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ABSTRACT

We use a homotopy optimization method, HOPE, to minimize the potential energy asso-
ciated with a protein model. The method uses the minimum energy conformation of one
protein as a template to predict the lowest energy structure of a query sequence. This ob-
jective is achieved by following a path of conformations determined by a homotopy between
the potential energy functions for the two proteins. Ensembles of solutions are produced
by perturbing conformations along the path, increasing the likelihood of predicting correct
structures. Successful results are presented for pairs of homologous proteins, where HOPE
is compared to a variant of Newton’s method and to simulated annealing.

Key words: protein structure prediction, energy minimization, global optimization, homotopy
method, simulated annealing.

1. INTRODUCTION

Given an energy function for a polypeptide chain, the task is to determine the native structure
that corresponds to the lowest energy. Potential energy functions for proteins typically have multiple

local minima whose number increases exponentially with the number of degrees of freedom (Li and
Scheraga, 1987; Wilson et al., 1988). The NP-complete nature of the problem prompted Ngo and Marks
(1992) to suggest, “function-minimization algorithms can be efficient for protein structure prediction only
if they exploit protein-specific properties.”

There are several approaches for determining the native conformation of a protein using energy min-
imization. Some of the more effective methods include the truncated Newton method (Xie and Schlick,
1999) as well as a combination of the limited memory BFGS quasi-Newton and Hessian-free Newton
methods (Das et al., 2003), genetic algorithms (Le Grand and Merz, 1993; Brodmeier and Pretsch, 1994),
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smoothing methods (Schelstraete et al., 1998), and simulated annealing (Wilson et al., 1988; Kawai et al.,
1989; Wilson and Cui, 1990; Shin and Jhon, 1991). However, few of these methods exploit similarities of
sequence-related pairs of proteins.

In this paper, we apply a new method—homotopy optimization using perturbations and ensembles
(HOPE) (Dunlavy and O’Leary, 2005)—to find the global minimizer of the potential energy function
associated with a particular protein model. A homotopy function is defined that deforms the potential
energy function of a template protein into that of the target protein whose native conformation is sought.
We assume that the native structure of the template sequence is known. Starting with the known structure,
HOPE finds local minimizers of the homotopy function as it is deformed into the target protein’s potential
energy function. To increase the likelihood of convergence to the global minimum, the local minimizers
are perturbed at each step in the deformation and used to find nearby structures corresponding to local
minima. This procedure creates ensembles of local minimizers of the homotopy function throughout the
deformation process.

HOPE is similar to comparative modeling methods (Fiser and Sali, 2003) in that it uses the properties
of a template protein to help predict the native conformation of a target protein. In contrast, HOPE in
the current implementation uses a single template protein, whereas many comparative modeling methods
use pieces of one or more template proteins to help predict the native conformation of a test sequence.
HOPE is also related to smoothing methods for energy minimization. In such methods, the deformation
starts with a smooth approximation of the template’s potential energy function, and typically only a single
local minimizer is found. Finally, HOPE can be viewed as a simulated annealing method on an evolving
energy landscape defined by the homotopy function, using a constant temperature (T = 0) in its annealing
schedule and a move class that includes only local minimizers as candidate conformations.

Homotopy methods (Allgower and Georg, 2003) have been used previously for exploring potential
energy surfaces and computing stationary points of energy functions (Ackermann and Kliesch, 1998) and
for computing optimal configurations of atomic and molecular clusters (Hunjan et al., 2002; Coleman and
Wu, 1994). In both instances, standard homotopy functions (convex, fixed point, etc.) were employed,
and such functions do not exploit the protein-specific features of potential energy functions. Moreover,
the homotopy functions used were smoothing functions for the potentials of a single cluster of atoms. In
contrast, we use a homotopy function that deforms the potential energy function of a template protein into
that of a target protein. Thus, HOPE takes advantage of the sequence-based and/or structural relationships
between proteins in predicting the native structure of the target protein.

In this paper, we use HOPE to predict accurately the native conformations of model proteins. Simulated
annealing, parameterized to use more than twice the amount of computational resources to solve the same
problem, was unsuccessful. We show that HOPE without the use of perturbations is more successful
at predicting the native conformations than a globally convergent variant of Newton’s method. We also
discuss the prospect of applying HOPE to attain native structures described by more realistic energy
functions.

