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A WEIGHTED-GCV METHOD FOR LANCZOS-HYBRID REGULARIZATION ~ *
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Abstract. Lanczos-hybrid regularization methods have been propasedfective approaches for solving large-
scale ill-posed inverse problems. Lanczos methods resitiéicsolution to lie in a Krylov subspace, but they are
hindered by semi-convergence behavior, in that the qualitize solution first increases and then decreases. Hybrid
methods apply a standard regularization technique, su€iklagnov regularization, to the projected problem at each
iteration. Thus, regularization in hybrid methods is aebéboth by Krylov filtering and by appropriate choice of
a regularization parameter at each iteration. In this pagedescribe a weighted generalized cross validation (W-
GCV) method for choosing the parameter. Using this methodemonstrate that the semi-convergence behavior of
the Lanczos method can be overcome, making the solutioségsstive to the number of iterations.
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1. Introduction. Linear systems that arise from large-scale inverse prablkem typi-
cally written as

(1.1) b= AXqrue + €,

whereA € R™*" b € R™, andX,,.. € R™. The vectore € R™ represents unknown per-
turbations in the data (such as noise). We will assume tlegbéhturbations are independent
and identically distributed with zero mean; this can ofteralshieved by scaling the original
problem. GiverA andb, the aim is to compute an approximationaf..e.

Inverse problems of the formi (1) arise in many important applications, including image
reconstruction, image deblurring, geophysics, paranidgetification and inverse scattering;
cf. [8, 18, 19, 32]. Typically these problems aik-posed meaning that noise in the data may
give rise to significant errors in computed approximatiohg Q... The ill-posed nature of
the problem is revealed by the singular valuespivhich decay to and cluster at 0. Thiiss
severely ill-conditioned, anekgularizationis used to compute stable approximations Qf.

[8, 15, 18, 32]. Regularization can take many forms; probably the most kredwn choice is
Tikhonov regularization]5], which is equivalent to solving the least squares problem

b| | A «

0 AL
wherelL is aregularization operatoroften chosen as the identity matrix or a discretization
of a differentiation operator. Theegularization parametep is a scalar, usually satisfying

on < X\ < o1, Whereo,, is the smallest singular value é&f ando; is the largest singular
value ofA.

(1.2) min

X
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No regularization method is effective without an approtgrizhoice of the regularization
parameter. Various techniques can be used, such as thegiscy principle, the L-curve,
and generalized cross validation (GC\8) L8, 32]. There are advantages and disadvantages
to each of these approach&s], especially for large-scale problems. For example, to use
the discrepancy principle, it is necessary to have infoionadbout the noise. In the case of
GCV, efficient implementation for Tikhonov regularizatiogguires computing the singular
value decomposition (SVD) of the matix[13], which may be computationally impractical
for large-scale problems. Some savings can be attainedihy adbidiagonalization oA [7],
or the iterative technique proposed by Golub and von M&d, [but the cost can still be
prohibitive for very large matrices. In addition, the medimroposed in14] would need to
be implemented carefully to avoid failure when a trial cleodd parameter in the iteration is
poor [5]. In the case of the L-curve, it may be necessary to salvd for several regular-
ization parameters. This limitation can be partially aé®d by exploiting redundancies and
additional information available in certain iterative neds [3, 10].

An alternative to Tikhonov regularization for large-scpleblems isiterative regular-
ization In this case, an iterative method such as LSQH [s applied to the least squares
problem,

(1.3) mxin||b—AXH2.

When applied to ill-posed problems, iterative methods sash SQR exhibit an interest-
ing “semiconvergence” behavior. Specifically, the eargrations reconstruct information
about the solution, while later iterations reconstrucbinfation about the noise. This be-
havior can be observed (if the exact solution is known) bytiplg the relative errors|x; —
Xtrue|l2/]|X true||2, WhereX.,e is the exact solution arxj, is the solution at théth iteration.
This is illustrated schematically in the left plot of Figutel, where we plot the typical be-
havior of the relative error as the iteration proceeds. ¢Biseexamples are detailed in later
sections.) If we terminate the iteration when the error igimized, we obtain a regular-
ized solution. Unfortunately the exact soluti®g.,. is not known in practical problems, so
a plot of the relative errors cannot be used to find the optierahination point. However,
parameter selection methods such as the discrepancygen@CV and L-curve (see, for
example, 18]) can be used to estimate this termination point. The diffjds that these tech-
nigues are not perfect, and, as illustrated in the left pidtigurel.1, an imprecise estimate
of the termination point can result in a solution whose egagrror is significantly higher
than the optimal.

