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This paper concerns the efficient implementation of quantirouits for qudits. We show that con-
trolled two-qudit gates can be implemented without angiflad prove that the gate library containing
arbitrary local unitaries and one two-qudit gat&NC, is exact-universal. A recent paper [S.Bullock,
D.O'Leary, and G.K. Brennen, Phys. Rev. Le®4, 230502 (2005)] describes quantum circuits
for qudits which requireD(d") two-qudit gates for state synthesis a®@d?") two-qudit gates for
unitary synthesis, matching the respective lower boundptexities. In this work, we present the
state-synthesis circuit in much greater detail and proseithis correct. Also, thé(n—2)/(d—2)]
ancillas required in the original algorithm may be removéttheut changing the asymptotics. Further,
we present a new algorithm for unitary synthesis, inspingthk QR matrix decomposition, which is
also asymptotically optimal.

Keywords
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1 Introduction

A qudit is ad-level generalization of a qubit, i.e. the one-qudit Hilsgace splits orthogonally as
#(1,d) = C{l0)}e{[h)} e - aC{ld-1)} 1)

while then-qudit state-space ig (n,d) = [# (1,d)]®". Thus forN = d", closed-system evolutions of
n qudits are modeled by x N unitary matrices. Qudit circuit diagrams then factor sucharies into

two-qudit operationgy—2 ®V whereV is ad? x d? unitary matrix, or more generally into similarity
transforms of such gates by particle-swaps. The algoritlmmmplexity of an evolution may then be

aPresent address: Institute for Quantum Optics and Quantdionniation of the Austrian Academy of Sciences, A-6020,
Innsbruck, Austria.
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thought of as the number of two-qudit gates required to hitilé degree of freedom argument [1]
leads one to guess that exponentially many gates are rdduoirenost unitary evolutions, since the
space of alN x N unitary matrices isl*"-dimensional. Indeed, this space of evolutions is a maahifol
so the argument may be made rigorous using smooth topolagythaisQ(d?") gates are required
for exact-universality. Yet until quite recently the besidg circuits contained(n’d?") gates [2].

In contrast,0(4") gates were known to suffice for qubitd £ 2) [3], presenting the possibility that
gudits are genuinely less efficient fdinot a power of two.

Recently, an expliciO(d?") construction was achieved [4]. It uses the spectral decsitipo of
the unitary matrix desired and also a nstate-synthesis circu[t, 5, 6, 9]. Given dy)) € # (n,d),

a state-synthesis circuit fog) realizes some unitaty such that) [) = |0)*". We also sometimes
use the term to refer to the inverse problem of construdting U with |@) = W |0)*". There are
2d" — 2 real degrees of freedom in a normalized statelggtwhich may be used to prove that circuits
for generic states co§)(d") two-qudit gates. This is in sharp contrast to the case ofidaklogic,
whereO(n) inverters may produce any bit-string. The most recent gstdie-synthesis circuit [4]
contains(d" — 1)/(d — 1) two-qudit gates, and in fact each is a singly-controlled-qudit operator
/\1(V) = |d27d dV.

There are two ways to employ an asymptotically optimal ssgtethesis circuit in order to obtain
asymptotically optimal unitary circuits. The first is to éai the spectral decomposition, which in-
volves a three part circuit for each eigenstate of the wnitawilding an eigenstate [1, 4], applying a
conditional phase to one logical basis ket, and unbuildiegeigenstate. We here introduce a second
option, theTriangle algorithm, which uses the state-synthesis circuit witlagbntrols to reduce the
unitary to upper triangular form. Recursive counts of thembar of control boxes show that it is also
asymptotically optimal (Cf. [3].) Although these algoritis are unlikely to be used to implement gen-
eral unitary matrices, they can be usefully applied to imprg subblocks of larger circuits (peephole
optimization).

Finally, this work also addresses two further topics in whigidit circuits lag behind qubit cir-
cuits. First, to date the smallest gate library for exactersality with qudits uses arbitrary locals
complemented by a continuous one parameter two-qudit @@{e [n contrast, it is well known [5]
that any computation on qubits can be realized using gates tine libraryu (2)“"J {CNOT}, where
the symbolJ denotes the disjoint union. We prove that the librdifgl)®" LI {CINC} is exactly univer-
sal, whereCINC controlled-increment) is the qudit generalization of t®@T gate. Second, the first
asymptotically optimal qubit quantum circuit exploitediagde ancilla qubit [3] and current construc-
tions require none [9, 6], while qudit diagrams tend to sigggon— 2) /(d — 2)] ancilla qudits. Here
we present methods which realizé&aontrolled operatiomy(V) = lg1_g @V in O[(K+ 2)210%1]
gates without the need for any ancilla. This makes all quaitrgototics competitive with their qubit
counterparts. We note that the state of the art circuit aefg exact-universal computation with
qubits use a variant of the the Cosine-Sine Decompositi@D((d6, 7]. Ford = 2, the CSD circuits
attain a generic unitary with number OROT gates that is less than a factor of two over the lower
bound ofO(4"/4). Quite recently, a CSD circuit fat-level systems has been developed [8]; however,
the gate library used in this circuit uses certain multidtjatfcuit blocks as primitives. The cost of
these blocks in terms of two-qudit gates is unclear.

The paper is organized as followj2 improves on earlier constructionsof(V) gates, which are
ubiquitous in later sections;3 presents a new circuit for a qudik(V) gate which is later used to
produce the firsD(d?") gate unitary circuits without ancill§4 details the recent state-synthesis algo-
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rithm as an iteration over a nefd-sequence and exploits the new constructions to prove drigct.
§5 presents a new asymptotically optimal unitary circuipinsd by theQR matrix factorization and
compares it with a previous algorithm based on spectralmdposition.§6 discusses two applications
of the state synthesis algorithm.

