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This paper concerns the efficient implementation of quantumcircuits for qudits. We show that con-
trolled two-qudit gates can be implemented without ancillas and prove that the gate library containing
arbitrary local unitaries and one two-qudit gate,CINC, is exact-universal. A recent paper [S.Bullock,
D.O’Leary, and G.K. Brennen, Phys. Rev. Lett.94, 230502 (2005)] describes quantum circuits
for qudits which requireO(dn) two-qudit gates for state synthesis andO(d2n) two-qudit gates for
unitary synthesis, matching the respective lower bound complexities. In this work, we present the
state-synthesis circuit in much greater detail and prove that it is correct. Also, the⌈(n−2)/(d−2)⌉
ancillas required in the original algorithm may be removed without changing the asymptotics. Further,
we present a new algorithm for unitary synthesis, inspired by theQRmatrix decomposition, which is
also asymptotically optimal.
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1 Introduction

A qudit is ad-level generalization of a qubit, i.e. the one-qudit Hilbert space splits orthogonally as

H (1,d) = C{|0〉}⊕C{|1〉}⊕ ·· ·⊕C{|d−1〉} (1)

while then-qudit state-space isH (n,d) = [H (1,d)]⊗n. Thus forN = dn, closed-system evolutions of
n qudits are modeled byN×N unitary matrices. Qudit circuit diagrams then factor such unitaries into
two-qudit operationsIdn−2 ⊗V whereV is ad2×d2 unitary matrix, or more generally into similarity
transforms of such gates by particle-swaps. The algorithmic complexity of an evolution may then be
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thought of as the number of two-qudit gates required to buildit. A degree of freedom argument [1]
leads one to guess that exponentially many gates are required for most unitary evolutions, since the
space of allN×N unitary matrices isd2n-dimensional. Indeed, this space of evolutions is a manifold
so the argument may be made rigorous using smooth topology, and thusΩ(d2n) gates are required
for exact-universality. Yet until quite recently the best qudit circuits containedO(n2d2n) gates [2].
In contrast,O(4n) gates were known to suffice for qubits (d = 2) [3], presenting the possibility that
qudits are genuinely less efficient ford not a power of two.

Recently, an explicitO(d2n) construction was achieved [4]. It uses the spectral decomposition of
the unitary matrix desired and also a newstate-synthesis circuit[1, 5, 6, 9]. Given a|ψ〉 ∈ H (n,d),
a state-synthesis circuit for|ψ〉 realizes some unitaryU such thatU |ψ〉 = |0〉⊗n. We also sometimes
use the term to refer to the inverse problem of constructingW = U† with |ψ〉 = W |0〉⊗n. There are
2dn−2 real degrees of freedom in a normalized state ket|ψ〉, which may be used to prove that circuits
for generic states costΩ(dn) two-qudit gates. This is in sharp contrast to the case of classical logic,
whereO(n) inverters may produce any bit-string. The most recent quditstate-synthesis circuit [4]
contains(dn−1)/(d−1) two-qudit gates, and in fact each is a singly-controlled one-qudit operator
∧1(V) = Id2−d ⊕V.

There are two ways to employ an asymptotically optimal state-synthesis circuit in order to obtain
asymptotically optimal unitary circuits. The first is to exploit the spectral decomposition, which in-
volves a three part circuit for each eigenstate of the unitary: building an eigenstate [1, 4], applying a
conditional phase to one logical basis ket, and unbuilding the eigenstate. We here introduce a second
option, theTriangle algorithm, which uses the state-synthesis circuit with extra controls to reduce the
unitary to upper triangular form. Recursive counts of the number of control boxes show that it is also
asymptotically optimal (Cf. [3].) Although these algorithms are unlikely to be used to implement gen-
eral unitary matrices, they can be usefully applied to improving subblocks of larger circuits (peephole
optimization).

Finally, this work also addresses two further topics in which qudit circuits lag behind qubit cir-
cuits. First, to date the smallest gate library for exact universality with qudits uses arbitrary locals
complemented by a continuous one parameter two-qudit gate [10]. In contrast, it is well known [5]
that any computation on qubits can be realized using gates from the libraryU(2)⊗n⊔{CNOT}, where
the symbol⊔ denotes the disjoint union. We prove that the libraryU(d)⊗n⊔{CINC} is exactly univer-
sal, whereCINC controlled-increment) is the qudit generalization of theCNOT gate. Second, the first
asymptotically optimal qubit quantum circuit exploited a single ancilla qubit [3] and current construc-
tions require none [9, 6], while qudit diagrams tend to suppose⌈(n−2)/(d−2)⌉ ancilla qudits. Here
we present methods which realize ak-controlled operation∧k(V) = Idk+1−d ⊕V in O[(k+2)2+log2 d]

gates without the need for any ancilla. This makes all qudit asymptotics competitive with their qubit
counterparts. We note that the state of the art circuit design for exact-universal computation with
qubits use a variant of the the Cosine-Sine Decomposition (CSD) [6, 7]. Ford = 2, the CSD circuits
attain a generic unitary with number ofCNOT gates that is less than a factor of two over the lower
bound ofO(4n/4). Quite recently, a CSD circuit ford-level systems has been developed [8]; however,
the gate library used in this circuit uses certain multi-qudit circuit blocks as primitives. The cost of
these blocks in terms of two-qudit gates is unclear.

The paper is organized as follows.§2 improves on earlier constructions of∧1(V) gates, which are
ubiquitous in later sections.§3 presents a new circuit for a qudit∧k(V) gate which is later used to
produce the firstO(d2n) gate unitary circuits without ancilla.§4 details the recent state-synthesis algo-
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rithm as an iteration over a new♣-sequence and exploits the new constructions to prove it is correct.
§5 presents a new asymptotically optimal unitary circuit inspired by theQRmatrix factorization and
compares it with a previous algorithm based on spectral decomposition.§6 discusses two applications
of the state synthesis algorithm.

2 Optimizing singly-controlled one-qudit unitaries

Several operators∧1(V) appear in later circuits. Thus, it is worthwhile to optimizethis computation
in our gate libraries. For qubits, CNOT-optimal circuits for ∧1(V) are known [11]. The qudit case
is open. Here we improve the∧1(V) circuit in that work. Given that anydn × dn unitary may be
constructed using∧1(V) [2], a corollary is thatU(d)⊗n⊔{CINC,CINC−1} is exact-universal. Since
CINC

−1 = CINC
d−1, this also demonstrates thatU(d)⊗n⊔{CINC} is exact-universal. This is a smaller

universal library than that presented in earlier work [10].
Thus, consider the question of factoring∧1(V). Let {|ψk〉}d−1

k=0 be the eigenvectors ofV with
eigenvalues{eiθk}d−1

k=0. Let Wk be some one-qudit unitary withWk |0〉 = |ψk〉, e.g. the appropriate
one-qudit Householder reflection (See§4.1.) Finally, letΦk be a controlled one-qudit phase unitary
given byΦk = ∧1[Id +(eiθk −1) |0〉〈0|]. Then note thatV = ∏d−1

k=0 Wk[Id +(eiθk −1) |0〉〈0|]W†
k . Thus

∧1(V) can be implemented by the following circuit:

•
Φ0 Φ1

· · ·
Φd−1

V
∼=

W†
0 W0 W†

1 W1 · · · W†
d−1 Wd−1

(2)

(In the above diagram, we denote control on state|d−1〉 by a solid dot.) Thus, we have reduced the
question to buildingΦk in terms ofU(d)⊗2 andCINC.