The semiconvergence behavior of LSQR can be stabilized g wshybrid method
that combines an iterative Lanczos bidiagonalization ritigm with a direct regularization
scheme, such as Tikhonoy, , 4, 16, 22, 23, 25, 29] or truncated SVD. The basic idea of this
approach is to project the large-scale problem onto Krylthspaces of small (but increasing)
dimension. The projected problem can be solved cheaplygusity direct regularization
method. The potential benefits of this approach are illtestran the right plot of Figuré.. 1
Notice that, in contrast to the behavior of the relative exfor LSQR, the hybrid approach
can effectively stabilize the iteration so that an impreqjsver) estimate of the stopping
iteration does not have a deleterious effect on the compdtiedion.

A disadvantage of the hybrid approach is that at each itaratie must choose a new
regularization parameter for the projected problem. Altfto this is not computationally
expensive, in order for the approach to be viable for pratficoblems, we must choose
good parameters. Optimal choices for the parameter at ¢éar@tion result in convergence
behavior similar to that illustrated in the right plot of kig 1.1 However, our computational
experience indicates that such optimal behavior cannotxpeated when using parameter
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LSQR, no regularization. LSQR-Tikhonov hybrid method.
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FIG. 1.1. These plots represent relative errofss;, — X true|l2/[|X true||2, Wherex ¢rue is the true solution,
andxy, is the solution at théth iteration. The left plot illustrates semiconvergencadeor of the iterative method
LSQR for an ill-posed problem; a regularized solution is poied by terminating the iteration when the relative
error is small, but the error can be very large if this termiiven point is over-estimated. The right plot illustrates
how this semiconvergence behavior can be stabilized wiiteaative LSQR-Tikhonov hybrid method.

selection methods such as the discrepancy principle, G@\haL-curve; see als@§].

In this paper we consider a Lanczos-hybrid method, usingdrikv regularization, with
the regularization parameter for the projected problensehdy GCV. We show that GCV
has a strong tendency to over-estimate the regularizaticangeter, but that a weighted-GCV
(W-GCV) method can be very effective.

An outline for the rest of the paper is as follows. In sectibwe review Tikhonov
regularization, the GCV method, and SVD based implemeanntatiln sectior8 we describe
the Lanczos-hybrid method, with Tikhonov regularizatiam the projected problem. We
illustrate the deficiencies of using GCV with that methodéntgon4. We show that although
it is efficient, it generally provides a parameter estimhgg ts too large. This can seriously
degrade the overall convergence behavior. In se&jove describe the W-GCV method and
show how it is related to the standard GCV. Numerical expenits are provided in sectidgh
that illustrate the effectiveness of the W-GCV method onttst problems (introduced in
section4.1), and some concluding remarks are given in section

2. Tikhonov regularization and GCV. To establish notation used in the paper, we
briefly review Tikhonov regularization and GCV. In partiauyl we show that by using the
SVD of the matrixA, we can recast the Tikhonov problem as a filtering methoddtitien,
the SVD allows us to put the GCV function into a computatignebnvenient form. Although
this SVD approach is impractical for large-scale probleitris,both an extremely useful tool
for problems of small dimension and an important compongtiteoLanczos-hybrid method.

Tikhonov regularization requires solving the minimizatiproblem given in1.2). For
ease of notation, we taketo be the identity matrix. LeA = UXV? denote the SVD oA,
where the columns; of U andv; of V contain, respectively, the left and right singular vectors
of A, andX = diag(o1, 02, . . ., 0,) Is @ diagonal matrix containing the singular valueé\pf
with oy > 05 > ... > 0, > 0. ReplacingA by its SVD and performing a little algebraic
manipulation, we obtain the Tikhonov regularized solution

" u’b
(2.1) X=>_ Pi= —Vi,
i=1 !
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2

whereg¢; = a?jf)ﬁ € 10, 1] are the Tikhonov filter factors; cf.1B]. Note that choosing

A = 0 corresponds t@; = 1 for all 4, which in turn gives the solution td.(3). The regular-
ization parameten,, plays a crucial role in the quality of the solution. For exdeif \ is too
large, the filter factors damp (or, equivalently, filter otad many of the components in the
SVD expansionZ.1), and the corresponding solutiondser-smoothedOn the other hand,
if X is too small, the filter factors damp too few components, &aedbrresponding solution
is under-smoothed

As mentioned in the introduction, a variety of parameteriolanethods can be used
to determine\. We choose to use GCV, which is a predictive statistics-dbasethod that
does not require a priori estimates of the error norm. Thichdea of GCV is that a good
choice of\ should predict missing values of the data. That is, if antety element of the
observed data is left out, then the corresponding regeldsplution should be able to predict
the missing observation fairly wellf]. We leave out each data valtigin turn and seek the
value of\ that minimizes the prediction errors, measured by the GGi¢tian

nl[(1 — AAD)b|3
(trace{l - AAK)) ’

(2-2) GA,b()\) =

whereATA = (ATA + X21)~'A” represents the pseudo-inverse [otf; ] and gives the

regularized solutiornx, = Aib. ReplacingA with its SVD, (2.2) can be rewritten as

n <zn: <m)2 + _in: (u?b)2>

i=1

(2.3) G, (A=

which is a computationally convenient form to evaluate stmaking GCV easily used with
standard minimization algorithms.

