x), so the coefficients; can be estimated by
the recursion

()

probability payg- tainty in the computed value @ if we pick a value ofu for
(2) If the edge can be deleted from the match, then delet#hich the simulation spends most of its time in states with
it with probability pye. andi—1 dimers, and for which the ratip(u)/t;_1(u)~1.

(3) If the edge can be swapped into the match by removThus, from Eq.(3), the ideal value for computing; is
ing some other edge, then swap it.

(4) If the edge can only be added into the match by de- I LY
: : M= pi= : (4)
leting two other edges, then do nothing. a,

The probabilities of adding or deleting edges in the match ) _ ) _ -
are defined apa,q=min(1) andpge=min(1,1j). Thus, 3 T_he proportion .of time that th_e S|mulaj[|on fqu
in states with a small number of dimers, butasncreases, ~g
we are more likely to visit states with a large number of as"f _
dimers. Z(pm)
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Note thatag=1, since there is only one covering with no V. TWO MARKOV PROCESSES: THE ORIGINAL AND
dimers, anda;=M. Thus, the optimal value of from THE AGGREGATED

which to estimate, is In order to reduce the number of steps between recorded

sample values, we need to understand the relationship be-
tween two Markov chains.

Let T be the transition probability matrix for the Markov
chain M corresponding to a specific value @f Assume that
Using this value ofu, our simulation should spend most of we have ordered the states so that the state corresponding to
its time in states with O or 1 dimers, but it also should spencho dimers is first, followed by thi states corresponding to
a significant amount of time in states with 2 dimers, whichgne dimer, and so forth, up to the states that Hs\dmers.
allows us to estimate the optimal value @ffrom which to Note that if we are currently in a state @f1 that hask
estimatea,. Equations(3) and(4) bring us to the formula  dimers, then at the next time, we must be in a state that has
eitherk—1, k, or k+1 dimers, Thus the matriX is block

1
Ml—m-

& a,i tridiagonal, where th&th block corresponds to states wih
Hixa Qi1 qtipa(m) dimers:
i (i) . -
TO,O TO,:L
so we choose Tio Ti1 Tio
ti (i) .
it1=si———, i=1,...M—1. 5 T=

Mi+1= Mi ti+1(,ui) ( )

. _ _ Tn-in-2 Tn-an-1 Tn-aw
We could iterate this process to improue, 1, but we found T T
that without iteration the ratios;(u;+1)/t—1(ui+1) were N.N-1 N.N

most often between 0.95 and 1.05.

‘Thus we can estimate the natural logsapfand Z(ui)  The blockT;; in this matrix contains the transition probabili-
(since the quantities themselves are too large to Btorgjeg from states with dimers to states with dimers fori
through the recursions

=0,...N andj=i—1,,i+1 (as long as these values pf
() are between 0 ani).
Ina,=Ina, ;+In iVMi 6) Since T is a probability matrix, all entries are non-

negative and the column sums are one, so t#at=e',

where e is the column vector of all 1's. Se' is the left
INZ(w)=Ina;+ilIn uj—In[t;(u;)/S], (7)  eigenvector ofT corresponding to the eigenvalue 1, and we

will call the normalized right eigenvectqr, so thatTp=p

whereS s the number of states recorded during the simulaande’p=1. Thusp is the stationary vector fof, and we

miti—g(ui)’

tion. will refer to the components corresponding to states With
Using Eq.(2), we see that this drops the number of dimers as the subvectqy .
values necessary from Now consider a related but aggregated random process.
As we step through the Markov chaivt, if we are currently
Inay_;—Inay+In2+ InM in a state withk dimers, then we will say that we are in state
In(1+2/N) k of the aggregated process. We need to understand the tran-

sitions in this aggregated process. In the original process, if

to N. This is important since, as Kenyon, Randall, and sip-Ve are in theith state among those witadimers, then the

clair note, “the running time of theoriginal algorithm probability of transitioning to a state with— 1 dimers is the

though polynomial, is not quite small enough to be genuinely>>" of the elements in thigh column of the Matrixl_y,.
practical.” he stationary probability that we are in thih state is the

The bookkeeping involved in the simulation is minimal ith component opy . Therefore, the probability of making a

and can be arranged as follows. Color the vertices of th&ansition f;om a state witlk—1 dimers to a state with
lattice alternately red and black so that no red vertex has 9iMers iS€x_1Tk-1xPx, Wheree,, is a vector of all 1's,
red neighbor and no black vertex has a black one. Then w¥ith length equal to the number of rows &, . Further,
need to update three arrays: Entries in amagtch(i)record ~ he probability of making such a transition, given that we are
the index of the black vertex matched with the red veitex N & state withk dimers, ise;_;Ti—1xPk/di, with di

or a zero for unmatched red vertices; entries in array= Py€«-

cmatch(j) record the index of the red vertex matched with ~ Similarly, the probability that the next state also Has
black vertex, or a zero for unmatched black vertices; tle ~ dimers ise T Pi/dy, while the probability of making a
entry in arrayt records the number of times we recorded atransition from ak-dimer state to one witfkk+ 1 dimers is
state withs matched verticegdimers. eL 1 T+ 1Pk /d -
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Thus, the transition matrix for the aggregated process
is
T,=VTP'D 4,
where the N+ 1)XK matrix P is defined by