Building Φk requires some preliminary remarks. Suppose we haveξ ∈ C, |ξ| = 1. Consider
the diagonal unitary of the corresponding geometric sequence: D = ∑d−1

j=0 ξ j | j〉 〈 j|. Recall thatINC
is the increment permutation, i.e.INC| j〉 = |( j +1) modd〉. Thus permuting the diagonal entries,
INC D INC

−1 = ξd−1 |0〉〈0|+ ∑d−1
j=1 ξ j−1 | j〉 〈 j|. Hence

INC D INC
−1 D−1 = ξd−1 |0〉〈0|+ ξ−1

d−1

∑
j=1

| j〉 〈 j| = (ξ−1Id)
(

ξd |0〉〈0|+
d−1

∑
j=1

| j〉 〈 j|
)

. (3)

We next generalize a standard trick fromd = 2[12, Lemma 5.2] to arbitraryd. Note that

∧1(ξId) =
(

d−2

∑
j=0

| j〉 〈 j|+ ξ |d−1〉 〈d−1|
)

⊗ Id, (4)

so that a controlled uniform-phase is in fact a local operation. Hence takingξ = eiθk/d, we obtain in
particular an expression forΦk of Equation 2 in terms ofCINC andCINC−1:

Φk = ∧1(ξId) CINC (Id ⊗D) CINC−1 (Id ⊗D−1)

=
[(

∑d−2
j=0 | j〉 〈 j|+ ξ |d−1〉 〈d−1|

)

⊗ Id
]

CINC (Id ⊗D) CINC−1 (Id ⊗D−1).
(5)

Hence,∧1(V) may be realized using gates fromU(d)⊗2 along withd copies ofCINC andd copies of
CINC−1.
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Recall that these circuits may be expanded into circuits in terms of∧1(σx⊕ Id−2). Indeed, when
viewed as permutations,INC andINC−1 factor intod flips. To see this, consider 0≤ j < k ≤ d−1
and let( jk) denote the flip permutationj ↔ k of {0,1, . . . ,d−1}. Then

INC = (01)◦ (12)◦ · · ·◦ (d−2 d−1). (6)

Since∧1[( jk)] is equivalent to∧1(σx ⊕ Id−2) up to permutations withinU(d)⊗n, we see thatCINC
andCINC−1 may be implemented usingd−1 copies of the controlled-flip. Thus,∧1(V) may also be
realized using 2d(d−1) copies of the∧1(σx⊕ Id−2) gate.
Remark: Note that the controlled-flip is also equivalent to∧1(Id−2⊕σz), making blockwise use of
the 2×2 matrix identityHσxH = σz for H = 1√

2
∑1

j ,k=0(−1) jk |k〉 〈 j|. Thus, the above also realizes

∧1(V) in roughly 2d2 controlled-π phase gates. This is half the roughly 4d2 gates of earlier work [10],
even after including the arbitrary relative phase eiθ allowed there.

3 Qudit control without ancillas

In this section we simulate a∧n−1(V) gate forV ∈ U(d) usingO[(n+ 1)log2 d+2] singly-controlled
one qudit gates without ancilla. The method parallels the techniques used in Ref. [12] for universal
computation with qubits.

First we decompose a∧n−1(V) gate using a sequence of gates with a smaller number of controls.
As a first step, notice that

∧n−1(V) = ∧n−2(Xn−1)[∧n−2(INC)∧1 (X†
n−1)]

d−1∧n−2 (INC)∧1 (Xd−1
n−1 ), (7)

whereXn−1 = V1/d. For example, forn = 7, we have the following circuit:

• • • • . . . •
• • • • . . . •
• • • • . . . •
• • • • . . . •
• • • • . . . •
• ∼= • �������� • �������� • �������� . . .

V Xd−1
n−1 X†

n−1 X†
n−1

. . . Xn−1

(8)

All control operations are conditioned on the control qudits being in state|d−1〉. The circuit is de-
signed to cycle over each possible dit value of the control qudit in the∧1(X

†
n−1) gates. The entire

construction then follows by recursive application of Equation 7 to the last gate. In theory, this con-
struction is an exact implementation of∧n−1(V). Yet in practice, the sequence of matricesXj obtained
by taking thed-th root ofXj+1 (with Xn = V) quickly converges to the identity matrix asj decreases.
Hence, an approximate implementation results if the recursion is terminated early.

As an example of Equation 8, consider the generalized Toffoli gate∧2(INC). This breaks into
(d+1) variants of singly-controlled∧1(W) gates along withd extraCINC gates. Hence(d+1)d+d
CINC gates along with(d + 1)d CINC

−1 gates and sundry gates fromU(d)⊗n suffice to emulate
∧2(INC).

Note that the size of the circuit for∧n−2(INC) that is analogous to the above grows exponentially in
n. However, it is possible to simulate∧n−2(INC) more efficiently using a sequence of∧⌈(n−1)/2⌉(INC)
and∧⌊(n−1)/2⌋(INC) gates, proceeding recursively down to∧2(INC). The argument is analogous to
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that used for qubits in Lemma 7.3 in Ref. [12] forn≥ 5. The following circuit illustrates the method
for n = 7:

• • • . . . •
• • • . . . •
• • • . . . •
• • • . . . •
• • • . . . •

∼= �������� • �������� • . . . �������� •
�������� �������� �������� . . . ��������

(9)

Ignoring which qudits are controlled or targeted, the circuit sequence is∧n−2(INC) = [∧⌊(n−1)/2⌋(INC)
∧⌈(n−1)/2⌉ (INC)]

d.
For the remainder of this section, we use a tilde to distinguish a count forCINC−1 from aCINC

count. Thus, we letbn−2 be the total number ofCINC gates required to emulate∧n−2(INC), andb̃n−2

be the similar count forCINC−1. For Circuit 9,

bn−2 = d(b⌈(n−1)/2⌉+b⌊(n−1)/2⌋),
b̃n−2 = d(b̃⌈(n−1)/2⌉+ b̃⌊(n−1)/2⌋).