3. Lanczos-hybrid methods. Using GCV to determine the Tikhonov regularization pa-
rameter can be quite effective, but the minimization fumci2.3) requires that the SVD of
the matrixA be computed, and this is not feasible witeis too big. This leads us to Lanczos-
hybrid methods, which make computing the SVD of the opertgasible by projecting the
problem onto a subspace of small dimension. As describeddtion 1 and illustrated in
Figurel.1, hybrid methods can be an effective way to stabilize the semviergent behavior
that is characteristic of iterative methods like LSQR whpplid to ill-posed problems. Us-
ing an iterative method like Lanczos bidiagonalization )Bn combination with a direct
method like Tikhonov regularization on the projected pewmb) we can hope to efficiently
solve large-scale, ill-posed inverse problems. In thigisecwe provide some background
on the Lanczos-hybrid methods.

Given a matrixA and vectoib, LBD is an iterative scheme that computes the decompo-
sition

WTAY =B,

whereW andY are orthonormal matrices, amlis a lower bidiagonal matrix. Théth it-
eration of LBD computes théth columns ofY and B, and the(k + 1)st column ofW.



ETNA

Kent State University
etna@mcs.kent.edu

WEIGHTED-GCV 153

Specifically, at iteratiork, for k = 1,...,n, we have ann x (k + 1) matrix Wy, ann x k
matrix Y;, ann x 1 vectory,  ,, and a(k + 1) x k bidiagonal matrixB;, such that

(3.1) AWy, = YiBY + k1Yp i1 €11

wheree,; denotes the last column of the identity matrix of dimengiba 1) anday 11 will
be the(k + 1)st diagonal entry 0By ;. MatriceswW,, andY. have orthonormal columns, and
the first column ofV;, is b/||b||.

Given these relations, we approximate the least squaresepno

Inxin [|b— AX||2
by theprojectedLS problem

min ||b— AXx||z = min||W;‘£b — Bfl|2
XER(Yr) f

(3.3) — min||der — Byf[l>,

wheres = ||b||, and choose our approximate solutionxags= Y f. Thus each iteration of
the LBD method requires solving a least squares problenmivimgra bidiagonal matrixBy,.
Implementations of LBD iterative methods such as LSQR dcerpticitly form the matrices
W, Y., andBy when solving well-conditioned problems. Instead, effitigpdating of the
solution is used, and only a few vectors are stoB8d [For ill-conditioned problems, though,
the matrices are often stored so that regularization caippléea.

An important property of LBD is that the singular valuesBaffor small values of; tend
to approximate the largest and smallest singular valués[@P]. Since the original problem
is ill-posed,B; may become very ill-conditioned. Therefore, regularizatmust be used to
compute

fy =B} e,

as described in sectioh Notice that since the dimension Bf; is very small compared
to A, we can afford to use SVD-based filtering methods to solvé fand SVD-based pa-
rameter choice methods to findat each iteration. O’Leary and Simmor&9] proposed
using Tikhonov regularization to solve the projected peotland Bprck [1] suggested using
truncated SVD (TSVD) with GCV to choose the regularizati@ngmeters. A variety of ex-
isting methods can be implemented. For a comparative stedyKilmer and O’LearyZ3].
Bjorck [1] also suggested using GCV as a way to determine an apprept@iping iteration.

In the next section we illustrate how well this method works Fikhonov regularization,
using the GCV function,

kIO~ ByBL el

2
(wracel - B18].,))

By, Bey ( )

to choose regularization parameters &3] at each iteration. Note that if we define the SVD
of the(k + 1) x k matrix By, as

(3.4 B =P | ot |af.
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thenG,, ., (A) canbe written as
2 )‘2 A ? e 2
kB Z (52 A2 [Pk el]z) + ([Pk el]k+1)
(3.5) GBk,@el(A) = i=1 5 ,

where[P{eﬂ i denotes thgth component of the vect®;. e;, ands; is theith largest singular
value ofBy, (i.e., theith diagonal element oA ).