Po

PHYSICAL REVIEW E 64016701

In fact, the Markov chain\, gives us more information
than we need, since, for a given value ©of we need only
two entries ind in order to estimate;, and then only the
following one to estimate the next usefulvalue. Therefore,
we can aggregate to a five-state Markov chéifg, in which
we gather into a single state those statedv6f correspond-
ing to fewer than dimers, and into another state those cor-
responding to more thain+2 dimers.(There are fewer than
five states ifi=N—1 ori=N.) The transition matrixT 5 for
this chain is also tridiagonal.

Initially we do not know the transition probabilities for
Ts, but we can step through the corresponding aggregated
chain M5 by generating random samples using the chiedn
The data gathered in this way gives us an approximation to
the matrixTs, and the stationary vector for this chain gives
an alternate way to computg .

K is the number of different monomer-dimer coverings, and The time required to estimate the parametersising the

.
€o

The matrixD=PV' is a diagonal matrix, with diagonal en-
triesdy, and we will refer to the vector with entriek asd.
The aggregated procedd, is also a Markov chain, as we
now prove.
Note thatT, is an (N+1)X(N+1) tridiagonal matrix.
This matrix has two interesting properties: first,

[1,1,...4T,=[1,1,....QVvTP' D!
=e'TP'D !
=e'P'D !=d'™D?
=[1,1,....1

and second,

T,d=T,D[1,1,.... 17
=VTP'D D[1,1,...,17
=VTP1,1,....17
=VTp
:Vp
=d.

Thus, since the entries @f, are non-negative, this matrix is
also a probability matrix with stationary vectar for the
corresponding Markov chaint,

Note that the stationary vectdrdetermines the values

A-PRE algorithm depends on the number of samples re-
corded in each Monte Carlo simulation, and on the number
of steps necessary to take between samples to ensure inde-
pendence.

(1) Number of samples: In estimatirsg we try to choose
© SO that the states with cardinalisyare maximally likely.
Thus, the proportion that we are trying to estimate is at least
(1+N) 1, “so by a routine variance calculation a sample of
size only O([N]) suffices for a good statistical estimate.”
[1]

(2) Number of steps between samples: Jerrum and Sin-
clair (Ref. [22] in Ref.[1]) have shown that the “mixing
time” of the original chain isO(xN?M). Clearly, though,
the only relevant parameter is the mixing time of the aggre-
gated chainM;y and this is determined experimentally by
computing the nonunit eigenvalue closest in modulus to 1.

Therefore, each simulation in the A-PRE algorithm re-
quires a manageable number of steps. As a practical matter,
we run the simulation withrs=N steps between samples,
saving the transition probabilities that we observed for each
aggregated state. We then compute the subdominant eigen-
value of the estimated transition matrix. We use this to check
the value ofs. If necessary, we increase the value and rerun.

A serious problem arises with this approach when the grid
size becomes large: in single or double precision, the sub-
dominant eigenvalue can be indistinguishable from 1, and in
this case the estimated number of steps between samples
becomes infinite. There are two possible fixes for this prob-
lem.

(1) The (integep counts that contribute to the entries in
our approximation tal's are known exactly, as are the nor-
malizing constants that make the column sums equal to 1.
Thus we could use symbolic computation to find a rigorous
upper bound on the subdominant eigenvalue of owr55
matrix, no matter how many digits of it agree with (Note
that this a rigorous bound for the eigenvalue of the experi-
mental matrix, which is only an approximation to the transi-
tion matrix corresponding to the underlying probabilities.
The bound is computed by symmetrizing the tridiagonal ma-
trix and then using the Sturm sequence properties of the

in Eqg. (3) and thus tells us everything we need to know inleading principal minors in a bisection algoritHi®.

order to compute the valuesand Z.

(2) Kenyon, Randall, and Sinclair proved that the number
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TABLE I. Results for two-dimensional lattices. TABLE Il. Results for three-dimensional lattices.

n K f a Time (seq n K n a Time (seq
4 1.9369 1.4142 82-304 23 4 2.1911 0.4734 320-7060 430
6 1.9404 1.3741 176-1291 107 6 2.1918 0.4588 708-32270 3815
8 1.9369 1.3525 204-4235 302 8 2.1968 0.4546 1.0e03-4.3e+-05 21746
10 1.9471 1.3568 320-7690 709

12 1.9437 1.3483 417-17049 1408

14 1.9422 1.3442 470-31923 3586

f=lim[ay(n)]*°=1.33851513.. . ..

n—o

of steps necessary between recorded samples is lingar in

We could fit a line to the number of steps determined for Table I reports our computed estimatescoéndf, as well
small values ofu in order to determine the number of steps as the range of and the total execution time in seconds for
for large values. We tested this by estimating the values for #1€ algorithm on a Sun Ultra-60.