2 Optimizing singly-controlled one-qudit unitaries

Several operatorss (V) appear in later circuits. Thus, it is worthwhile to optimihés computation
in our gate libraries. For qubits, CNOT-optimal circuits fo; (V) are known [11]. The qudit case
is open. Here we improve the; (V) circuit in that work. Given that ang"” x d" unitary may be
constructed using\1(V) [2], a corollary is thatJ (d)®" LI {CINC,CINC !} is exact-universal. Since
cINc ! = cINncd 1, this also demonstrates tHafd)®" LI {CINC} is exact-universal. This is a smaller
universal library than that presented in earlier work [10].

Thus, consider the question of factoring(V). Let {|L|Jk>}ﬂ;é be the eigenvectors &f with
eigenvalues{eiek}g;g. Let Wk be some one-qudit unitary withi |0) = |U), e.g. the appropriate
one-qudit Householder reflection (Sgkl.) Finally, letdy be a controlled one-qudit phase unitary
given by®y = Aq[lg + (€% — 1) |0) (0]]. Then note tha¥ = 152 Wk[l4 + (€% — 1) |0) (O]W. Thus
A1(V) can be implemented by the following circuit:

. I - 2)
= o @y ®y-1
WG AW W |- Wi W1

(In the above diagram, we denote control on stdte 1) by a solid dot.) Thus, we have reduced the
question to buildingdy in terms ofU (d)®? andCINC.

Building @k requires some preliminary remarks. Suppose we gageC, || = 1. Consider
the diagonal unitary of the corresponding geometric secgied = z?;ézj [i) {j|. Recall that NC
is the increment permutation, i.¢.NC|j) = |(j +1) modd). Thus permuting the diagonal entries,
mcD NGt = €4°10) (0] + 3§ &71(j) (jI. Hence

d-1

d-1
INCDING 'D ! = £%t|0) <0|+E*12|j><j| = EM)Eo O+ S D). ©)
= j=1
We next generalize a standard trick froha- 2[12, Lemma 5.2] to arbitrargl. Note that
d-2
MalEle) = (3 13)(-+81d - 1)@~ 1) @l (@)
j=

so that a controlled uniform-phase is in fact a local operatHence taking = €%/9, we obtain in
particular an expression fap, of Equation 2 in terms o€l NCandCl NC*:

®c = A1(&lg) CINC (Ilg® D) CINC L (Ilg®D1) 5
= [(3981i) (il +&[d— 1) (d—1]) @1q4] CINC (Ig® D) CINC* (Ig@ D~ 2). ®)

HenceA1(V) may be realized using gates frasid)“? along withd copies ofCl NC andd copies of
CINC L.
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Recall that these circuits may be expanded into circuitelims ofA1(ox @ l4-2). Indeed, when
viewed as permutationsNC andl NC* factor intod flips. To see this, consider9 j <k<d—1
and let(jk) denote the flip permutatiop— k of {0,1,...,d — 1}. Then

INC = (01)o(12)0---0(d—2d—1). (6)

SinceA1][(jk)] is equivalent toA1(ox @ 14—2) up to permutations withit (d)“", we see tha€l NC
andCl NC! may be implemented usirg— 1 copies of the controlled-flip. Thus, (V) may also be
realized using &(d — 1) copies of then1 (ox@® 14_2) gate.

Remark: Note that the controlled-flip is also equivalentte(ly—_2 & 0z), making blockwise use of
the 2x 2 matrix identityHoxH = o, for H = %2 S ikeo(—1)¥[K) (j|. Thus, the above also realizes
A1(V) in roughly 202 controlledftphase gates. This is half the roughty?4jates of earlier work [10],
even after including the arbitrary relative phaSeatiowed there.

3 Qudit control without ancillas

In this section we simulate a,_1(V) gate forV € U(d) usingO[(n + 1)'°%29+?] singly-controlled
one qudit gates without ancilla. The method parallels toarigjues used in Ref. [12] for universal
computation with qubits.

First we decompose &,_1(V) gate using a sequence of gates with a smaller number of ¢antro
As a first step, notice that

An-1(V) = An—2(Xa-1)[An—2(INC) A (X )1 An2 (INC) Az (XE1), 7

whereX,_1 = V9. For example, fon = 7, we have the following circuit:

(8)

1%

T & T & T
DA B | ] . | X1

All control operations are conditioned on the control gsidieing in statéd — 1). The circuit is de-
signed to cycle over each possible dit value of the contrditgu the /\1(X,Ll) gates. The entire
construction then follows by recursive application of Edipm 7 to the last gate. In theory, this con-
struction is an exact implementation®f_1(V). Yetin practice, the sequence of matridg®btained
by taking thed-th root of Xj 1 (with X, = V) quickly converges to the identity matrix aslecreases.
Hence, an approximate implementation results if the régniis terminated early.

As an example of Equation 8, consider the generalized Tadfate A2(INC). This breaks into
(d+1) variants of singly-controlled (W) gates along witll extraCl NC gates. Hencéd + 1)d +d
Cl NC gates along with(d + 1)d CINC™! gates and sundry gates frd(d)®" suffice to emulate
A2(INC).

Note that the size of the circuit foy,_2(INC) thatis analogous to the above grows exponentially in
n. However, it is possible to simulate,_>(INC) more efficiently using a sequence/of,_1) ;2] (INC)
andA|(n-1)/2) (INC) gates, proceeding recursively down/g(INC). The argument is analogous to

A
A\
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that used for qubits in Lemma 7.3 in Ref. [12] foe> 5. The following circuit illustrates the method
forn=7:

9)

1%
NP
Jany
NP,

N N N N

Ignoring which qudits are controlled or targeted, the dirsequence ig\n_2(INC) = [A|(n_1)/2)(INC)
Af(n-1)/2] (INC)]<.