4. Experimental results using Lanczos-hybrid methods and GV. To illustrate the
behavior of the GCV and W-GCV methods in Lanczos-hybrid mé#hwe use six problems.
All computations are done in MATLAB. Data and code used iis {per can be obtained
from http://www.mathcs.emory.edu/"nagy/WGCV

4.1. Test problems.The first problem comes from the iterative image deblurriagip
age, ‘RestoreTools’J6]. Image deblurring has the forimn = AX ... + &, where the vector
Xtrue FEPresents the true image scefds a matrix representing a blurring operation, dnd
is a vector representing the observed, blurred and noisgem@&ivenA andb, the aim is to
reconstruct an approximation &f,,.. The RestoreTools package has several data sets and
tools (such as matrix construction and multiplication noes) that can be used with iterative
methods. The data set we use consists of a true imagesafedlite and a so-called point
spread function (PSF) that defines the blurring operatidre MatrixA is constructed from
the PSF, using a matrix construction routine in RestoresloWVe then form the noise-free
blurred image ab,yc = AXrue- The MATLAB instructions are:

>> |oad satellite

>> A = psfMatrix(PSF);

>> b _true = A*x_true;
The images hav@56 x 256 pixels, so the vectord ... and X, have length256> =
65,536. The functionpsfMatrix  uses an efficient data structure scheme to represent the
65,536 x 65,536 matrix A, and the multiplication operator, *, is overloaded to alléw
efficient computation of matrix-vector multiplicationgesp6] for more details.

The other five test problems are taken from the ‘Reguladrafiools’ package17].

In each case we generate anx n matrix A, true solution vectok,.., and (noise-free)
observation vectab,., settingn = 256.
e Phillipsis Phillips’ “famous” test problemA, b, andx .. are obtained by discretiz-
ing the first kind Fredholm integral equatibfs) = fi a(s,t)x(t)dt, where

a(s,t){ 1+ cos(TE) | |5 —t] < 3,

0 . |s—1t] >3,
_f T+cos(B) , |t <3,
= TS
B 1 TS 9 . s
b(s) = (6 — |s]) <1 + 3 cos( 3 )) + o sin( 3 ).

In MATLAB, the problem can be constructed with the simpleestaent:
>> [A, b_true, x_true] = phillips(n);
wheren is the dimension of the problem.
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e Shaw is a one-dimensional image restoration problénandx,,. are obtained by
discretizing, on the interval 3 < s,¢ < 7, the functions

sin(u)

u

a(s,t) = (cos(s) + cos(t)) ( > , u = 7(sin(s) + sin(t)),
z(t) = 2exp(—6(t — 0.8)%) + exp(—2(t + 0.5)%)

andb.,. = AXue- The data can be constructed with the simple MATLAB state-
ment:
>> [A, b_true, x_true] = shaw(n);
wheren is the dimension of the problem.
e Deriv2 constructsA b andx true DY discretizing a first kind Fredholm integral equa-
tion, b(s fo t)dt, 0 < s < 1, where the kernek(s, t) is given by the
Green S functlon for the second derivative:

a(s,t)z{ st—1) , s<t,

t(s—1) , s>t

There are several choices forandb; in this paper, we use(t) = ¢t andb(s) =
(s — s)/6. The data can be constructed with the simple MATLAB statemen
>> [A, b_true, x_true] = deriv2(n);
wheren is the dimension of the problem.
e Baart constructsA b andxtrue by discretizing the first kind Fredholm integral equa-
tionb(s) = [ a( t)dt,0 < s < %, where

a(s,t) = exp(scost),
x(t) = sint,
2sinh
b(s) = sinh s

The data can be constructed with the simple MATLAB statement
>> [A, b_true, x_true] = baart(n);
wheren is the dimension of the problem.
e Heatis an inverse heat equation using the Volterra integral éoyuaf the first kind
on [0, 1] with kernela(s, t) = k(s — t), where

k() = %exp <_%> .

The vectoix ... does not have a simple functional representation, butréltoen-
structed directly as a discrete vector; sé¢ for details. The right-hand sideis
produced ab ... = AXiue- The data can be constructed with the simple MATLAB
statement:

S

>> [A, b_true, x_true] = heat(n);
wheren is the dimension of the problem.
In order to simulate noisy data, as modeled by equatiof,(for each test problem, we
generate a noise vecterwhose entries are chosen from a normal distribution withrmea
and variance 1, and scaled so that

lell2

——=— =0.1 (i.e., noise level = 10%
HAXtrueH2 ( )
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4.2. What goes wrong in using GCV-Lanczos?We solved these test problems with
the Lanczos-based hybrid method, using GCV to choose thieofikv regularization pa-
rameter); at each iteration. The results are shown in Figre In all of our examples,
LSQR, which is essentially LBD with no regularization, exits semiconvergent behavior,
as we expect. If we use ‘optimal’ regularization paramestsach iteration (determined us-
ing knowledge ofx,,.. to make the relative error in the solution as small as poskitthen
Lanczos-hybrid methods would be excellent at stabilizimegregularized solution, as shown
with the dashed lines. However, in realistic situations,deenot know the optimal solution,
so this is impossible. On thehillips, ShawandDeriv2 problems, the performance of stan-
dard GCV, though slightly worse than optimal, is acceptabler the other three problems,
the convergence behavior for GCV is significantly worse thjiimal.