(10)

A quick induction shows that each sequence is increasing, and thusbn−2 ≤ 2db⌈(n−1)/2⌉ andb̃n−2 ≤
2db̃⌈(n−1)/2⌉. Moreover, by the analysis of∧2(INC) aboveb2 = d2 + 2d andb̃2 = d2 + d. Recalling
(logd n)(log2 d) = log2n, we obtain the following:

bn−2 ≤ (d2 +2d)(2d)(2d)log2 n = (d2 +2d)(2d)n1+log2 d,
b̃n−2 ≤ (d2 +d)(2d)(2d)log2 n = (d2 +d)(2d)n1+log2 d.

(11)

Note that these counts assume that the emulation of∧n−2(INC) is done on a system withn qudits.
Combining this circuit with Circuit 8 allows for an ancilla-free implementation of∧n−1(V).

Thus, letcn−1 be the number ofCINC gates required to emulate∧n−1(V), not counting an addi-
tional c̃n−1 CINC

−1 gates. Using Circuit 8,

cn−1 = dbn−2 +cn−2+d2,
c̃n−1 = db̃n−2 + c̃n−2+d2.

(12)

We may then overestimatecn−1 and c̃n−1 using integral comparison andc2 = d2 + 2d, c̃2 = d2 + d,
obtaining

cn−1 = d
(

∑n−2
j=2 b j

)

+c2+(n−3)d2

≤ d[(d2 +2d)(2d)]
R n+1

4 t1+log2 d dt+2d+(n−2)d2

= (2d2)(d2+2d)
2+log2 d

[

(n+1)2+log2 d −4d2
]

+(n−2)d2+2d.

(13)

We may similarly overestimate ˜cn−1:

c̃n−1 ≤ (2d2)(d2 +d)

2+ log2d

[

(n+1)2+log2 d −4d2]+(n−2)d2+d. (14)

Hencecn−1, c̃n−1 are both bounded byO[(n+ 1)2+log2 d]. This can be used to show that the earlier
spectral algorithm [4] is asymptotically optimal even whenancilla qudits are absent.
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If we disallowCINC
−1 and rather emulateCINC−1 = CINC

d−1, then the overallCINC count for
∧n−1(V) would becn−1+(d−1)c̃n−1. Note that if the gate library contains the two qudit gate∧1(σx⊕
Id−2) rather thanCINC, a naı̈ve application of the above argument would imply a linear overhead with
a factor ofd−1. However Circuits 8 and 9 can be adapted by replacing the∧k(INC) gates with gates
locally equivalent to∧1(σx⊕ Id−2), resulting in a smaller overhead.

4 Asymptotically optimal qudit state-synthesis

State-synthesis is an important problem in quantum circuitdesign [5, 1]. This section expands upon
the earlier account [4] of an asymptotically optimal state-synthesis circuit for qudits. The earlier
circuit used onlyO(dn) two-qudit gates, while a dimension-based argument [4] shows that no fewer
number of gates may achieve qudit state-synthesis.

Our description of the algorithm relies upon two tools: a sequence that we call the♣-sequence
(§4.3), and a Householder reflection matrix. The♣-sequence’s utility is two-fold:

• The♣-sequence specifies the order in which state amplitudes are zeroed while (de)constructing
the target state. It substitutes for the Gray code ordering [3] used for the cased = 2.

• Using the♣-sequence, we prove that the state-synthesis algorithm functions as asserted. The♣-
sequence simplifies the careful accounting of which amplitudes have and have not been zeroed
after applying each∧1(V) gate.

The zeroing ofd−1 amplitudes at a time is accomplished by a Householder matrix, which we define
in the next subsection.

4.1 One-qudit Householder reflection matrices

Earlier universald = 2 circuits [12] relied on aQR factorization to write any unitaryU as a product
of Givens rotations, realized in the circuit ask-controlled unitaries [13]. In the multi-level case, we
instead useHouseholder reflection matrices[14, §5.1]. Thus, suppose|ψ〉 ∈ H (1,d), perhaps not
normalized. Householder matrices solve the one-qudit caseof the inverse state-synthesis problem.
Given that|ψ〉 might not be normalized, the appropriate formulas are:

{

|η〉 = |ψ〉−
√

〈ψ|ψ〉 〈0|ψ〉
∣

∣〈0|ψ〉
∣

∣

|0〉 ,
W = Id − (2/〈η|η〉) |η〉〈η| .

(15)

ThenW |ψ〉 is a multiple of|0〉. Geometrically,W is that unitary matrix which reflects across a plane
lying between|0〉 and|ψ〉. For any given vector, then, a Householder matrix can be constructed for
which the matrix-vector product has zeros except in a singleposition.

In general, the quantum circuits fordn×dn Householder matrices are not simple. However, ifV
is ad×d Householder matrix then∧1(V) is a Householder matrix. Then-qudit state-synthesis circuit
is built from such gates.

4.2 The ♣-sequence

The♣-sequence is a sequence of words of lengthn in the letters{0,1,2, . . . ,d−1}⊔{♣}; see Table
1. To define it, we might associate♣ to an artificial dit valued and list all words in{0,1,2, . . . ,d}n

in lexicographic order. Deleting those words in which ad character occurs before a lesser character
produces the sequence.
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The♣-sequence may be recursively generated by Algorithm 1. In it, we prepend all possible dits
to the(n−1)-long dit sequence to generate all but one term of then-dit sequence, and then end with
the term♣n.

To each word in the♣-sequence we associate ann-qudit controlled rotation, where the leftmost
♣ defines the target. For example, the Householder matrix corresponding to 000♣ puts zeros in
positions 000ℓ, while that corresponding to 12♣♣ zeros 12ℓ0, and the Householder matrix for 2♣♣♣
zeros 2ℓ00 (ℓ = 1, . . . ,d−1).

It is easy to convince oneself that applying the♣-sequence of Householder matrices zeros all
elements except 0. . .0. It is a bit more difficult to show how to avoid ruining zeros that have already
been achieved, and we concentrate in the next subsections onshowing that a small set of controls is
sufficient to achieve this.

n ♣-sequence,d = 3

1 ♣
2 0♣, 1♣, 2♣, ♣♣
3 00♣, 01♣, 02♣, 0♣♣, 10♣, 11♣, 12♣, 1♣♣, 20♣, 21♣, 22♣, 2♣♣, ♣♣♣
4 000♣, 001♣, 002♣, 00♣♣, 010♣, 011♣, 012♣, 01♣♣, 020♣, 021♣, 022♣, 02♣♣, 0♣♣♣

100♣, 101♣, 102♣, 10♣♣, 110♣, 111♣, 112♣, 11♣♣, 120♣, 121♣, 122♣, 12♣♣, 1♣♣♣
200♣, 201♣, 202♣, 20♣♣, 210♣, 211♣, 212♣, 21♣♣, 220♣, 221♣, 222♣, 22♣♣, 2♣♣♣, ♣♣♣♣

Fig. 1. Sample♣-sequences ford = 3, i.e. qutrits.