For the remainder of this section, we use a tilde to distisiyai count foCINC~! from aCINC
count. Thus, we lelb,_» be the total number afINC gates required to emulate,_2(INC), andb,_»
be the similar count foeINC2. For Circuit 9,

b2 = d(byn-1)/2] + B (n-1)/2));

10
br2 = d(brn-1)/2) +bjn-1)/2))- 4o

A qU|ck induction shows that each sequence is increasirgjttarsb,_» < 2dby,_1),2; and bn_» <
2db[ (n—1)/2]- Moreover, by the analysis of(INC) aboveb, = d2+2d andb, = d? + d. Recalling
(loggn)(log, d) = log, n, we obtain the following:

bn2 (d2+2d)(2d)(2d)°%" = (d2+ 2d)(2d)ntt1o%d,

- 11
b2 < (d?+d)(2d)(2d)°%" = (d?+d)(2d)niHo%d, (11)

Note that these counts assume that the emulation,04(INC) is done on a system with qudits.
Combining this circuit with Circuit 8 allows for an ancillaee implementation of\,_1(V).

Thus, letc,_1 be the number o€l NC gates required to emulate,_1(V), not counting an addi-
tional é,_1 CINC™! gates. Using Circuit 8,

th1 = dbyo+cyo+d?

&1 = dby ot otd? (12)

We may then overestimatg_1 andc;_1 using integral comparison amd = d?+ 2d, & = d?+d,
obtaining
ch1 = d(3]5bj)+ca+(n—3)d?

IN

d[(d2 +2d)(2d)] [y t110%d dt 4 2d + (n— 2)d? (13)
= B2 [(n 4 1)270%9 — 402] + (n—2)d+ 2d.
We may similarly overestimaig, “1:

(2d?)(d? 4-d)

1= 57 log,d

[(n+1)270%d _ 4d%] + (n—2)d?+d. (14)

Hencecn_1, €1 are both bounded b@[(n+ 1)2“092"]. This can be used to show that the earlier
spectral algorithm [4] is asymptotically optimal even whatilla qudits are absent.
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If we disallowCINC™! and rather emulateINc—t = cINc?~1, then the overalCl NC count for
An—1(V) would bec,_1 + (d —1)&,_1. Note that if the gate library contains the two qudit gai€¢oy ®
l4—2) rather tharCINC, a naive application of the above argument would imply edimoverhead with
a factor ofd — 1. However Circuits 8 and 9 can be adapted by replacing\(eNC) gates with gates
locally equivalent to\1 (ox @ l4—2), resulting in a smaller overhead.

4 Asymptotically optimal qudit state-synthesis

State-synthesis is an important problem in quantum cidesign [5, 1]. This section expands upon
the earlier account [4] of an asymptotically optimal stsyethesis circuit for qudits. The earlier
circuit used onlyO(d") two-qudit gates, while a dimension-based argument [4] shibvat no fewer
number of gates may achieve qudit state-synthesis.

Our description of the algorithm relies upon two tools: awsatpe that we call thé-sequence
(84.3), and a Householder reflection matrix. Tdesequence’s utility is two-fold:

e The&-sequence specifies the order in which state amplitudesaved while (de)constructing
the target state. It substitutes for the Gray code ordeBhgged for the case = 2.

e Using thedk-sequence, we prove that the state-synthesis algorithatifuns as asserted. Tike
sequence simplifies the careful accounting of which amgiditthave and have not been zeroed
after applying each\1 (V) gate.

The zeroing ofl — 1 amplitudes at a time is accomplished by a Householderxpathich we define
in the next subsection.

4.1 Omne-qudit Householder reflection matrices

Earlier universatl = 2 circuits [12] relied on @R factorization to write any unitary as a product
of Givens rotationsrealized in the circuit ak-controlled unitaries [13]. In the multi-level case, we
instead uséHouseholder reflection matricdd4, §5.1]. Thus, supposgl) € # (1,d), perhaps not
normalized. Householder matrices solve the one-qudit oadlee inverse state-synthesis problem.
Given thaf) might not be normalized, the appropriate formulas are:

0
{ = )= g 1)

W = la—(2/(nln)) [n){nl.
ThenW |y) is a multiple of|0). GeometricallyWV is that unitary matrix which reflects across a plane
lying between/0) and|). For any given vector, then, a Householder matrix can betoasted for
which the matrix-vector product has zeros except in a sipgstion.

In general, the quantum circuits fdF x d" Householder matrices are not simple. Howevey, if

is ad x d Householder matrix then1 (V) is a Householder matrix. Thequdit state-synthesis circuit
is built from such gates.

(15)

4.2 The &-sequence

The &-sequence is a sequence of words of lengitthe letters{0,1,2,...,d — 1} LI {&}; see Table

1. To define it, we might associadeto an artificial dit valued and list all words in{0,1,2,...,d}"

in lexicographic order. Deleting those words in whicH aharacter occurs before a lesser character
produces the sequence.
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The &-sequence may be recursively generated by Algorithm 1, imétprepend all possible dits
to the(n— 1)-long dit sequence to generate all but one term ofrtukt sequence, and then end with
the termé".

To each word in thaék-sequence we associate rugudit controlled rotation, where the leftmost
& defines the target. For example, the Householder matrixesponding to 008 puts zeros in
positions 000, while that corresponding to &% zeros 120, and the Householder matrix fofdbde
zeros200(¢=1,...,d—1).

It is easy to convince oneself that applying #kesequence of Householder matrices zeros all
elements except.0.0. It is a bit more difficult to show how to avoid ruining zerdsit have already
been achieved, and we concentrate in the next subsectiostsoaring that a small set of controls is
sufficient to achieve this.

| &-sequenced =3 I

00%, 01, 025, Odech, 10%, 11, 12%, 1, 208, 21k, 22%, 28 &b, b

000%, 001, 002%, 00, 010%, 011k, 012%, Olde, 020%, 021k, 022%, 02% &, O

100%, 101k, 102%, 10%ee, 110%, 111k, 112%, 11k, 120%, 121k, 122%, 12&d&, ldhdd

2008, 201, 202%, 208k, 210%, 211%, 2128, 21dd, 220%, 221k, 2228, 228d, 2hdhd, hhdd
Fig. 1. Samplas-sequences fad = 3, i.e. qutrits.

n
1| &

2 | O, 1&, 2%, Sd
3

4

Algorithm 1: {s1,...,Sp} = Make-&-sequencéd, n)

% We return a sequence ofp(d" — 1)/(d — 1) terms, with n letters each,

% drawn from the alphabe{0,1,...,d — 1,&}.