A major concern is the possibility that rounding errors ie tomputation of the ma-
tricesWy, Y andB, are causing the poor behavior. 8¢k, Grimme and Van Doorer?]
showed that in some cases reorthogonalization may be reeyefss better performance,
and LarsenZ5] considered partial reorthogonalization. However, in tmsts GCV still had
difficulty even after reorthogonalization. Another optisnto use a different regularization
method such as TSVD or exponential filtering, but we fourttelio no improvement in the
solution. In addition, we delayed regularization untileaft > k,,;, to wait until B, more
fully captures the ill-conditioning oA, but that attempt proved futile as well.

We now know that there are good choices of the regularizgi@gmameter, so the poor be-
havior is caused by the suboptimal parameter chosen by GGkelnext section we propose
replacing it by a weighted-GCV method which shows much bédavior.

5. Weighted-GCV. In this section we describe a modification of the GCV function
which we callweighted-GCW-GCV), that will improve our ability to choose regulariza
tion parameters for the projected problem. We first des¢hbeapproach for Tikhonov regu-
larization for a general linear system of equations, and #®w in sectiob.3how to apply
it to the projected problem.

5.1. W-GCV for Tikhonov regularization. The standard GCV method is a popular
parameter choice method used in a variety of applicatioogiekier, as we have just seen,
the method may not perform well for certain classes of prokleOther studies in statisti-
cal nonparametric modeling and function approximatioreddhat in practical applications,
GCV occasionally chose Tikhonov parameters too small ethhetunder-smoothing the so-
lution [6, 9, 24, 28, 31]. To circumvent this problem, these papers use a concepimha
call weighted-GCV. In contrast, we observed over-smoatldifficulties when using GCV
in Lanczos-hybrid methods, which motivated us to use a mifferange of weights in the
W-GCV method.

Instead of the Tikhonov GCV function defined i2.?), we consider the weighted-GCV
function

n||(1 = AAD)b||?
.
(trace(l — wAAK))

GA, b (w7 )‘) =

Notice the function’s dependency on a new parameten the denominator trace term.
Choosingw = 1 gives the standard GCV functio.¢). If we choosewv > 1, we obtain
smoother solutions, while < 1 results in less smooth solutions. The obvious question here
is how to choose a good value for To our knowledge, in all work using W-GCYV, only ex-
perimental approaches are used to cheaseor smoothing spline applications, Kim and Gu
empirically found that standard GCV consistently producegllarization parameters that
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FIG. 4.1. These plots show the relative errji;, — X truel|2/|[X true||2, at each iteration of LSQR and the
Lanczos-hybrid method. Upper left: Satellite. Upper rigRegtools-Phillips. Middle left: Regtools-Shaw. Middle
right: Regtools-Deriv2. Bottom left: Regtools-Baart. ®woh right: Regtools-Heat. The standard GCV method
chooses regularization parameters that are too large ahdataration, which causes poor convergence behavior.

were too small, while choosing in the range of 1.2-1.4 worked wel4)]. In our problems,
though, the GCV regularization parameter is chosen to@Jaagd thus we seek a parame-
terw in the rangd < w < 1. In addition, rather than using a user-defined parameteceho
for w as in previous papers, we propose a more automated appl@dh also versatile and
can be used on a variety of problems.

5.2. Interpretations of the W-GCV method. In this section, we consider the W-GCV
method and look at various theoretical aspects of the metiydlooking at different in-
terpretations of the W-GCV method, we hope to shed some bighthe role of the new
parametew.
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As mentioned in sectio, the standard GCV method is a “leave-one-out” prediction
method. In fact, in leaving out th¢th observation, the derivation seeks to minimize the
prediction error(b; — [Ax];)?, whenx is the minimizer of

m
> (b = [AX:)? + NIX][3-
i=1,i#j

If we define then x m matrix
E, = diag(1,1,...1,0,1, ...1),

where0 is the;j*" entry, then the above minimization is equivalent to
min|E; (b — AX)|3 + 2?3

We can derive the W-GCV method in a similar manner, but weeandtuse aveighted
“leave-one-out” philosophy. More specifically, considee tasé) < w < 1. Then define the
matrix

F; = diag(1,1,..1,V1 —w,1,..1),

where/1 — w is the j*" diagonal entry ofF;. By using the W-GCV method, we seek a
solution to the minimization problem,

min [|F; (b — AX)|[3 + A[|x]3.

In this problem, theith observation is still present but has been down-weighyettié factor
V1 —w; thus it is completely left out whew = 1. A derivation of the W-GCV method
follows immediately from the derivation of the GCV methodifwl in [11].