2. PROTEIN MODEL

We use a previously introduced coarse-grained model of proteins (Veitshans et al., 1997) to test the
efficacy of HOPE. In the coarse-grained protein model, each amino acid is represented by its α-carbon.
Thus, a polypeptide chain is modeled as a chain of particles, where each particle corresponds to an α-
carbon atom and models one of three types of residues: hydrophobic, hydrophilic, or neutral. The features
of proteins that are most responsible for structural stability are included in the model—hydrophobic forces,
van der Waals interactions, and torsional strain—and both bond lengths and bond angles are allowed to be
variable. The diversity of hydrophobic species in real proteins is modeled in the interactions between the
particles corresponding to hydrophobic residues.

2.1. Potential energy function

Let X ∈ R
3n denote the Cartesian coordinates of a chain of n particles in three dimensions, with Xk ∈ R

3

containing the coordinates of the kth particle in the chain. We also use the notation Xk to denote the kth
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FIG. 1. Geometry of the model protein.

particle. The geometry of a chain is presented in Fig. 1. Four particles, Xi, . . . , Xi+3, are depicted as nodes
in the figure, with lines between nodes representing the (virtual) bonds between particles.

The distance between particles Xi and Xj is denoted by rij = ‖Xj −Xi‖2. The distance, ri,i+1, between
consecutive particles Xi and Xi+1 is called the bond length for those particles. The angle θi ∈ [0, π ], formed
between three consecutive particles, Xi , Xi+1, and Xi+2 is called the bond angle. The angle φi ∈ [−π, π ],
formed between the vectors normal to the plane defined by particles Xi , Xi+1, and Xi+2 and that defined
by particles Xi+1, Xi+2, and Xi+3, is called the dihedral angle. The choice of sign for the dihedral angles
conforms to the rules set forth by the IUPAC-IUB (1970)

Each particle is assigned a particle type, p, depending on the type of residue to which it corresponds: hy-
drophobic (B), hydrophilic (L), or neutral (N). For example, pk = B if particle Xk represents a hydrophobic
residue.

The total potential energy of a chain of particles, E : R
3n → R, is

E(X) = Ebl(X) + Eba(X) + Edih(X) + Enon(X) (1)

where Ebl, Eba, Edih, and Enon correspond to the bond length, bond angle, dihedral angle, and nonbonded
potentials, respectively. The bond length and bond angle potentials are

Ebl(X) =
n−1∑
i=1

kr

2

(
ri,i+1 − r̄

)2 (2)

Eba(X) =
n−2∑
i=1

kθ

2

(
θi − θ̄

)2
(3)

where kr = 100, r̄ = 1, kθ = 20/(rad)2, and θ̄ = 105◦.
The dihedral angle potential is taken to be

Edih(X) =
n−3∑
i=1

[Ai(1 + cos φi) + Bi(1 + cos 3φi)] (4)

where Ai and Bi depend on Pi , the number of neutral particles in the subchain forming the dihedral
angle φi . Denoting εh = 1 as the average strength of the hydrophobic interactions, the dihedral potential
parameters take the values Ai = Bi = 1.2εh when Pi ≤ 1; otherwise Ai = 0 and Bi = 0.2εh. Thus, there
is enhanced flexibility in the dihedral angles for chains containing two or more neutral particles.

The nonbonded potential is given by

Enon(X) =
n−3∑
i=1

n∑
j=i+3

γij

{
αij

(
r̄

rij

)12

− βij

(
r̄

rij

)6
}

. (5)
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Table 1. Parameters for the
Nonbonded Potential, Enon(X)

pi pj αij βij γij

L L,B 1 1 4εL

N L,N,B 1 0 4εL

B B 1 −1 4νεh

The parameters used in each pairwise interaction of particles i and j are given in Table 1, where εL = 2
3εh

and ν is a dimensionless parameter that is assumed to have Gaussian distribution with a mean value of 1
and a standard deviation of σ . The diversity in the hydrophobic residues is controlled by σ , with σ = 0
leading to no diversity (i.e., all hydrophobic residues are identical). We assume that interactions between
hydrophobic residues are attractive; thus, only positive values of ν are used (more details for the choice
of ν are given by Veitshans et al. (1997)).