Let {§;}]_, = Make-&-sequenced,n— 1).

for g=0,1,...,d—1do
The next(d"1—1)/(d — 1) terms of the sequence are formed by prefixing the lettereach
term of the sequendg; }.

end for

The final term of the sequenceds'.

4.3 Inserting zeroes using Householder matrices in &-sequence order

The &-sequence determines the appropriate controls as welkasutipets for a Householder matrix
V. To be precise, we extend the earlier notatiV ). Namely, we writeA(C,V) whereV is ad x d
unitary andC is a word in{0,1,2,...,d — 1} U{T} U {x}, of which at most one letter i§. Thex
denotes a dropped control, so thdC,V) changes a computational basis stgjeif and only if the
dits of thed-ary expansion of agree with similarly placed dits &. The unitaryV is then applied to
the target qudit, whose position is denotedThy

Each term of the clubsuit sequence corresponds/t¢GV), in fact a singly-controlled House-
holder matrix. We illustrate with an example. The two-qugiite below corresponds to tikeword
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2100k for seven qudits.
2 —— Linel =
1—0— Line2 1
O —— Line3d =
0 —— Lined4 =
& [V} Lines T
& —— Line6 *
& —— Line7 *

Algorithm 2: A(C,V) = SingleHouseholder(d termt = tst>...ty, n-qudit state|qu )
Initialize C = # % - - -
% Set the target:
Let /¢ be the index of the leftmosk and seCC, =T.
% Set a single control if needed:
if t contains numeric values greater than 0,
Let g be the index of the rightmost such value and&et tq.
end if
Extract from‘ij> the unnormalized-component vectolg) whose components hadeary
indicestyty...ty_1x00...0. As a formula, if\qu> = z‘k’igla(k) |k), then
b= zgzoa(tltz...tg,lqoo. ..0)]|qg). FormV as a one-qudit Householder matrix such that
Vip) =10).

To construct the control wor@, place thé/-target symboll on the leftmost club. So in this case
A(C,V) targets line 5. Placa single active controbn the least significant line carrying a nonzero
prior to the target. (If there is no nonzero, then no contsahécessary.) In our case this places a
control corresponding to the 1 on line 2. We denote the commod by C = «1x «T % *, and the open
box in the gate denotes the single control (which, as thisngka illustrates, is not necessarily on
state|d — 1)). We complete the gate(C,V) by choosing the one-qudit Householder maXfixo use
element 2100000 to zewy for k =2100000 and/ = 1,...,d — 1. The formal definition oA\(C,V) as
a function of a word in thék-sequence and a state vedttpﬁ, is detailed in Algorithm 2.

Our construction allows only a single active control. Heeeeh controlled operation is in fact
a two-qudit gate, and since there @€d") words in ouré-sequence, this would imply that two-
qudit gates suffice for building the-qudit state-synthesis unitaWy. We can provide three equiva-
lent descriptions of our algorithm for generating the gate®/ with W|y) = |0)“". Colloquially,
the first uses terms of thé-sequence to construet(C,V) which zero|y) sequentially, updating
|w) as we go. More precisely, s@p) = |@1) and suppose inductivelyp) = ﬂfzp7t+2A[C(p—
k+1),V(p—k+1)]|p). Then we zeral — 1 new entries by formingpi1) = A[C(t),V (1)] [yr) for
A[C(t),V ()] arising fromSingle-<sHouseholder, termt of the&-sequence, andy ). The second de-
scription is given in Algorithm 3, which implicitly includethe generation of thé-sequence within
its structure of nested loops. (Cf. [4].) This algorithm guces a sequence (" —1)/(d — 1) two-
qudit gates factoringV. The nested loops generate #esequence terms inline. Using Algorithm 2,
each term is used to form/&C,V) zeroingd — 1 amplitudes of the current stafig;). A third way
of considering the sequence of two-qudit gates and the gé¢heg introduce within the entries pf)
(actually|yx)) is by considering a depth-first search of the tree of FigurAt®p each box vertex is
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Algorithm 3: &Householder (1) ,d, n)
% Reducey) onto |0)®",
t=0
forcy=0:d-1
forc,=0:d-1

forch_o=0:d-1
forch.;=0:d-1
t=t+1
UseSingle-<sHouseholder(c; ...ch_1éb, [Wt)) to zero{(ciCz...Cnh—1jn|Wt), jn > O}
end
t=t+1
UseSingleHouseholder(c; ... ch_odd, [Pt )) to zero{(ciCy...Ch—2jn-10|Wt), jn—1 > O}
end

end
t=t+1
UseSingleHouseholder(cié. .. &, |Ut)) to zero{(c1j20...0| ), j» > 0}
end
t=t+1
UseSingle<sHouseholder(é ... &, |Wi)) to zero{(j10...0[yx), j1 > O}.

the &-term generating\(C,V) by Algorithm 2, while the amplitudes of all but the top ditety of
each box are zeroed by(C,V).

4.4  Modification for W|U) = |j)

We have presented state-synthesis Algorithm 3, which maps- |0)“". However, the algorithm is
easily adapted to realizey) — |j) for any j = didy...dn. Indeed, single qudit gates may permute the
elements to pu in position 0, so that a similarity transform 8fngle-sHouseholdersuffices. To see
this, letj = did2ds. .. dn be ad-ary expansion of somg 0< j < d"— 1. Then|j) = ®}_,INC%|0).
Further, for a generic control wofg, define a newj-dependent control wor@ by

*, Ck=x
T, C=T (16)
(Ck+dy)modd, Cye{0,1,...,d—1}

Suppose also th&y, = T. Then noting thattncdm|" = 1ncd-dm, we have the similarity relation

C=

[®R_,INCH] A (C,V)[@h_,INCI%] = A[C, INC™V INCI O], (17)

Hence mapping an arbitrary stdgg to any separable stam requires the same overhead in terms of
two-qudit gates as does the mapping to the fiducial $gte'.