Algorithm 1: {s1, . . . ,sp} = Make-♣-sequence(d,n)

% We return a sequence of p= (dn−1)/(d−1) terms, with n letters each,
% drawn from the alphabet{0,1, . . . ,d−1,♣}.
Let {s̃j} p̃

j=1 = Make-♣-sequence(d,n−1).
for q = 0,1, . . . ,d−1 do

The next(dn−1−1)/(d−1) terms of the sequence are formed by prefixing the letterq to each
term of the sequence{s̃j}.

end for
The final term of the sequence is♣n.

4.3 Inserting zeroes using Householder matrices in ♣-sequence order

The♣-sequence determines the appropriate controls as well as the targets for a Householder matrix
V. To be precise, we extend the earlier notation∧k(V). Namely, we write∧(C,V) whereV is ad×d
unitary andC is a word in{0,1,2, . . . ,d− 1}⊔ {T}⊔ {∗}, of which at most one letter isT. The∗
denotes a dropped control, so that∧(C,V) changes a computational basis state| j〉 if and only if the
dits of thed-ary expansion ofj agree with similarly placed dits ofC. The unitaryV is then applied to
the target qudit, whose position is denoted byT.

Each term of the clubsuit sequence corresponds to a∧(C,V), in fact a singly-controlled House-
holder matrix. We illustrate with an example. The two-quditgate below corresponds to the♣-word
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2100♣♣♣ for seven qudits.

2 Line 1 ∗
1 Line 2 1

0 Line 3 ∗
0 Line 4 ∗
♣ V Line 5 T

♣ Line 6 ∗
♣ Line 7 ∗

Algorithm 2: ∧(C,V) = Single-♣Householder(♣ termt = t1t2 . . . tn, n-qudit state
∣

∣ψ j
〉

)

InitializeC = ∗ ∗ · · ·∗
% Set the target:
Let ℓ be the index of the leftmost♣ and setCℓ = T.
% Set a single control if needed:
if t contains numeric values greater than 0,

Let q be the index of the rightmost such value and setCq = tq.
end if
Extract from

∣

∣ψ j
〉

the unnormalizedd-component vector|ϕ〉 whose components haved-ary
indicest1t2 . . . tℓ−1∗00. . .0. As a formula, if

∣

∣ψ j
〉

= ∑dn−1
k=0 α(k) |k〉, then

ϕ = ∑d
q=0α(t1t2 . . . tℓ−1q00. . .0) |q〉. FormV as a one-qudit Householder matrix such that

V |ϕ〉 = |0〉.
To construct the control wordC, place theV-target symbolT on the leftmost club. So in this case

∧(C,V) targets line 5. Placea single active controlon the least significant line carrying a nonzero
prior to the target. (If there is no nonzero, then no control is necessary.) In our case this places a
control corresponding to the 1 on line 2. We denote the control word byC = ∗1∗∗T ∗∗, and the open
box in the gate denotes the single control (which, as this example illustrates, is not necessarily on
state|d−1〉). We complete the gate∧(C,V) by choosing the one-qudit Householder matrixV to use
element 2100000 to zeroαk for k = 2100ℓ00 andℓ = 1, . . . ,d−1. The formal definition of∧(C,V) as
a function of a word in the♣-sequence and a state vector

∣

∣φ j
〉

, is detailed in Algorithm 2.
Our construction allows only a single active control. Henceeach controlled operation is in fact

a two-qudit gate, and since there areO(dn) words in our♣-sequence, this would imply that two-
qudit gates suffice for building then-qudit state-synthesis unitaryW. We can provide three equiva-
lent descriptions of our algorithm for generating the gatesof W with W |ψ〉 = |0〉⊗n. Colloquially,
the first uses terms of the♣-sequence to construct∧(C,V) which zero|ψ〉 sequentially, updating
|ψ〉 as we go. More precisely, set|ψ〉 = |ψ1〉 and suppose inductively|ψt〉 = ∏p

k=p−t+2∧[C(p−
k+ 1),V(p−k+1)] |ψ〉. Then we zerod−1 new entries by forming|ψt+1〉 = ∧[C(t),V(t)] |ψt〉 for
∧[C(t),V(t)] arising fromSingle-♣Householder, termt of the♣-sequence, and|ψt〉. The second de-
scription is given in Algorithm 3, which implicitly includes the generation of the♣-sequence within
its structure of nested loops. (Cf. [4].) This algorithm produces a sequence of(dn−1)/(d−1) two-
qudit gates factoringW. The nested loops generate the♣-sequence terms inline. Using Algorithm 2,
each term is used to form a∧(C,V) zeroingd−1 amplitudes of the current state|ψt〉. A third way
of considering the sequence of two-qudit gates and the zeroes they introduce within the entries of|ψ〉
(actually|ψt〉) is by considering a depth-first search of the tree of Figure 2. Atop each box vertex is
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Algorithm 3: ♣Householder(|ψ1〉 ,d,n)

% Reduce|ψ1〉 onto |0〉⊗n.
t = 0
for c1 = 0 : d−1
for c2 = 0 : d−1

...
for cn−2 = 0 : d−1
for cn−1 = 0 : d−1
t = t +1
UseSingle-♣Householder(c1 . . .cn−1♣, |ψt〉) to zero{〈c1c2 . . .cn−1 jn|ψt〉, jn > 0}

end
t = t +1
UseSingle-♣Householder(c1 . . .cn−2♣♣, |ψt〉) to zero{〈c1c2 . . .cn−2 jn−10|ψt〉, jn−1 > 0}

end
...

end
t = t +1
UseSingle-♣Householder(c1♣ . . .♣, |ψt〉) to zero{〈c1 j20. . .0|ψt〉, j2 > 0}

end
t = t +1
UseSingle-♣Householder(♣ . . .♣, |ψt〉) to zero{〈 j10. . .0|ψt〉, j1 > 0}.

the♣-term generating∧(C,V) by Algorithm 2, while the amplitudes of all but the top ditstring of
each box are zeroed by∧(C,V).

4.4 Modification for W |ψ〉 = | j〉
We have presented state-synthesis Algorithm 3, which maps|ψ〉 7→ |0〉⊗n. However, the algorithm is
easily adapted to realize|ψ〉 7→ | j〉 for any j = d1d2 . . .dn. Indeed, single qudit gates may permute the
elements to putj in position 0, so that a similarity transform ofSingle-♣Householdersuffices. To see
this, let j = d1d2d3 . . .dn be ad-ary expansion of somej, 0≤ j ≤ dn−1. Then| j〉 = ⊗n

k=1INC
dk |0〉.