3. ALGORITHMS

HOPE attempts to find the lowest energy conformation of a target chain by producing a sequence of
conformations that converges to a local minimizer of E(X). The starting conformation is the lowest energy
conformation of a template chain with known structure, whose sequence matches, to some extent, that of
the target chain. The HOPE algorithm is derived from a homotopy optimization method.

3.1. Homotopy method for unconstrained minimization

Given the potential energy function of a target chain, denoted by E1(X), the goal is to solve the
unconstrained minimization problem

min
X∈R3n

E1(X) (6)

whose solution is denoted by X∗.
The homotopy optimization method (HOM) (Watson and Haftka, 1989) is a continuation-like method

(Allgower and Georg, 2003) for solving this problem. Let λ ∈ [0, 1] and let H(X, λ) be a function such
that

H(X, λ) =
{

E0(X), if λ = 0, and

E1(X), if λ = 1,
(7)

where E0(X) is the potential energy function of a template chain. To simplify the discussion, we assume
that the first and second derivatives of H exist and are continuous. HOM, presented in Fig. 2, produces
a sequence of points starting at (X0, 0) and ending at (X1, 1), where X1 is an approximation of X∗.

FIG. 2. HOM Algorithm.



HOMOTOPY OPTIMIZATION FOR PROTEIN STRUCTURE PREDICTION 1279

HOM generates points satisfying

∇XH(X, λ) = 0, and (8)

∇2
XH(X, λ) is positive semi-definite, (9)

where ∇XH(X, λ) and ∇2
XH(X, λ) denote the first and second partial derivatives of H(X, λ) with respect

to X. Note that ∇2
XH(X1, 1) = ∇2E1(X1), so X1 is a local minimizer of E1(X).

The main difference between HOM and a continuation method is in Step 5, where a continuation method
would solve a system of equations. Also, HOM will “jump” over a turning point or a bifurcation point.
Such jumps allow the convergence of HOM to a local minimizer of E1(X) without having to explicitly
handle turning or bifurcation points.

Note that HOM is guaranteed to find only a local minimizer of E1(X) and we are interested in finding
the global minimizer of E1(X).

3.2. HOPE

In order to increase the likelihood of finding the global minimizer of E1(X), we minimize H(X, λ) in
Step 5 of HOM using an ensemble of starting conformations instead of just a single starting conformation.
This extension is the essential difference between HOPE and HOM.

In Step 5 of the HOM algorithm, the next local minimizer in the sequence, X(k), is found via local
minimization starting at the previous conformation in the sequence, X(k−1). In the HOPE algorithm, the
next ensemble of local minimizers is found via local minimization starting at the c(k−1) conformations in
the previous ensemble along with ĉ perturbed versions of each of those conformations. Since this leads to
exponential ensemble growth, at most cmax distinct local minimizers are included in the next ensemble. In
the end, HOPE produces an ensemble of local minimizers of E1, from which we choose the one with the
lowest function value as the best approximation to the true solution.

The HOPE algorithm is presented in Fig. 3, where the overall structure of HOM is retained. A perturbed
version of X is denoted by ξ(X), where ξ : R

N → R
N is a function that stochastically perturbs one or

more particle coordinates in X. Note that for cmax = 1 and ĉ = 0 HOPE reduces to HOM.
In Steps 11–12 of HOPE, the ensemble of local minimizers to be used in the next iteration is determined.

If the number of distinct local minimizers found at the current iteration is less than the maximum ensemble
size, then all are used in the next iteration; otherwise, we must choose the “best” subset. What constitutes

FIG. 3. HOPE Algorithm.
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the best subset may depend on the iteration number (k), the values of the algorithm parameters (m, cmax ,
and ĉ), or the choice of local minimization routine (along with its parameterization).

An obvious measure of what constitutes the best conformations, and the one used in the experiments
presented in this paper, is the homotopy function value: conformations with the lowest function values are
considered the best. However, there may be other suitable (or perhaps even better) measures depending
on the homotopy function used. We have investigated using the amount of conformational change in three
dimensions before and after minimization and using the number of minimization iterations required before
convergence as alternate measures. However, these measures invariably led to a degradation in the success
rate of HOPE for our homotopy functions.