4.5 Proof that & Householder achieves W|) = [0)*"

Givenn, p(n) = (d"—1)/(d —1) is the number of elements of th#&-sequence. It would suffice
to prove (i) that each operatar[C(j),V(j)] guaranteesl — 1 new zeroes in the staﬁqJHl) not
guaranteed irthj> and (ii) moreover that [C(j),V (j)] does not act on previously guaranteed zeroes.
The assertion (i) is straightforward and left to the readee Figure 2 caption. However, the second
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D
000
100
QTO
0 dosh 1&&k 2 dd
000 100 200
010 110 210
020 ITO 220
00b 01 02& 10k 11& 12 200 21& 22&
000(]010](020 100((110]]120 20011210 (220
001(]011}]021 101 (111]]121 201 ((211()221
002][012] (022 102] | 112][122 202 (212] 222

Fig. 2. Using thek-sequence fod = 3, n = 3 to generate Householder matrices to redugeto a multiple of
|0). Each node is labeled byd&-term and represents a gat¢C,V). The control is indicated by the boldface
entry in the label. As the tree is traversed in a depth-firatde each node indicatesdC,V) that zeroes the
components of the last two indices in each node using the oner of the top entry. See also Figure 1 of [4].

assertion idalse Rather, the controlled one-qudit operators do act on pusly zeroed entries, but
always replace them with a zero result. We next make thigtims@recise and prove it.

Define the index seé8= {0, 1,...,d" — 1} and introduce two new sets of dit-strings:

e S,(j) is the set of dit-strings for which the corresponding anojplé of|ij> is not guaranteed
zero by some\[C(k),V (K)], k< j.

e SC(j)] is the set of dit-strings on which the contf(j) is active.

Also, definef to be the index of the target symbol@{j): C(j), = T. Now there is a group action of
7,/dZ on the index seB corresponding to addition mation therth dit:

C ey CiC2...Chp = C1C2...Cr—1(C/+Cmod dCpiq...Cn. (18)

Since the operatd/(j) is applied to qudit, the amplitudes (components) }Gﬂjﬂ) are either equal
to the corresponding amplitude bh) or else are linear combinations of thpj >-amp|itudes whose
indices lie in theZ /dZ orbit contained irS|C(j)]. To establish the correctness&®Householder, we
will prove the following Proposition.

Proposition 1 \ijH) has at least & 1 more guaranteed zero amplitudes th|aj]>.

SincedHouseholdersetsj = 1,..., (d"—1)/(d — 1), this means that the fina; ) has a single
nonzero element corresponding | and state synthesis has been achieved. We prove this result
using three lemmas. To state them, we wB{¢éj) as the union of the three se®s(j), Rx(j), and
Rs(j) which we now define.
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Definition 1 Suppose thetrj‘ term of thed-sequence is given by@...c, 1é... . We have Cj)
the corresponding control word, with(¢), = T. Consider the following three sets, noting(R may
be empty.

Ri(j) = Ué_%{clcz...choo---o ;k<cq+1,ke{0,1,...,d—1}}
Rz(j) = {C]_---Cg1k00...0;k€{0717...,d—1}} (19)
R3(j) = {fl---f[]_k[k[+1...kn; flfz...fg,1>0102--'C£717k*E{O,l,...,d—l} }

These sets may be interpreted in terms of Figure 2. Recalighee recovers th&-sequence by
doing a depth-first search of the tree. In this contBxtj) is the set of possibly nonzero components
of |l.|Jj> at thejth node. The subsd®;(j) results from indices that lie in nodes not yet traversed,
loosely above the present node in the tree or to the rights&ti®y(j) is precisely the set of indices in
the current node, nodie The seR(j) is the set of indices of elements that have been previously us
to zero other elements and still might remain nonzero thémsgit is the set of indices of elements
that were always at the top of nodes already traversed ingpthefirst search. ThuRy(j) is loosely
a set of entries within nodes to the left and perhaps belove jod'he first lemma, along with the
third, is used to show that the algorithm does not harm ptesheintroduced zeroes.

Lemma 1 Suppose thé™ letter of (j) is the target symbol T, and lab&l(j) = Ry(j) URx(j) U
Rs(j). Then

(z/dZ) o S.())NSIC(j)] S S.(j)NSC(j)]. (20)

More colloquially, theZ/dZ action which determines which amplitudes are mixed byjthéwo-
qudit gate respects the set of dit-strirffy$j). We require the tilde since we do not yet know that the
union of theR,(j) is actually the set of unzeroed entries.

Proof: Due to the choice of a single control on a dit to the right ofifias ¢ in the appropriate
term of thedk-sequenceR;(j) N SIC(j)] = 0. On the other hand, a direct computation verifies that
(Z/dZ) e¢Ro(j) C Ra(j) and also thaRy(j) N SC(j)] = Ra(])-

Finally, we argue thatZ/dZ) ¢, Rz(j) C Rs(j). However, the following partition is in general
nontrivial:

Ra(j) = {Ra(j)NSC(j)]} L{Rs(j)N (S—S[C(j)])}- (21)

ShouldC(j) admit no control, we are done. If not, let< ¢ be the control qudit. Then

Rs(j)NSC(j)] = {fl--- froakekeiq ... kn; fm=cm, f1... fio1>cico---crg, ke € {0,1,...,d—1}}.
(22)
Hence theZ/dZ action respects the partition of Equation 21 as well. O

The second lemma shows that the algorithm proddeced newly guaranteed zeroes at each step.
In particular,z is the set of elements zeroed hiC(j),V(j)].
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Lemma 2 Let C(j) result from gcy...c,_1éb...déb Of the -sequence as i§4.3. Consider the
following set of dit-strings:

z = {€1€2...€1k00...0; ke {1,2,...,d— 1} }. (23)

Then R(j) URe(j) URs(j) =Ru(j+ 1 UR(j + 1) URs(j+1) U z.