By introducing a new parameter in the trace term of the GC\¢fion, we not only intro-
duce a new weighted prediction approach, but also changetérpretation of the function
we are minimizing. We consider the special case of Tikhorgularization and look at how
the GCV function is altered algebraically and graphicall§fvthe new parameter. Using the
SVD expansion of, it can be shown that the trace term in the standard GCV fonds
given by

n 2
tracel — AAL) = Z PNy + (m—n).

i=1 ¢

In contrast, the trace term for the W-GCV function is given by

" (1 —w)o? + N2
tracql — WAA;) Z W
i=1

+ (m—n)

-
Il

[
NgE

(1_ ¢1+Z 2+>\2 ( n)

Thus, ifw < 1 then we are adding a multiple of the sum of the filter factorh&ooriginal
trace term, and ifo > 1 we are subtracting a multiple. The graph of the GCV functilzo a
undergoes changes ass changed from 1. The denominator becomes zero for some valu
of w > 1, so the W-GCV function has a pole. Fortunately, in our case, w < 1. Note
that larger values ab result in larger computed regularization parameters, araller values

of w result in smaller values oX.

-
Il
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5.3. W-GCYV for the bidiagonal system. In the previous subsection we discussed W-
GCV in the context of Tikhonov regularization on the oriditfiull) system of equations
involving A andb. This allowed us to provide a general description, but ouriaito apply W-
GCV to choosing regularization parameters for the progept@blem, 8.3). In this specific
case, the W-GCYV function has the form

K|(1 — BiB )83
2
(trace{l - kaBLA))

) k )\2 . 2 2
kg (Z <52_|_/\2 [Pk el]i) ([Pkel]k+1) )
i=1 i
(1 —w)d? + N2
(1 * Z 57+ A2 )

where, using the notation introduced B%), Py, is an orthogonal matrix containing the left
singular vectors 0By, J; is the ith largest singular value d;, andW/b = jBe; with
B = ||b||. Note that this reduces to the expression3rs\whenw = 1.

GBk, Beq (w,A) =

)

5.4. Choosingw. For many ill-posed problems, a good valueuwfs crucial for the
success of Lanczos-hybrid methods. In this section we densiow different values ab
may affect convergence behavior and present an adaptiveagipfor finding a good value
for w.

Consider the test probleheat whose convergence graph with Tikhonov regularization
and the standard GCV method is given in the bottom right coshE&igure4.1. To illustrate
the effects of using the W-GCV function with Lanczos-hybmethods, we present results
using the same fixed value ofat all steps of the iteration. The results are shown in Fi§ute

For this particular example, it is evident that= 0.2 is a good value for the new param-
eter. However, finding a goad in this way is not possible since the true solution is gemeral
not available. Hence, we introduce an automated, adapppeoach that in our experience
produces adequate results.

Recall from sectiorB that at each iteration of the Lanczos-hybrid method, weestite
projected LS problem3(3) using Tikhonov regularization. Since the early iterasiaf LBD
do not capture the ill-conditioning of the problem, we expéat little or no regularization
is needed to solve the projected LS problem. Agt,; denote the optimal regularization
parameter at thg'” iteration. Then, we can assume that for smalk, ., sShould satisfy

0< )\k,opt < Omin (Bk) )

whereo,,,;, denotes the smallest singular value of the matrix. If adtien &, we assume
that we know)\;, .+, then we can finds by minimizing the GCV function with respect to.
That is, solving

o AR CY)

Since we do not know\, ,,,;, we instead findv,, corresponding to\x opr = Tmin (Bi)-
In later iterations, this approach fails becausg;, (B;) becomes nearly zero due to ill-
conditioning. For these iterations, a better approach élaptively take

=0.
A=k opt

wp = mean{w,, vy, ..., wg}.
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FiG. 5.1. This figure shows plots of the relative erroliy — X true||2/||X true||2, for LSQR and the Lanczos-
hybrid method for the Heat example from Regtools. The vanmots show how the convergence behavior changes
when regularization parameters are chosen using the W-GEtad with different values of. Note thatw = 1 is
equivalent to using standard GCV, and= 0 is equivalent to using no regularization.

By averaging the previously computedvalues, we are essentially using the earlier well-
conditioned components of our problem to help stabilizehttenful effects of the smaller
singular values. There are two disadvantages to this aplprogirst, it over-smooths the
solutions at early iterations, since it uses a rather lagjaevof A for a well-conditioned
problem. Since these solutions are discarded, this is niginéfisant difficulty. Second, it
undersmooths values for large so semiconvergence will eventually reappear. However, in
practice we will also be using a method like GCV to choose pgstg iteration, sd will not

be allowed to grow too large; this is discussed in the follmpsubsection.
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5.5. Stopping criteria for LBD. The next practical issue to consider is an approach
to determine an appropriate point at which to stop the i@mnatBjorck [1] suggested using
GCV for this purpose, when TSVD is used to solve the projeptettlem. However, Rjrck,
Grimme and Van Doorer?] showed that modifications of the algorithm were needed tkema
the approach effective for practical problems. Specifjcttiley proposed a fairly complicated
scheme based on implicitly restarting the iterations.