Further, for a generic control wordC, define a newj-dependent control word̃C by

C̃k =







∗, Ck = ∗
T, Ck = T

(Ck +dk)modd, Ck ∈ {0,1, . . . ,d−1}
(16)

Suppose also thatCm = T. Then noting that[INCdm]† = INC
d−dm, we have the similarity relation

[⊗n
k=1INC

dk]∧ (C,V)[⊗n
k=1INC

d−dk] = ∧[C̃, INCm V INC
d−dm]. (17)

Hence mapping an arbitrary state|ψ〉 to any separable state| j〉 requires the same overhead in terms of
two-qudit gates as does the mapping to the fiducial state|0〉⊗n.

4.5 Proof that ♣Householder achieves W |ψ〉 = |0〉⊗n

Given n, p(n) = (dn − 1)/(d− 1) is the number of elements of the♣-sequence. It would suffice
to prove (i) that each operator∧[C( j),V( j)] guaranteesd− 1 new zeroes in the state

∣

∣ψ j+1
〉

not
guaranteed in

∣

∣ψ j
〉

and (ii) moreover that∧[C( j),V( j)] does not act on previously guaranteed zeroes.
The assertion (i) is straightforward and left to the reader;see Figure 2 caption. However, the second
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Fig. 2. Using the♣-sequence ford = 3, n = 3 to generate Householder matrices to reduce|ψ〉 to a multiple of
|0〉. Each node is labeled by a♣-term and represents a gate∧(C,V). The control is indicated by the boldface
entry in the label. As the tree is traversed in a depth-first search, each node indicates a∧(C,V) that zeroes the
components of the last two indices in each node using the component of the top entry. See also Figure 1 of [4].

assertion isfalse. Rather, the controlled one-qudit operators do act on previously zeroed entries, but
always replace them with a zero result. We next make this assertion precise and prove it.

Define the index setS= {0,1, . . . ,dn−1} and introduce two new sets of dit-strings:

• S∗( j) is the set of dit-strings for which the corresponding amplitude of
∣

∣ψ j
〉

is not guaranteed
zero by some∧[C(k),V(k)], k < j.

• S[C( j)] is the set of dit-strings on which the controlC( j) is active.

Also, defineℓ to be the index of the target symbol inC( j): C( j)ℓ = T. Now there is a group action of
Z/dZ on the index setScorresponding to addition modd on theℓth dit:

c •ℓ c1c2 . . .cn = c1c2 . . .cℓ−1(cℓ +c mod d)cℓ+1 . . .cn. (18)

Since the operatorV( j) is applied to quditℓ, the amplitudes (components) of
∣

∣ψ j+1
〉

are either equal
to the corresponding amplitude of

∣

∣ψ j
〉

or else are linear combinations of the
∣

∣ψ j
〉

-amplitudes whose
indices lie in theZ/dZ orbit contained inS[C( j)]. To establish the correctness of♣Householder, we
will prove the following Proposition.

Proposition 1
∣

∣ψ j+1
〉

has at least d−1 more guaranteed zero amplitudes than
∣

∣ψ j
〉

.

Since♣Householdersets j = 1, . . . ,(dn−1)/(d−1), this means that the final
∣

∣ψ j
〉

has a single
nonzero element corresponding to|0〉 and state synthesis has been achieved. We prove this result
using three lemmas. To state them, we writeS∗( j) as the union of the three setsR1( j), R2( j), and
R3( j) which we now define.
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Definition 1 Suppose the jth term of the♣-sequence is given by c1c2 . . .cℓ−1♣ . . .♣. We have C( j)
the corresponding control word, with C( j)ℓ = T. Consider the following three sets, noting R1( j) may
be empty.

R1( j) =
Fℓ−2

q=0

{

c1c2 . . .cqk00· · ·0 ; k < cq+1,k∈ {0,1, . . . ,d−1}
}

R2( j) =

{

c1 · · ·cℓ−1k00. . .0 ; k∈ {0,1, . . . ,d−1}
}

R3( j) =

{

f1 · · · fℓ−1kℓkℓ+1 . . .kn ; f1 f2 . . . fℓ−1 > c1c2 · · ·cℓ−1,k∗ ∈ {0,1, . . . ,d−1}
}

.

(19)

These sets may be interpreted in terms of Figure 2. Recall thefigure recovers the♣-sequence by
doing a depth-first search of the tree. In this context,S∗( j) is the set of possibly nonzero components
of

∣

∣ψ j
〉

at the jth node. The subsetR3( j) results from indices that lie in nodes not yet traversed,
loosely above the present node in the tree or to the right. ThesetR2( j) is precisely the set of indices in
the current node, nodej. The setR1( j) is the set of indices of elements that have been previously used
to zero other elements and still might remain nonzero themselves; it is the set of indices of elements
that were always at the top of nodes already traversed in the depth-first search. Thus,R1( j) is loosely
a set of entries within nodes to the left and perhaps below node j. The first lemma, along with the
third, is used to show that the algorithm does not harm previously-introduced zeroes.

Lemma 1 Suppose theℓth letter of C( j) is the target symbol T , and labelS̃∗( j) = R1( j)⊔R2( j)⊔
R3( j). Then

(Z/dZ) •ℓ S̃∗( j)∩S[C( j)] ⊆ S̃∗( j)∩S[C( j)]. (20)

More colloquially, theZ/dZ action which determines which amplitudes are mixed by thejth two-
qudit gate respects the set of dit-stringsS̃∗( j). We require the tilde since we do not yet know that the
union of theR∗( j) is actually the set of unzeroed entries.

Proof: Due to the choice of a single control on a dit to the right of position ℓ in the appropriate
term of the♣-sequence,R1( j)∩S[C( j)] = /0. On the other hand, a direct computation verifies that
(Z/dZ)•ℓ R2( j) ⊂ R2( j) and also thatR2( j)∩S[C( j)] = R2( j).

Finally, we argue that(Z/dZ) •ℓ R3( j) ⊂ R3( j). However, the following partition is in general
nontrivial:

R3( j) = {R3( j)∩S[C( j)]}⊔{R3( j)∩
(

S−S[C( j)]
)

}. (21)

ShouldC( j) admit no control, we are done. If not, letm< ℓ be the control qudit. Then

R3( j)∩S[C( j)] =

{

f1 · · · fℓ−1kℓkℓ+1 . . .kn ; fm = cm, f1 . . . fℓ−1 > c1c2 · · ·cℓ−1,k∗ ∈ {0,1, . . . ,d−1}
}

.