8x8x8 grid for x>1000 using data for % «=<1000, and In contrast, the KRS algorithm Skilﬁ(MNZM_).StepS be-
the results were quite good, giving neither a gross underegween observations. Thus, for example, theiris 2048—
timate nor a gross overestimate. 27670 forn=4 and 1075 648—1.34€09 for n= 14, assum-

ing that the proportionality constant is 1. In order to et
=196 recorded steps fon=14, they require 8.11ell
steps, rather than the 7.0¥69 steps we used to get 10000
A. Experiments on two-dimensional lattices recorded steps.

Figure 1 shows the estimated coefficients from the 20
X 20 simulation.

As in Ref. [10], we fit the data points lay/N? to the

VI. EXPERIMENTAL RESULTS

We ran the A-PRE algorithm on two-dimensional lattices
with nXn vertices and periodic boundary conditions. For
each value ofu, the number of moves between recordinags . ) . ) .
was determined by using? times 1000 steps to estimate the function 8+ y/N<. The resulting value oB is an estimate of

) . , the limiting value of Inay. Using the data in the table, plus
iﬂ?;ﬂ;épfnoa:nvtvrﬁgghenvaluk of Ts, and then computing the the value 116.0882 for a 2020 grid, gives an estimate of

0.2914.
N“<.05.

. B. Experiments on three-dimensional lattices
The total number of recorded moves to determine each set of

results in the table was 10 000. We ran the algorithms on three-dimensional lattices with
There are two interesting parameters that can judge th@XNXn vertices and periodic boundary conditions. Again,
effectiveness of these algorithrf8], the total number of recorded moves was 10 000.

We compute two parametef$l],
k= lim[a;(n)+ - - - +ay(n)]¥"°=1.940215351. -,

n—oo

3
K:(al+ T +ak)1/n )

300 : : T . . T T T T 450

250 1

n
=3
S

T

1

I

3 8
=} =3

In of coefficient
@
=]
T
In of coefficient
n
<3
3

Y il

=}
S
T

150

100
50 4

50

1 1 L 1 1 1 L 1
20 40 60 80 100 120 140 160 180 200 0 50 100 150 200 250
index of coefficient index of coefficient

°

FIG. 1. Estimated coefficients of the generating function for a FIG. 2. Estimated coefficients of the generating function for an
20X 20 grid. 8X8X%8 grid.
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0.440076< lim A ,<0.463 107, fined in[14]. The values ofu, the number of steps, and the

n—oo number of steps between recordings are the same as for the
KRS Algorithm, but we now keep track of the edges that
could be added to the current match and the edges that could
be swapped.

(2) Since swaps are quite expensive in the Monte Carlo
time algorithm, we are motivated to remove that option and
just allow a step in the Markov chain to add or delete an
edge. This increases the mixing time of the chain, however,
so the number of steps in the simulation increases.

We found that the Monte Carlo time algorithm was not
competitive, since its overhead per step was much greater.
We also experimented with two variants on the algorithmThe “no swap” algorithm was not very robust on very small

presented in this paper. or very large values ofu. Possibly we could use the “no

(1) More than 50% of the steps in the Kenyon, Randall,swap” algorithm on intermediate values afand use swaps
and Sinclair are null steps, where we either skip the stepn large and smalk, in order to make the no-swap algo-
entirely, or we decide not to do the add or delete, or there isithm reliable and perhaps competitive in time with the
no possible swap with the chosen edge. We can avoid the#ePRE algorithm.
null steps by using the Monte Carlo time proposal of Bortz, In summary, we have made two key improvements to an
Kalos, and LebowitZ12]. Because the A-PRE algorithm re- algorithm for determining parameters for the monomer-
quires an estimate of the time spent in various states, it idimer covering problem: we greatly reduced the number of
necessary to keep a running account of the number of Mesimulations that must be run and the number of steps that
tropolis steps that would have passed between actual movewsust be taken in each simulation. The result is an algorithm
This is possible using Monte Carlo time as[it3] and re- that is computationally feasible for modestly sized meshes.

where\ ,=In[ay(n)]/n°.

Beichl and Sullivarj10] have estimated the limiting value
of N, as 0.446 . . . . Table Il shows our results.

Figure 2 shows the estimated coefficients from the838
X8 simulation.

Fitting the data points lay/N° to the functiong+ y/N?
yields an estimate of 0.4479 for the limiting value.
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