In this section we describe a similar approach for Tikhoregutarization, but we do not
need implicit restarts. We begin by defining the computedt&wni at each iteration of the
Lanczos hybrid method as

(5.1) i = Yify, = Yi(BI By + A1) 'BIW/ b= Ajb.

Using the basic idea of GCV, we would like to determine a stogjiteration,k, that mini-
mizes

f
(5.2) Gk = 0 *AAk)bH%z .
(trace{l - AA%))

Using 6.1) and @3.2), the numerator of equatioB.@) can be written as

n||(l = AADD|2 = n||(I — Bx(BY By + A7) B} ) gey |13 .

If we now replaceB;, with its SVD (3.4), we obtain

2

Ak
0T+A7
nll(1 — AADb]3 = n? T PLer
ESY:
1 2
k 2
)\2 2
_ 2 k 1T 1
(5.3) =np (; (m [Pk elL) + ([Pk el}kJrl) ) :

Similarly, the denominator of equatioB.@) can be written as

2 o2 :
_ AAT _ _ _ Tk
(5.4) (trace(l AAk)) ((m k) + ; 7+ Ai) .
Thus, combining%.3) and £.4), equation $.2) can be written as
k 2
A2 2
W (Z (52 PEel,) +(Pre..) )
(5.5) G(k) = =1 > :
k )\2
_ _ Tk
<(m k)+;5i2+>\%>

This is the form o@(k) that we use to determine a stopping iteration in our impleatems.

The numerator i/ k times the numerator ir8(5) for G, , (Ax), and the denominator differs
only in its first term.
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In the ideal situation where the convergence behavior of rezos-hybrid method is
perfectly stabilized, we expegy; to converge to a fixed value corresponding to an appropri-
ate regularization parameter for the original problen®) In this case the values ¢f (k)
converge to a fixed value. Therefore, we choose to termihatédrations when these values
change very little,

Gk +1) — G(k)

= < tol,
G(1)

for some prescribed tolerance.

However, as remarked in the previous subsection, it may Ip@ssible to completely
stabilize the iterations for realistic problems, resgtin slight semiconvergent behavior of
the iterations. In this case, the GCV valu&&k) will begin to increase. Thus, we implement
a second stopping criteria to stop at iteratigrsatisfying

ko = argnin G(k).

In the next section we present some numerical experimertksami implementation of the
Lanczos-hybrid method that uses this approach.

6. Numerical results. We now illustrate the effectiveness of using the W-GCV mdtho
in Lanczos-hybrid methods with Tikhonov regularization.

6.1. Results on various test problemsWe implement the adaptive method presented
in section5.4for choosingv and provide numerical results for each of the test problérhs.
resulting convergence curves are displayed in Figute

In all of the test problems, choosingadaptively provides nearly optimal convergence
behavior. The results for thehillips and Shawproblems are excellent with the adaptive
W-GCV approach. Th&atellite, Baartand Heat examples exhibit a slowed convergence
compared to Tikhonov with the optimal regularization pagten but achieve much better
results than with the standard GCV. This slowed convergéndele to the fact that at the
early iterations the projected problem is well conditiorsetl W-GCV produces a solution
that is too smooth. At later iterations, when more smallglagvalue information is captured
in the bidiagonalization process, better and hence\, parameters are found, and the W-
GCV parameter choice is close to optimal. In addition, W-G&Mids the early stagnhation
behavior that GCV exhibits.

It should be noted that when LBD takes many iterations, prditmning could be used
to accelerate convergence. |t is interesting to note tr@aD#riv2 example converges, but
eventually exhibits small signs of semiconvergent belraevertheless, the results are still
better than the standard GCV, and, moreover, if combinel thé stopping criteria described
in the previous section, the results are quite good. Totithis, in Table5.1 we report the
iteration at which our code detected a minimunmGf).

TABLE 6.1
Results of using(k) to determine a stopping iteration. The numbers reportedis tiable are the iteration
index at which our Lanczos-hybrid code detected a minimuGi(&f).

Problem \Satellite Phillips Shaw Deriv2 Baart Heat
Stopping Iteration| 197 18 23 20 9 21

Comparing the results in Table 1 with the convergence history plots shown in Fig-
ure6.1, we see that our approach to choosing a stopping iteratiegryseffective. Although
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FIG. 6.1. These plots show the relative errfji;, — X truel|2/||X true||2, at each iteration of LSQR and the
Lanczos-hybrid method. Upper left: Satellite. Upper rigRegtools-Phillips. Middle left: Regtools-Shaw. Middle
right: Regtools-Deriv2. Bottom left: Regtools-Baart. ®woh right: Regtools-Heat. The standard GCV method
chooses regularization parameters that are too large atheiéeration, which cause poor convergence behavior.
However, the W-GCV method, with our adaptive approach testo produces near optimal convergence behavior.

the scheme does not perform as well onBlaartexample, the results are still quite good con-
sidering the difficulty of this problem. (Observe that wiih regularization, semiconvergence
happens very quickly, and we should therefore expect diffe=lin stabilizing the iterations.)
These results show that our W-GCV method performs betterstendard GCV, and that we
are able to determine an appropriate stopping iterationwida class of problems.