(22)
Hence theZ/dZ action respects the partition of Equation 21 as well. 2

The second lemma shows that the algorithm producesd−1 newly guaranteed zeroes at each step.
In particular,Z is the set of elements zeroed by∧[C( j),V( j)].
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Lemma 2 Let C( j) result from c1c2 . . .cℓ−1♣ . . .♣♣ of the♣-sequence as in§4.3. Consider the
following set of dit-strings:

Z = {c1c2 . . .cℓ−1k00. . .0 ; k∈ {1,2, . . . ,d−1}}. (23)

Then R1( j)⊔R2( j)⊔R3( j) = R1( j +1)⊔R2( j +1)⊔R3( j +1)⊔Z .

Proof: We break our argument into two cases based on the value ofcℓ−1.
Casecℓ−1 < d−1: Considering the lexicographic order and ignoring inappropriate words, the( j +
1)st term of the♣-sequence is is given byc1c2 . . . (cℓ−1 +1)00. . .0♣. Note that for leaves of the tree,
the buffering sequence of zeroes is vacuous.

R1( j +1) = R1( j)⊔R2( j)−Z ,
R2( j +1)⊔R3( j +1) = R3( j).

(24)

HenceR1( j)⊔R2( j)⊔R3( j) = R1( j +1)⊔R2( j +1)⊔R3( j +1)⊔Z .
Casecℓ−1 = d−1: Suppose instead thejth ♣-sequence term isc1c2 . . .cℓ−2(d−1)♣♣ . . .♣, so that
the( j +1)st term isc1c2 . . .cℓ−2♣♣♣ . . .♣. We note that{c0c1 . . .cℓ−2(d−1)0. . .0}∈R2( j)∩R2( j +
1) b. Then

R1( j) = R1( j +1)⊔R2( j +1)−{c0c1 . . .cℓ−2(d−1)0. . .0},
R2( j) = Z ⊔{c0c1 . . .cℓ−2(d−1)0. . .0},
R3( j) = R3( j +1).

(25)

From the first two,R1( j)⊔R2( j) = R1( j +1)⊔R2( j +1)⊔Z . HenceR1( j)⊔R2( j)⊔R3( j) = R1( j +
1)⊔R2( j +1)⊔R3( j +1)⊔Z . 2

The third lemma shows that the set we considered in Lemma 1 is indeed the set of guaranteed
zeros. After which, the main result follows immediately by the first of the three lemmas.

Lemma 3 S∗( j) = R1( j)⊔R2( j)⊔R3( j) is the set of guaranteed zero amplitudes (components) of a
generic

∣

∣ψ j
〉

.

Proof: The proof is by induction. Forj = 1, we have

R1(1) = /0, R2(1) = {00. . .0∗}, R3(1) = {c1c2 . . .cn−1∗ ; somec j > 0}. (26)

Hence the entire index setS= S∗(1) = R1(1)⊔R2(1)⊔R3(1).
Hence, we suppose by way of induction thatS∗( j) = R1( j)⊔R2( j)⊔R3( j) and attempt to prove

the similar statement forj +1. Now∧[C( j),V( j)] will add new zeroes to the amplitudes (components)
with indicesZ by Lemma 2. On the other hand,∧[C( j),V( j)] will not destroy any zero amplitudes
existing inS∗( j) due to the induction hypothesis and Lemma 1. ThusS∗( j +1) = R1( j +1)⊔R2( j +
1)⊔R3( j +1). 2

Proof of 1: The main result now follows after combining our three lemmas. 2

5 Unitary synthesis by reduction to triangular form

In this section, we present an asymptotically optimal unitary circuit not found in [4]. It leans heavily
on the optimal state-synthesis of♣Householder. Since this state-synthesis circuit can likewise clear
any lengthdn vector using fewer thandn single controls, the asymptotic is perhaps unsurprising. Yet

bSo in the application, the amplitude (component) of this index is the single amplitude not zeroed by∧[C( j),V( j)], but it is
immediately afterwards zeroed by∧[C( j +1),V( j +1)].
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the unitary circuit requires highly-controlled one-quditunitary operators when clearing entries near
the diagonal. Optimality persists since these are used sparingly. Two themes should be made clear at
the outset:

• We process the sizedn×dn unitaryV in subblocks of sizedn−1×dn−1.

• Due to rank considerations, at least one block in each block-column of sizedn × dn−1 must
remain full rank throughout.

Hence, we cannot carelessly zero subcolumns. One solution is to triangularize thedn−1×dn−1 ma-
trices on the block diagonal, recursively. Given that strategy, the counts below show onlyO(n2dn)

fully (n−1) controlled one-qudit operations appear in the algorithm. This is allowed when working
towards an asymptotic ofO(d2n) gates.

The organization for the algorithm is then as follows. Processing (triangularization) ofV moves
along block-columns of sizedn×dn−1 from left to right. In each block-column, we first triangularize
the blockdn−1×dn−1 block-diagonal element, perhaps adding a control on the most significant qudit
to a circuit produced by recursive triangularization. After this recursion, we zero the blocks below
the block-diagonal element one column at a time. For each column j, 0≤ j ≤ dn−1−1, the zeroing
process is to collapse thedn−1× 1 subcolumns onto theirjth entries, again adding a control on the
most significant qudit to prevent destroying earlier work. These subcolumn collapses produce the bulk
of the zeroes and are done using♣Householder. After this, fewer thand entries remain to be zeroed
in the column below the diagonal. These are eliminated usinga controlled reflection containingn−1
controls and targeting the top line.

We now give a formal statement of the algorithm. We emphasizethe addition of controls when
previously generated circuits are incorporated into the universal circuit (i.e. recursively telescoping
control.)

Algorithm 4: Triangle(U,d,n)
if n = 1 then

TriangularizeU using aQRreduction.
else

Reduce top-leftdn−1×dn−1 subblock usingTriangle(∗,d,n−1), (writing output to bottom
n−1 circuit lines)

for m= 0,1, . . . ,d−1 do % Block-column iteration
for columnsj = mdn−1, . . . , [(m+1)dn−1−1] do

for ℓ = (m+1), . . . ,(d−1) do % Block-row iterate
Use♣Householderto zero the column entries(m+ ℓ)dn−1, . . . , [(m+ ℓ+1)dn−1−1],
leaving a nonzero entry at(m+ ℓ)c2 . . .cn for j = c1c2 . . .cn and
adding|m+ ℓ〉- control on the most significant qudit.

end for
Clear the remaining nonzero entries below diagonal using one

V

(Tc2 . . .cn,V).
end for % All subdiagonal entries zero in block-col
UseTriangle(∗,d,n−1) on thedn−1×dn−1 matrix at the(m+1)st block diagonal
adding|m+1〉- control to the most significant qudit.

end for
end if-else
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To generate a circuit for a unitary operatorU , we useTriangle to reduceU to a diagonal operator
W = ∑dn−1

j=0 eiφ j | j〉 〈 j|. Now V andU = WV would be indistinguishable if a von Neumann measure-

ment{| j〉 〈 j|}dn−1
j=0 were made after each computation. However, the diagonal is important ifU is a

computation corresponding to a subblock of the circuit of a larger computation with other trailing, en-
tangling interactions. In this case, the diagonal unitary can be simulated withdn ∧n−1(V) gates. Writ-
ing j in its d-ary expansion,j = j0 j1 . . . jn−1 we haveW = ∏dn−1

j=0 ⊗n
k=1INC

jk
k ∧n−1(eiφ j |d−1〉〈d−1|)⊗n

k=1

INC
− jk
j . By the argument in§3, the gate count for such a simulation isO[dn(n−1)2+log2d]. This is

asymptotically irrelevant compared to the lower bound.