3.3. Homotopy function

We now define the homotopy function, H(X, λ), used in HOPE. First, the dihedral potentials of E0(X)

and E1(X) are partitioned into two terms containing low frequency (cos φi) and high frequency (cos 3φi)
terms:

Edih(X) = Edih1(X) + Edih2(X) (10)

with

Edih1 =
n−3∑
i=1

Ai(1 + cos φi), and (11)

Edih2 =
n−3∑
i=1

Bi(1 + cos 3φi). (12)

Using these new dihedral terms, the homotopy function is

H(X, λ) = E0
bl(X) + E0

ba(X)

+ (1 − ρ1(λ))E0
dih1(X) + ρ4(λ)E1

dih1(X)

+ (1 − ρ2(λ))E0
dih2(X) + ρ5(λ)E1

dih2(X)

+ (1 − ρ3(λ))E0
non(X) + ρ6(λ)E1

non(X) (13)

where ρi(λ), i = 1, . . . , 6, are continuous weighting functions dependent on the homotopy parameter, λ.
To satisfy the conditions that H(X, 0) = E0(X) and H(X, 1) = E1(X), these functions must satisfy

ρi(λ) =
{

0, if λ = 0

1, if λ = 1
, i = 1, . . . , 6. (14)

The convex homotopy, defined using ρi(λ) = λ, did not yield good results but was used as a starting
point for developing a more useful homotopy. Specifically, we performed computations with HOM to
identify modifications to the convex homotopy that increased the success rate of predicting the correct
conformations for the target chains.

Figure 4 shows plots of the weighting functions, ρi(λ), used in the present computations. A convex
homotopy deforms E0

non into E1
non in the first half of the homotopy (λ ∈ [0.0.5]) so that in the second

half of the homotopy (λ ∈ [0.5, 1]), E1
non is the only nonbonded potential contribution in H . The template

dihedral terms (E0
dih1 and E0

dih2) are driven to zero during the first quarter of the homotopy, and the
target dihedral terms are not included until the second half of the homotopy. Thus, during the second
quarter of the homotopy (λ ∈ [0.25, 0.5]) there are no dihedral angle potential contributions in H . This
allows the nonbonded interactions to determine all conformational stability. We found this necessary for
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FIG. 4. Plots of the weighting functions used in H(X, λ) for (a) template terms and (b) target terms.

overcoming the large energy barriers in the dihedral potentials for template-target pairs whose lowest
energy conformations contain dihedral angles of opposite sign corresponding to the same subchain.

In the second half of the homotopy, contributions from E1
dih1 and E1

dih2 are introduced into H , but at
different rates. We do this because for subchains containing at most one neutral particle, Edih has two local
minima with relatively high energy values, and we would like to avoid such minima if possible. Figure 5
shows the contribution of E1

dih1 and E1
dih2 to H for several values of λ. At λ = 0.5, the potential is zero.

As λ is increased from 0.5 to 0.75, the contribution of the low frequency dihedral terms is increased to
2 × E1

dih1. This helps bias towards conformations with φ = ±π , avoiding the local minima of E1
dih. As

λ increases from 0.75 to 1, the high frequency terms are gradually included, leading to the true dihedral
potential for the target chain.

3.4. Perturbations

During the kth iteration of HOPE, each conformation carried over from the previous iteration is perturbed
to produce new conformations. In this section, we describe perturbations based on bond length, bond angle,
and individual particle adjustments that have shown promise in our computations. All perturbations occur
at particles whose types in the template (p0) and the target (p1) do not match.

3.4.1. Bond length perturbations. Starting at one end of the chain, we visit each particle, perturbing
the bond length between particles Xk and Xk+1 if p0

k+1 �= p1
k+1. The perturbed bond length between

particles Xk and Xk+1 becomes

r̂k,k+1 = rk,k+1 + δr, (15)

where δr is taken from a uniform distribution on the interval [−ar , ar ].
Particle Xk+1 moves to reflect the new bond length, as shown in Fig. 6. The remainder of the chain

either (a) is shifted by δr in the same direction that Xk+1 moves or (b) remains unchanged.