Proof: We break our argument into two cases based on the valge of

Casec,_1 < d —1: Considering the lexicographic order and ignoring inappiedp words, the j +
1)St term of thed-sequence is is given iy cy. .. (c,—1+ 1)00...0&. Note that for leaves of the tree,
the buffering sequence of zeroes is vacuous.

Ri(j+1) = Ri(j)UR(]) -z,
Ro(j+1URs(j+1) = Rs(j)

HenceRy(j) URx(j) URs(j) =Ru(j+1) UR(j+ 1) URs(j+1) U z.

Casecy_; = d— 1. Suppose instead the'' &-sequence term isiCa...Cr—2(d — 1) ... &, SO that
the(j+ 1)Stterm ISC1C2...Cr_odededh . ... We note thafcocy ... Ccp2(d—1)0...0} € Re(j)NR2(j +
1)® Then

(24)

Ru(j) Ru(j+1)URx(j+1) — {CoC1...Cr—2(d —1)0...0},
Ro(j) = zu{coCr...co_2(d—1)0...0}, (25)
Re(j) = Rs(j+1).

From the first twoR1(j) UR2(j) = Ri(j + 1) URx(j +1) U z. HenceRy(j) URa(j) URs(j) = Ru(j +
DUR(j+1)URs(j+1)Uz. O

The third lemma shows that the set we considered in Lemmaridied the set of guaranteed
zeros. After which, the main result follows immediately b ffirst of the three lemmas.
Lemma 3 S.(j) = Ri(j)URz(j) LURs(j) is the set of guaranteed zero amplitudes (components) of a
generic|y; ).
Proof: The proofis by induction. Foy = 1, we have

Ri(1) =0, Ry(1)={00...0%}, Ra(1l)={ciCz...Cn_1%; Somec;j > 0}. (26)

Hence the entire index s8t= S, (1) = Ry (1) LU R2(1) UR3(1).

Hence, we suppose by way of induction tiatj) = Ri(j) UR2(j) URs(j) and attempt to prove
the similar statement fagr+ 1. NowA[C( ),V (])] will add new zeroes to the amplitudes (components)
with indicesz by Lemma 2. On the other hand[C(j),V(])] will not destroy any zero amplitudes
existing inS,(j) due to the induction hypothesis and Lemma 1. TBUg+1) =Ry (j+ 1) URx(j +
1) URs(j+1). O
Proof of 1: The main result now follows after combining our three lemmas O

5 Unitary synthesis by reduction to triangular form

In this section, we present an asymptotically optimal ugitarcuit not found in [4]. It leans heavily
on the optimal state-synthesis &Householder. Since this state-synthesis circuit can likewlear
any lengthd" vector using fewer thad" single controls, the asymptotic is perhaps unsurprisireg. Y

bSo in the application, the amplitude (component) of thisinis the single amplitude not zeroed biC(j),V (j)], but it is
immediately afterwards zeroed bYC(j+ 1),V (j+1)].
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the unitary circuit requires highly-controlled one-quudititary operators when clearing entries near
the diagonal. Optimality persists since these are usedhgyarTwo themes should be made clear at
the outset:

e We process the siz#" x d" unitaryV in subblocks of size" 1 x d"1,

e Due to rank considerations, at least one block in each btmtkmn of sized" x d™1 must
remain full rank throughout.

Hence, we cannot carelessly zero subcolumns. One solgtimntiiangularize the" 1 x d"! ma-
trices on the block diagonal, recursively. Given that swgt the counts below show on@(n?d")
fully (n— 1) controlled one-qudit operations appear in the algoritfims is allowed when working
towards an asymptotic @(d?") gates.

The organization for the algorithm is then as follows. Pesoeg (triangularization) 0f moves
along block-columns of sizé" x d"~* from left to right. In each block-column, we first trianguitze
the blockd"* x d"~! block-diagonal element, perhaps adding a control on the sigsificant qudit
to a circuit produced by recursive triangularization. Aftieis recursion, we zero the blocks below
the block-diagonal element one column at a time. For eaalmmoj, 0 < j < d"1—1, the zeroing
process is to collapse ti# 1 x 1 subcolumns onto theijrth entries, again adding a control on the
most significant qudit to prevent destroying earlier worke$e subcolumn collapses produce the bulk
of the zeroes and are done usiglouseholder. After this, fewer thard entries remain to be zeroed
in the column below the diagonal. These are eliminated wsicgntrolled reflection containing— 1
controls and targeting the top line.

We now give a formal statement of the algorithm. We emphasieeaddition of controls when
previously generated circuits are incorporated into thigarsal circuit (i.e. recursively telescoping
control.)

Algorithm 4: Triangle (U, d, n)

if n=1then
TriangularizeJ using aQRreduction.
else

Reduce top-lefti" x d"~* subblock usingriangle (x,d,n — 1), (writing output to bottom
n— 1 circuit lines)
form=0,1,...,d—1do % Block-column iteration
for columnsj = md™1, ... [(m+1)d"1—1] do
for £=(m+1),...,(d —1) do % Block-row iterate
Use&Householderto zero the column entriggn-+ £)d™ 2, ... [(m4 ¢+ 1)d" 1 — 1],
leaving a nonzero entry @mn+ ¢)c,...c, for j = c1Cz...cy and
adding|m- ¢)- control on the most significant qudit.
end for
Clear the remaining nonzero entries below diagonal usimgy\{i c;...cn,V).
end for % All subdiagonal entries zero in block-col
UseTriangle (x,d,n— 1) on thed™ 1 x d"* matrix at the(m+ 1)Stblock diagonal
adding/m+ 1)- control to the most significant qudit.
end for
end if-else
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To generate a circuit for a unitary operatbrwe useTriangle to reduceaJ to a diagonal operator
W= z?ialei@i [) {j|. NowV andU =WV would be indistinguishable if a von Neumann measure-

ment{|j) (]| ?iBl were made after each computation. However, the diagonaipsitant ifU is a
computation corresponding to a subblock of the circuit @rgér computation with other trailing, en-
tangling interactions. In this case, the diagonal unitanylee simulated witd" An_1(V) gates. Writ-
ing j inits d-ary expansion,= jojs ... jn-1 We haven = Moot @4 INCK Ap_g (€914 DALy @n
1N, . By the argument ir§3, the gate count for such a simulationdg&d"(n— 1)27'°%9]. This is
asymptotically irrelevant compared to the lower bound.