5.1 Counting gates and controls

Let h(n,k) be the number ofk-controls required in theSingle-♣Householderreduction of some|ψ〉 ∈
H (n,d). Thenh(n,k) = 0 for k ≥ 2. Moreover, each 0-control results from an element of the♣-
sequence of the form 00. . .0♣♣ . . .♣, and there aren such sequences. Thus, since the number of
elements of the♣-sequence is(dn−1)/(d−1), we see that

{

h(n,1) = (dn−1)/(d−1)−n
h(n,0) = n.

(27)

We next count controls in the matrix algorithmTriangle. We break the count into two pieces:g
for the work outside the main diagonal blocks andf for the total work.

Let g(n,k) be the number ofk-controls applied in operations in each column that zero thematrix
below the block diagonal; this is the total work in thefor j loops of Triangle. We useSingle-
♣Householderd(d− 1)dn−1/2 times since there ared(d− 1)/2 blocks of sizedn−1× dn−1 below
the block diagonal, and we add a single control to those counted inh. The last statement in the loop is
executeddn−dn−1 times. Therefore, lettingδk

j be the Kronecker delta, the counts are

g(n,k) = δn−1
k (dn−dn−1)+

1
2

d(d−1)dn−1h(n−1,k−1). (28)

Supposingn≥ 3, then we see that

g(n,k) =























dn−dn−1, k = n−1
0, n−1≤ k≤ 3

1
2dn(dn−1−1)− 1

2dn(d−1)(n−1), k = 2
1
2dn(d−1)(n−1), k = 1

0, k = 0.

(29)

Finally, let f (n,k) be the total number ofk-controlled operations in theTriangle reduction, including
the block diagonals. This work includes that counted ing, plus a recursive call toTriangle before the
for m loop, plus(d−1) calls within thek loop, for a total of

f (n,k) = g(n,k)+ f (n−1,k)+ (d−1) f (n−1,k−1), (30)

with f (n,0) = 1 and f (1,k) = 0 for n,k > 0.
Using the recursive relation of Equation 30 and the counts ofEquation 29, we next argue that

Triangle has no more thanO(d2n) controls. The following lemma is helpful.

Lemma 4 For sufficiently large n, we have f(n,k) ≤ d2n−k+4.
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Proof: By inspection of Equation 29, we see thatg(n,k) ≤ (1/2)d2n−k+2 for all k andn large. Now
f (n,0) = 1, which we take as an inductive hypothesis while supposingf (n− 1, ℓ) ≤ d2n−2−ℓ+4 =

d2n−ℓ+2. Thus, using the recursion relation of Equation 30,

f (n,k) ≤ 1
2d2n−k+2 +d2n−k+2+(d−1)d2n−k+3

= d2n−k+4
(

1
2d2 + 1

d2 +1− 1
d

)

.
(31)

Now sinced > 3/2, we must have1d > 3
2d2 , whence an inductive proof of the result. 2

By the results from§3, eachk-controlled single-qudit unitary operator costsck = O[(k+2)2+log2(d)]

CINC andCINC−1 gates without ancillas. The expected number ofCINC gatesℓT for the algorithm
Triangle is then given by the weighted sum for thek-control gates in the diagonalization and thedn

instances ofn−1-controlled phase gates for emulation of the diagonal:

ℓT = dncn−1+ ∑n−1
k=0 ck f (n,k)

≤ 2(n+1)2+log2(d)dn+4 +d8+2n∑n−1
k=0 d−kk2+⌈log2 d⌉

≤ 2(n+1)2+log2(d)dn+4 +d8+2nLi−(2+⌈log2d⌉)(1/d)

≤ 2(n+1)2+log2(d)dn+4 +26d8+2n.

(32)

In the third line we have used the fact that for the Polylogarithm function, Li−(2+⌈log2 d⌉)(1/d) ≤
Li−3(1/2) = 26.

5.2 Comparison with the spectral algorithm

In an earlier work [4], we described an different algorithm for unitary synthesis. That algorithm relied
on a spectral decomposition of the unitary and was also shownto be asymptotically optimal. For a
circuit without ancillas, theCINC gate countℓS using the spectral algorithm is:

ℓS≤ 2dn+1[(dn−1)/(d−1)−n]+ (n+1)2+log2ddn+4. (33)

Our tests show that the spectral algorithm outperformsTriangle when the number of qudits is greater
than two. The generald2n scaling of both algorithms is shown in Figure 3.

Yet there are several situations whereTriangle may be preferred over the spectral algorithm. First,
consider two-qudit circuits. ForTriangle each∧1(V) gate is chosen to zero a maximum number of
elements below the diagonal of the unitary resulting from previous controlled operations. On average,
d− 1 components are zeroed by each controlled unitary gate, hence the number of gates needed to
bring the unitaryU to diagonal form is the number of zeros below the diagonal divided byd−1 or
k = (d4−d2)/[2(d−1)]. The first of these transformations can be implemented by a local gate but
all subsequent gates must be controlled to avoid introducing new nonzero elements. For example,
if d = 3, then the elements below the main diagonal are zeroed at thetime steps indicated in the
following matrix (x’s indicate values that change during the gate sequence):





























x x x x x x x x x
1 x x x x x x x x
1 1 x x x x x x x
4 5 8 x x x x x x
2 7 8 11 x x x x x
2 5 10 11 11 x x x x
4 6 9 13 14 16 x x x
3 7 9 12 15 16 18 x x
3 6 10 12 14 17 18 18 x





























.
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Fig. 3. Performance comparison of the two algorithms for unitary synthesis onn= 4 qudits as a function of qudit
dimensiond. Triangles (boxes) indicateCINC gate counts for theTriangle (spectral) algorithm.