3.4.2. Bond angle perturbations. Again starting at one end of the chain, we perturb each bond angle
θk when p0

k+1 �= p1
k+1 or p0

k+2 �= p1
k+2. The perturbed angle becomes

θ̂k = θk + δθ, (16)

where δθ is taken from a uniform distribution on the interval [−aθ , aθ ].
Figure 7 depicts two ways to change the bond angle to θ̂k: (a) particle Xk+2 and the remaining particles

in the chain are rotated; and (b) particle Xk+1 moves along along a ray bisecting the angle θk in the plane
of particles Xk , Xk+1, and Xk+2 and no other particles are shifted.
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FIG. 5. Plots of the dihedral potential in H(X, λ) for subchains with at most one neutral particle.

FIG. 6. Perturbations based on bond length adjustments.

FIG. 7. Perturbations based on bond angle adjustments.
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Table 2. Sequences (B, Hydrophobic; L, Hydrophilic;
and N, Neutral) and Lowest Energy Values of

Chains Used in Computations

Label Sequence Minimum Energy

A BBBBBBBBBNNNLBLBLBLBLB −10.6509
B BBBBBBBBNLNLNBLBBBLBLB −10.9834
C BBBBBBBBNLNNLBLBBBLBLB −14.0423
D BBBBBBBBBNNLNBLBLBLBLB −11.8696
E LBBBBBBBNBNLNBLBLBBBLB −11.2465
F LBBBBBBBBBNLNLNBLBBBLB −15.7288
G LBBBBBBBBBNLNLNBLBBBLB −16.2159
H LBBBBBBBBBNLNLNBLBBBLB −16.3866
I LBNBBBLBBBNNBBLBLBBBLB −11.8513

3.4.3. Individual particle perturbations. Particle Xk is perturbed if p0
k �= p1

k and its new position
becomes

X̂k = Xk + δX, (17)

where δX ∈ R
3 and each element is taken from a uniform distribution on the interval [−aip, aip].

4. RESULTS

We present the results of two sets of computations to show the effectiveness of HOM and HOPE in
predicting the lowest energy conformations of the model proteins. These results highlight the usefulness
of using the homotopy methods presented in this paper compared with some standard methods used to
solve unconstrained minimization problems. Furthermore, the results show that the use of perturbations in
HOPE helps increase the probability of predicting a correct target conformation over HOM.

The computations were performed using Matlab1 under Linux on a 2.5 GHz Intel Pentium 4 processor.
The potential energy function in (1) and the homotopy function in (13) were implemented in C so that
the first and second derivatives could be produced using the automatic differentiation tool ADOL-C v1.8
(Griewank et al., 1996).

We used the nine chains described in the experiments of Veitshans et al. (1997) for our test data. The
sequences of the chains and the energy values of the corresponding native conformations are given in
Table 2.

Each chain was used as a template (starting conformation) to predict the lowest energy conformation of
the remaining eight targets, yielding a total of 72 computations. However, the lowest energy conformations
match for five template-target pairs (A–D, B–C, F–G, F–H , and G–H ). Thus, we present results for the
remaining 62 computations only.

Success was measured for each predicted conformation, X1, against the minimum energy conformation,
X∗, using two metrics—the structural overlap function of Veitshans et al. (1997) and root mean-squared
distance. The structural overlap function is the percentage of interparticle distances between nonbonded
particles that differ in X1 and X∗ by more than 20% of the average bond length, r̄ . It is computed as

χ(X1) = 1 − 2

n2 − 5n + 6

n−3∑
i=1

n∑
j=i+3

�(0.2r̄ − |r1
ij − r∗

ij |) (18)

where �(·) is the Heavyside function and r1 and r∗ are distances between particles in X1 and X∗,
respectively. Note that χ(X1) ∈ [0, 1], with χ(X1) = 0 meaning that X1 is structurally equivalent to X∗.

1Matlab 6.5 and the Optimization Toolbox 2.2 from Mathworks, Inc.
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Table 3. Comparison of Prediction Results Using HOM and Newton-TR

Method χ = 0 Success (%) χ � t Nf

HOM 15 24 0.36 0.38 10 152
Newton-TR 4 6 0.45 0.55 1 20

Root mean-squared distance is computed as

�(X1) = min
S(X1)

√√√√1

n

n∑
i=1

∥∥X1
i − X∗

i

∥∥2
(19)

where S(X1) is a rotation and translation of X1. Thus, �(X1) measures the distance between corresponding
particles in the predicted and lowest energy conformations when they are optimally superimposed. For exact
conformational matches, �(X1) = 0.