5.1 Counting gates and controls

Leth(n,k) be the number df-controls required in th8ingle-Householderreduction of soméy) €

# (n,d). Thenh(n,k) =0 for k > 2. Moreover, each 0-control results from an element of&he
sequence of the form 00.0&é ..., and there ar@ such sequences. Thus, since the number of
elements of thé-sequence isd" — 1)/(d — 1), we see that

h(n,)) = (d"-1)/(d—1)—
{hM = (@-1/@-1-r 7

We next count controls in the matrix algorithfniangle. We break the count into two pieces:
for the work outside the main diagonal blocks anfibr the total work.

Let g(n,k) be the number ok-controls applied in operations in each column that zerahgix
below the block diagonal; this is the total work in tfeg j loops of Triangle. We useSingle-
&Householderd(d — 1)d"~1/2 times since there a(d — 1)/2 blocks of sized"* x d"~! below
the block diagonal, and we add a single control to those ealinth. The last statement in the loop is
executed!" — d"~ times. Therefore, Iettin@‘f be the Kronecker delta, the counts are

1

g(nk) = & Hd"—d" )+ Sd(d— 1)d"th(n—1,k—1). (28)
Supposing > 3, then we see that
dn—dn-1, k=n-1
, n—1<k<3
g(nk) = { d"(d™*-1)-1d"(d-1)(n-1), k=2 (29)
2d"(d-1)(n—-1), k=1
0, k=0.

Finally, let f (n,k) be the total number dé-controlled operations in th&riangle reduction, including
the block diagonals. This work includes that counted,iplus a recursive call tdriangle before the
for mloop, plus(d — 1) calls within thek loop, for a total of

f(n,k) = g(n,k)+ f(n—1,k)+(d—1)f(n—1,k—1), (30)

with f(n,0) =1 andf(1,k) =0 forn,k > 0.
Using the recursive relation of Equation 30 and the count&amfation 29, we next argue that
Triangle has no more tha®(d?") controls. The following lemma is helpful.

Lemma 4 For sufficiently large n, we have(, k) < d2"k+4,
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Proof: By inspection of Equation 29, we see tlggh, k) < (1/2)d?"k+2 for all k andn large. Now
f(n,0) = 1, which we take as an inductive hypothesis while supposimy- 1,¢) < d?"-2-(+4 —
d®-+2_ Thus, using the recursion relation of Equation 30,
B 2 i e o
= d (zzt@+1-7)

Now sinced > 3/2, we must hav% > 2—32, whence an inductive proof of the result. O

By the results fron§3, eactk-controlled single-qudit unitary operator cosgs= O[(k+-2)2+10%(%)]
CINC andCINC~! gates without ancillas. The expected numbecTiiC gates/t for the algorithm
Triangle is then given by the weighted sum for tkecontrol gates in the diagonalization and tife
instances oh — 1-controlled phase gates for emulation of the diagonal:
d"cn_1+ S R-gckf(n.k)

2+logy(d) gn-+4 8+2n <n—1 4—k|.2+[log, d]

on 1)2+I0 (d)dn+4+d8+2nz-k:0d “ (32)
2(n+1)=toR@dgnte 1+ d LI,(ZJFﬂogZd])(l/d)
2(n+ 1)2+Iogz(d)dn+4+26d8+2n.

In the third line we have used the fact that for the Polyladani function, Li (2 fi0g,q7)(1/d) <
Li_3(1/2) = 26.

lr

ININIA I

5.2 Comparison with the spectral algorithm

In an earlier work [4], we described an different algorithondinitary synthesis. That algorithm relied
on a spectral decomposition of the unitary and was also sliowe asymptotically optimal. For a
circuit without ancillas, th€INC gate counts using the spectral algorithm is:

ls<2d™1(d"—1)/(d— 1) — ]+ (n+ 1)ZFoRdgn+4, (33)

Our tests show that the spectral algorithm outperfofriangle when the number of qudits is greater
than two. The general" scaling of both algorithms is shown in Figure 3.

Yet there are several situations wha&rengle may be preferred over the spectral algorithm. First,
consider two-qudit circuits. Fdfriangle eachA1(V) gate is chosen to zero a maximum number of
elements below the diagonal of the unitary resulting froevjmus controlled operations. On average,
d — 1 components are zeroed by each controlled unitary gateechtie number of gates needed to
bring the unitaryJ to diagonal form is the number of zeros below the diagonatidiy byd — 1 or
k= (d*—d?)/[2(d — 1)]. The first of these transformations can be implemented byal [gate but
all subsequent gates must be controlled to avoid introdueaw nonzero elements. For example,
if d = 3, then the elements below the main diagonal are zeroed dintlkeesteps indicated in the
following matrix (X's indicate values that change during the gate sequence):

[x x x x X X X X X|
1 x x X X X X X X
1 1 x x X X X X X
4 5 8 x X X X X X
2 7 8 11 x X X X X|.
2 5 10 11 11 x x X X
4 6 9 13 14 16 x Xx X
3 7 9 12 15 16 18 x X

| 3 6 10 12 14 17 18 18x |
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Fig. 3. Performance comparison of the two algorithms fotamgisynthesis on = 4 qudits as a function of qudit
dimensiond. Triangles (boxes) indicateINC gate counts for th&riangle (spectral) algorithm.

The final diagonal unitarp = 59, _,é@k/lUI=K & can be simulated using controlled single
gudit gates as evident by the decomposition

d—1 d-1
D= I—L[ei’z‘<\1><dfl\+\dfl><ﬂ> ® 1] A1 ( %ei(ij‘kMk‘)[e*ig(m(d*l‘ﬂd*lxm ® 1.
= k=

TheA1 (V) gate countis thefir = d?(d+1)/2+d gates. In contrast, the gate count using the spectral
algorithm is¢s = 2d° — d2.