The final diagonal unitaryD = ∑d
j ,k=0eiφ jk | j〉〈 j |⊗|k〉〈k| can be simulated usingd controlled single

qudit gates as evident by the decomposition

D =
d−1

∏
j=0

[ei π
2 (| j〉〈d−1|+|d−1〉〈 j |)⊗1d]∧1 (

d−1

∑
k=0

eiφ jk|k〉〈k|)[e−i π
2 (| j〉〈d−1|+|d−1〉〈 j |) ⊗1d].

The∧1(V) gate count is thenℓT = d2(d+1)/2+d gates. In contrast, the gate count using the spectral
algorithm isℓS = 2d3−d2.

Second, in certain circumstances it may only be necessary tobuild a unitary up to measurement
in a logical basis. Then the simulation of the final diagonal unitary in Triangle can be dropped.
Third, the spectral algorithm requires a classical diagonalization of the unitaryU which requires
O(d3n) steps. For matrices of large size, particularly when there are degenerate eigenstates, numerical
stability can be an issue. The classical computations involved inTriangle also scale likeO(d3n) but
are carried out directly in the logical basis of the qudits. Finally, in zeroing entries in analogy to a
QRdecomposition,Triangle has more direct precedents among earlier quantum circuit designs in the
literature [12, 1, 13, 2] and in particular the first asymptotically optimald = 2 construction [3].

6 Two applications of state-synthesis

A primary motivation for describing state-synthesis circuits is to utilize them as subcircuits for unitary
synthesis as in§5. Yet there are also independent applications for the algorithm. We present two
examples.
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6.1 Computing expected values

First, consider the problem of computing the expectation value of a Hermitian operatorA∈H (n,d) i.e.
A∈End[H (n,d)]∼= Cdn×dn

with A† = A. For a system in the possibly mixed stateρ of n qudits, the the
expectation of an operatorA is 〈A〉 = Tr[Aρ]. In some cases there does not exist a physically realistic
direct measurement ofA. However, one may infer the expectation value by a suitably weighted set
of von Neumann measurements as follows. By the spectral theorem, any normal operatorA may be
diagonalized by a unitary transformationU : A=U†DU whereD = ∑dn−1

j=0 λ j | j〉 〈 j| and{λ j}dn−1
j=0 are

the eigenvalues ofA. Then

〈A〉 = Tr[Aρ] = Tr[DUρU†] =
dn−1

∑
j=0

λ jTr
[

| j〉 〈 j|UρU† ]

. (34)

Hence we may compute〈A〉, given anarbitrary stateρ, by performing two steps: first, enact the
unitary evolutionU onρ, and second perform the computational-basis von Neumann measurement on
the resulting state, extracting all populations of the basis states| j〉 〈 j|.

In some instances one may want to know the weight of a quantum state on a subspace of the
operatorA, i.e. 〈PSAPS〉 wherePS is some projection operator onto a subspaceHS ⊆ H (n,d). In
particular, consider the case of ak dimensional subspace diagonal in the eigenbasis{

∣

∣u j
〉

}dn−1
j=0 of A.

We wish to compute Tr[∑k
j=1λ j

∣

∣u j
〉〈

u j
∣

∣ρ] wherek< dn and the eigenvalues ofA have been reordered

accordingly. Then we can rewrite the projectionPSAPS = ∑k
j=1 λ jW(u j) | j〉 〈 j|W(u j)

† whereW(u j)

is a unitary extension of the mapping| j〉 →
∣

∣u j
〉

. The operatorW(u j) is the unitary obtained in the
state-synthesis algorithm. The expectation value is then

〈PSAPS〉 =
k

∑
j=1

λ jTr
[

| j〉 〈 j|W(u j)
†ρW(u j)

]

. (35)

The expectation value can be measured as before but now one need only implement the state-synthesis
operatork times on each stateρ of an ensemble of identically prepared states.

The above argument may in fact be generalized to compute the expectation value of any operator
A. First decompose the operator asA = Ah + Aa with Ah = (A+ A†)/2 the Hermitian part andAa =

(A−A†)/2 the anti-Hermitian part ofA. Both Ah andAa are normal operators and therefore can be
diagonalized. Hence, the expectation value can be computedby evaluating the weighted sum as per
Eq. 34 and summing.

6.2 The general state-synthesis problem

BothTriangle and the spectral algorithm are well adapted to the general state-synthesis problem. This
problem demands synthesizing any unitary extension of the many state mapping{| j〉→

∣

∣ψ j
〉

| 0≤ j ≤
ℓ≪ dn} [1]. It is unclear what sorts of applications might arise when the states are arbitrary, requiring
exponentially expensive circuits to build each. Nonetheless, less generic unitaries of this form have
been used in quantum error correction to encode a few logicalqudits into many physical qudits [15].

Triangle provides one solution to this problem. Start with a matrix containing
∣

∣ψ j
〉

in its jth
column, with “don’t care” entries in columns after columnℓ. Ignore any operations on the “don’t
care” entries, and discard any gates meant to place zeros among them.

The spectral algorithm provides an alternative solution. Note that the matrixU formed from the
product of theℓ Householder matrices necessary to reduce thedn× ℓ matrix [|ψ1〉 . . . |ψℓ〉] to diagonal
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form hasdn− ℓ eigenvalues equal to 1, so the spectral algorithm needs to build an eigenstate, apply a
conditional phase to one logical basis ket, and unbuild the eigenstate onlyℓ times.

7 Conclusions

This work concerns asymptotically optimal quantum circuits for qudits. By asymptotically optimal,
we mean that the circuits requireO(dn) gates of (no more than) two qudits for constructing arbitrary
states andO(d2n) gates for unitary evolutions. Contributions of this work are the following:

• We provide the first argument that both asymptotics survive even when no ancilla (helper) qudits
are allowed.

• We present the state-synthesis circuit in much more detail than previously published, in partic-
ular describing it in terms of iterates over a♣-sequence. Using the♣ sequence, we provide the
first proof that the state-synthesis circuits actually achieveU |0〉 = |ψ〉.

• We presentTriangle, a new asymptotically optimal quantum circuit for qudit unitaries which
is inspired byQR matrix factorization. Since it leans more heavily onQR than on spectral
decomposition, the gate parameters ofTriangle require less classical pre-processing than the
spectral algorithm. Moreover,Triangle more closely resembles earlier quantum circuit design
techniques [12, 3] than other asymptotically optimal quditunitary circuits.

• §2 provides a constructive proof that{CINC}⊔U(d)⊗n is exact-universal for qudits.

Some open questions remain. The∧1(V) gates are much better than earlier practice but not prov-
ably optimal, as is the case with qubits [11]. Moreover, the current best-practicen-qubit circuits
exploit the cosine-sine decomposition (CSD). The tensor product structure for qudits [16] is not as
well adapted to a single CSD as in thed = 2 case, and it is unclear whether a CSD circuit for qudits
could be made asymptotically optimal in the{CINC}⊔U(d)⊗n library.
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