We also remark that th8atelliteexample is a much larger problem than the other ex-
amples, and so more iterations are needed. However, theasiinybrid method can easily
incorporate standard preconditioning techniques to acatd convergence. For tatellite
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image deblurring example, we used a Kronecker product bassmbnditioner 20, 21, 27]
implemented in RestoreTool&€]. In this case, the Lanczos-hybrid method, with W-GCV,
detects a minimum af(k) in only 54 iterations. The corresponding solution has nedagr-
ror 0.4001, which is actually slightly lower than the relaterror 0.4061 achieved at iteration
197 when using no preconditioning.

6.2. Effect of noise orw. We now consider how the choice©fdepends on the amount
of noise in the data. In particular, we report on numericallts for the test problems de-
scribed in sectiod.1 with three different noise levels:

el

——=— =10.1,0.01, and0.001.
HAXtrueHZ

Thus these problems have 10%, 1% and 0.1% noise levels taghecSome of the results
reported in previous sections for 10% noise are repeatedfbecomparison purposes.

Recall that because standard GCV computes regularizati@myeters that are too large,
we should choosé < w < 1 in W-GCV. Generally we observe that the over-smoothing
caused by standard GCV is more pronounced for larger noisésleTherefore large noise
levels typically need smaller values of while small noise levels need larger values.of
Our next experiments were designed to see how far the “ofitiralue of w differs from the
GCV valuew = 1. The results are shown in Tabie2, which displaysv values that allow
W-GCV to compute near-optimal regularization parameteesaah iteration of the Lanczos-
hybrid method. For example, in Figusel we see that for 10% noise,= 0.2 produces near
optimal convergence behavior for thieat problem, and thus this value appears in the first
row, last column of table.

TABLE 6.2

Values ofw (found experimentally) that produce optimal convergereiedvior of the Lanczos-hybrid method

for different noise levels. Figure.2 shows how these values perform on the Baart and Heat examples

Satellite Phillips Shaw Deriv2 Baart Heat

Noise Level|  wopt Wopt Wopt Wopt Wopt  Wopt
10% 0.40 0.20 0.05 0.10 0.01 0.20
1% 0.50 0.40 0.05 0.20 0.05 0.40
0.1% 0.80 0.50 0.10 0.60 0.10 0.80

The results reported in Tab2 were found experimentally. We see clearly from this
table that optimal values @ depend on the noise level (increasing with decreasing noise
level), as well as with the problem. However, more work isdeskto better understand these
relationships.

Figure 6.2 shows how our adaptive approach to choosingompares to the optimal
values on two of the test problemBgart andHeaf) and for the various noise levels. These
two test problems are representative of the convergencavimetwe observe with the other
test problems. We see that if a good choicevofan be found, W-GCV is very effective
(much more so than GCV) at choosing regularization parameaad thus at stabilizing the
convergence behavior, especially for high noise levelstadeer, although we do not yet have
a scheme that chooses the optimal value gthese results show that our adaptive approach
produces good results on a wide class of problems, and fausnoise levels.

7. Concluding remarks. In this paper, we have considered using a weighted-GCV
method in Lanczos-hybrid methods for solving large scélpdsed problems. The W-GCV
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FIG. 6.2. These plots show the relative errji;, — X truel|2/||X true||2, at each iteration of LSQR and the
Lanczos-hybrid method. The plots on the left correspontedaart example, for three different noise levels. The
plots on the right correspond to the Heat example. Optimaia#s ofw (found experimentally) produce optimal
convergence behavior, and our adaptive approach to chaopmduces near optimal convergence behavior. It can
be observed that standard GCV is ineffective for moderakégio levels of noise.

method requires choosing yet another parameter, so we ged@nd implemented an adap-
tive, automatic approach for choosing this parameter. Weothstrated through a variety of
test problems that our approach was effective in stabgis@miconvergence behavior.

The MATLAB implementations used to generate the resultsgrted in this paper can
be obtained froninttp://www.mathcs.emory.edu/ nagy/WGCV

Several open questions remain. With the ability to obtaar o@timal solutions, Lanczos-
hybrid methods should have a significant impact on many egiidins. Recently, Kilmer,
Hansen and Espal [22] suggested a projection-based algorithm that can be imgrisad
for more general regularization operators. We can treatithrative method as a hybrid
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method and apply W-GCV. In addition, we would like to see hoallWW-GCV works in
combination with truncated SVD and Lanczos-hybrid methddsally, work remains to be
done on alternative ways to determine the new parameteeiiCV method.
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