Second, in certain circumstances it may only be necessawil a unitary up to measurement
in a logical basis. Then the simulation of the final diagonaitary in Triangle can be dropped.
Third, the spectral algorithm requires a classical diagjpation of the unitaryU which requires
O(d®") steps. For matrices of large size, particularly when thezelagenerate eigenstates, numerical
stability can be an issue. The classical computations weebin Triangle also scale likeD(d*") but
are carried out directly in the logical basis of the quditéahly, in zeroing entries in analogy to a
QRdecompositionTriangle has more direct precedents among earlier quantum circsigiein the
literature [12, 1, 13, 2] and in particular the first asymjai@ity optimald = 2 construction [3].

6 Two applications of state-synthesis

A primary motivation for describing state-synthesis citgis to utilize them as subcircuits for unitary
synthesis as 5. Yet there are also independent applications for the gkgor We present two
examples.
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6.1 Computing expected values

First, consider the problem of computing the expectatidmesaf a Hermitian operata < # (n,d) i.e.
AcEnd# (n,d)] =2 Cd"*d" with AT = A. For a system in the possibly mixed statef n qudits, the the
expectation of an operatéris (A) = Tr[Ap]. In some cases there does not exist a physically realistic
direct measurement &. However, one may infer the expectation value by a suitaldighted set

of von Neumann measurements as follows. By the spectratehgany normal operatéx may be
diagonalized by a unitary transformation A=UTDU whereD = 2?251)\1- [J) (j] and{A; }?261 are

the eigenvalues o&. Then

a1
(A) = Tr[Ap] = Tr[DUpuU’] = ZOMTV[ lj) (ilupu™]. (34)
=

Hence we may comput@), given anarbitrary statep, by performing two steps: first, enact the
unitary evolutiorlJ onp, and second perform the computational-basis von Neumaasumnement on
the resulting state, extracting all populations of the batatesj) (j|.

In some instances one may want to know the weight of a quantat®a en a subspace of the
operatorA, i.e. (PsAPs) wherePs is some projection operator onto a subspageC # (n,d). In
particular, consider the case okaimensional subspace diagonal in the eigenbasijs> ?261 of A.
We wish to compute T5X_; A |u;) (uj| p] wherek < d" and the eigenvalues #fhave been reordered
accordingly. Then we can rewrite the projectigsAPs = z'j‘:l)\jW(uj) 11) (iW(uj)T wherew(u;)
is a unitary extension of the mappifhg — |Uj>. The operatoW(u;) is the unitary obtained in the
state-synthesis algorithm. The expectation value is then

k
(PsARS) = Zl?\jTr[ ) (JIW(up) P (uy) ] (35)
P

The expectation value can be measured as before but now ed@nky implement the state-synthesis
operatok times on each stafgof an ensemble of identically prepared states.

The above argument may in fact be generalized to computexgfexation value of any operator
A. First decompose the operatorAs- A, + Aq with A, = (A+AT)/2 the Hermitian part anély =
(A— A1) /2 the anti-Hermitian part oA. Both A, andA, are normal operators and therefore can be
diagonalized. Hence, the expectation value can be comjytestaluating the weighted sum as per
Eq. 34 and summing.

6.2 The general state-synthesis problem

Both Triangle and the spectral algorithm are well adapted to the genextal-synthesis problem. This
problem demands synthesizing any unitary extension of #ngyrstate mapping j) — \LlJ,-) |0<j<
¢ < d"} [1]. ltis unclear what sorts of applications might arise witiee states are arbitrary, requiring
exponentially expensive circuits to build each. Nonetbgléess generic unitaries of this form have
been used in quantum error correction to encode a few logiddits into many physical qudits [15].
Triangle provides one solution to this problem. Start with a matrixtaining \LlJ,-) in its jth
column, with “don’t care” entries in columns after colurin Ignore any operations on the “don’t
care” entries, and discard any gates meant to place zerascatimem.
The spectral algorithm provides an alternative solutionteNhat the matrix) formed from the
product of theZ Householder matrices necessary to reducelthe? matrix [|W1) ... [W,)] to diagonal
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form hasd" — ¢ eigenvalues equal to 1, so the spectral algorithm needsltbdueigenstate, apply a
conditional phase to one logical basis ket, and unbuild itperstate only times.

7 Conclusions

This work concerns asymptotically optimal quantum cirstidtr qudits. By asymptotically optimal,
we mean that the circuits requi@{d") gates of (no more than) two qudits for constructing arbjtrar
states an@®(d?") gates for unitary evolutions. Contributions of this work &ne following:

o We provide the first argument that both asymptotics surweaevhen no ancilla (helper) qudits
are allowed.

e We present the state-synthesis circuit in much more détai previously published, in partic-
ular describing it in terms of iterates ovedasequence. Using th sequence, we provide the
first proof that the state-synthesis circuits actually eed |0) = ).

e We presenfriangle, a new asymptotically optimal quantum circuit for qudit tamies which
is inspired byQR matrix factorization. Since it leans more heavily @R than on spectral
decomposition, the gate parametersiaangle require less classical pre-processing than the
spectral algorithm. Moreoveffiangle more closely resembles earlier quantum circuit design
techniques [12, 3] than other asymptotically optimal quditary circuits.

e §2 provides a constructive proof thetINC} LU (d)®" is exact-universal for qudits.

Some open questions remain. ThgV) gates are much better than earlier practice but not prov-
ably optimal, as is the case with qubits [11]. Moreover, therent best-practica-qubit circuits
exploit the cosine-sine decomposition (CSD). The tensodpet structure for qudits [16] is not as
well adapted to a single CSD as in tle= 2 case, and it is unclear whether a CSD circuit for qudits
could be made asymptotically optimal in theINc} LU (d)®" library.
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