4.1. Computations using HOM

In the first set of computations, we compared HOM and a variant of Newton’s method that uses a trust
region to guarantee convergence (Newton-TR) (Coleman and Li, 1994, 1996). In HOM, Newton-TR was
used to find local minimizers of H (Fig. 2, Step 5).

For each computation using HOM, we set the number of steps in λ to be m = 10, making �λ = 0.1.
The minimization routine was stopped when either the change in function value between iterates dropped
below 10−6, the maximum change in any of the variables in X between successive iterates dropped below
10−12, or the number of iterates reached the maximum number of iterations allowed (1,000 for Newton-TR
and 60 for each minimization performed in HOM).

Table 3 shows the results for the two methods. The second column shows the number of computations
in which χ(X1) = 0, i.e., the method predicted the correct conformation. HOM has a success rate of 24%
(column 3), almost four times better than Newton-TR. Columns 4 and 5 present the average structural
overlap, χ , and root mean-squared distance, �, respectively, of the 62 computations. These results show
that HOM predicts better structures than Newton-TR on average, even when an exact match of the lowest
energy conformation was not predicted. The main drawback for HOM is that it is more computationally
expensive than Newton-TR. The last two columns in the table show t , the average clock time in seconds,
and Nf , the average number of function evaluations per computation. Even though HOM requires more
work than Newton-TR, the tradeoff in success rate shows the benefit of using a homotopy method over a
standard minimization algorithm.

4.2. Computations using HOPE

In the second set of computations, we compared HOPE and ensemble-based, basin-hopping simulated
annealing (Basin-SA)—a combination of the methods of Wales and Scheraga (1999) and Salamon et al.
(2002). The implementation of Basin-SA was developed using SA Tools v1.03 (Salamon et al., 2002).

In Basin-SA, the move class, the set of possible conformations produced by perturbing a given con-
formation, consists solely of local minimizers of E1(X). Specifically, candidate conformations are found
using Newton-TR started at a perturbed version of each conformation in the ensemble.

We chose to allow both methods to compute an equivalent number of local minimizers in the course of
each computation. Specifically, we tested HOPE using m = 10 steps in λ and maximum ensemble sizes of
cmax = 2, 4, 8, and 16. Also, we set ĉ = 1, allowing only one perturbed version to be generated for each
ensemble conformation. This yielded upper limits of 20, 40, 80, and 160 local minimizers to be computed
for the values of cmax , respectively. In Basin-SA, we used ensembles of size cmax at each of m = 10
steps of the annealing schedule,2 starting at T = 105. Therefore, the number of calls to Newton-TR in

2The berkeley schedule in SA Tools was used.
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Basin-SA matched the corresponding upper limit of those allowed in HOPE. The main difference between
the methods is the function being minimized—the homotopy function in HOPE and the potential energy
function of the target chain in Basin-SA.

Computations were performed for both methods using the perturbations in Section 3.4, with maximum
amounts of perturbation ar = 1, aθ = 40◦, and aip = 1. It is typical in simulated annealing methods
that the perturbations allowed in the move class are functions of the temperature, T , defined by the
annealing schedule. The following function was used to specify the maximum perturbation in the Basin-
SA computations:

amax = αe
− 1

γ T

where γ ∈ (0, 1) and α = ar , aθ or aip, depending on the perturbation method used. Note that this function
passes through the point (T̂ , â) when

γ = − 1

T̂ ln
(
â/α

) .

The point (T̂ , â) = (1, 0.9) was used in Basin-SA so that the amount of maximum perturbation allowed
was equivalent to that allowed in HOPE for almost all values of T except those very close to zero.

Table 4 shows averages of the results of 10 runs of each of the 62 computations for HOPE and Basin-SA
using the bond length perturbations where the remainder of the chain is shifted. The results using bond
angle and individual particle perturbations were comparable and thus are not presented here. The results
for increasing values of cmax (column 2) show the trends of the success rate and computational effort of
each method as more local minimizers are generated. Note that the best results for each of the methods
(shown in bold) are those corresponding to the largest maximum ensemble size, cmax = 16. Clearly, HOPE
outperforms Basin-SA in terms of successful predictions of the native conformations for each value of
cmax , monotonically increasing to an average success rate of 95% at cmax = 16.

The computational effort required by the two methods is reflected in the last two columns of the table.
HOPE required less time and computational effort than Basin-SA to produce better results. Although
the two methods were allowed to make the same number of calls to Newton-TR to generate candidate
conformations, HOPE actually made far fewer calls. The average time and number of function evaluations
for Basin-SA are more than twice those for HOPE, and this effort increases at a faster rate with respect to
cmax for Basin-SA than for HOPE, as can be seen in Fig. 8. This difference is due to the dynamic nature
of the ensembles produced in HOPE; the size of the ensembles were often less than cmax due to pruning
of duplicate conformations.

HOPE was the only method that successfully predicted the native conformations in at least one of the
10 runs performed for all of the 62 computations. Figure 9 presents the results with cmax = 16 for each
of the template-target pairs using (a) HOPE and (b) Basin-SA. The size of each circle represents the
percentage of runs where a target was successfully predicted starting at a given template. HOPE predicted
the correct target conformations in all 10 runs for 44/62 (71%) template–target pairs. In contrast, Basin-SA

Table 4. Comparison of Predictions Results Using HOPE and Basin-SA
(Averaged over 10 Runs)

Method cmax χ = 0 Success (%) χ � t Nf

HOPE 2 33.4 54 0.14 0.17 35 539
4 43.1 70 0.08 0.11 65 992
8 54.6 88 0.03 0.04 115 1732

16 59.0 95 0.01 0.02 200 2981

Basin-SA 2 13.1 21 0.27 0.36 52 753
4 20.8 34 0.19 0.26 107 1576
8 28.5 46 0.13 0.19 229 3174

16 40.2 65 0.08 0.12 434 6358



1286 DUNLAVY ET AL.

FIG. 8. Average cost per computation: (a) clock time in seconds and (b) number of function evaluations.

predicted all 10 target conformations correctly for only 14/62 (23%) pairs. More importantly, Basin-SA
was not able to correctly predict the target conformations for three pairs (B–F , B–H , and F–B) in any
of the 10 runs.

5. DISCUSSION

We have presented the use of HOPE in predicting the native conformation of a model protein by potential
energy minimization. In the computations that use perturbations involving bond lengths, bond angles, and
individual particles, HOPE outperforms a simulated annealing method in terms of successful prediction of
native conformation of targets and required computation.

We plan to extend HOPE to predict the structures of target proteins found in the Protein Data Bank
(PDB) (Berman et al., 2000). The goal is to predict the PDB structure of a target protein given the PDB
structure of a homologous template protein. A suitable potential energy function must be chosen and a
homotopy function must be designed to take into account the features of that particular energy function
that will facilitate HOPE the most. Because the computations presented in this paper show promise for

FIG. 9. Success of (a) HOPE and (b) Basin-SA with cmax = 16 for each template-target pair. The size of each
circle represents the percentage of successful predictions over 10 runs.
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protein-like models, we expect that HOPE can be adapted to obtain native structures for more realistic
energy functions.

The most challenging aspect in using HOPE is the choice of an appropriate homotopy function. It is
unclear that a general homotopy function mapping the global minimizers onto each other exists for all
template-target protein pairs in the PDB. To some extent, the use of perturbations in HOPE solves this
problem.

When working with proteins in the PDB, we conjecture that the individual particle perturbations may
more realistically reflect the dynamics of individual atoms than the bond length and bond angle perturba-
tions. However, results presented in this paper involving the latter perturbations were slightly better than
those using the individual particle perturbations. An alternative to perturbing individual particles would
be to perturb individual particles as well as those particles sharing a bond with it. The particles sharing a
bond could be moved in the same direction as the perturbed particle but to a lesser extent. This could be
carried out to subsequent particles to which those particles are bonded, dampening the amount of position
change for particles further away in the chain. In this way, the perturbations would more closely reflect
the dynamics of chemically bonded atoms. Further development and testing of this type of perturbation
used in HOPE is planned.
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