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Abstract. Lanczos-hybrid regularization methods have been proposedas effective approaches for solving large-
scale ill-posed inverse problems. Lanczos methods restrict the solution to lie in a Krylov subspace, but they are
hindered by semi-convergence behavior, in that the qualityof the solution first increases and then decreases. Hybrid
methods apply a standard regularization technique, such asTikhonov regularization, to the projected problem at each
iteration. Thus, regularization in hybrid methods is achieved both by Krylov filtering and by appropriate choice of
a regularization parameter at each iteration. In this paperwe describe a weighted generalized cross validation (W-
GCV) method for choosing the parameter. Using this method wedemonstrate that the semi-convergence behavior of
the Lanczos method can be overcome, making the solution lesssensitive to the number of iterations.

Key words. generalized cross validation, ill-posed problems, iterative methods, Lanczos bidiagonalization,
LSQR, regularization, Tikhonov

AMS subject classifications.65F20, 65F30

1. Introduction. Linear systems that arise from large-scale inverse problems are typi-
cally written as

(1.1) b = Ax true + ε ,

whereA ∈ R
m×n, b ∈ R

m, andx true ∈ R
n. The vectorε ∈ R

m represents unknown per-
turbations in the data (such as noise). We will assume that the perturbations are independent
and identically distributed with zero mean; this can often be achieved by scaling the original
problem. GivenA andb, the aim is to compute an approximation ofx true.

Inverse problems of the form (1.1) arise in many important applications, including image
reconstruction, image deblurring, geophysics, parameteridentification and inverse scattering;
cf. [8, 18, 19, 32]. Typically these problems areill-posed, meaning that noise in the data may
give rise to significant errors in computed approximations of x true. The ill-posed nature of
the problem is revealed by the singular values ofA, which decay to and cluster at 0. ThusA is
severely ill-conditioned, andregularizationis used to compute stable approximations ofx true

[8, 15, 18, 32]. Regularization can take many forms; probably the most well known choice is
Tikhonov regularization [15], which is equivalent to solving the least squares problem

(1.2) min
x
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[
b
0

]
−
[

A
λL

]
x
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2

,

whereL is a regularization operator, often chosen as the identity matrix or a discretization
of a differentiation operator. Theregularization parameterλ is a scalar, usually satisfying
σn ≤ λ ≤ σ1, whereσn is the smallest singular value ofA andσ1 is the largest singular
value ofA.
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No regularization method is effective without an appropriate choice of the regularization
parameter. Various techniques can be used, such as the discrepancy principle, the L-curve,
and generalized cross validation (GCV) [8, 18, 32]. There are advantages and disadvantages
to each of these approaches [23], especially for large-scale problems. For example, to use
the discrepancy principle, it is necessary to have information about the noise. In the case of
GCV, efficient implementation for Tikhonov regularizationrequires computing the singular
value decomposition (SVD) of the matrixA [13], which may be computationally impractical
for large-scale problems. Some savings can be attained by using a bidiagonalization ofA [7],
or the iterative technique proposed by Golub and von Matt [14], but the cost can still be
prohibitive for very large matrices. In addition, the method proposed in [14] would need to
be implemented carefully to avoid failure when a trial choice of parameter in the iteration is
poor [5]. In the case of the L-curve, it may be necessary to solve (1.2) for several regular-
ization parameters. This limitation can be partially alleviated by exploiting redundancies and
additional information available in certain iterative methods [3, 10].

An alternative to Tikhonov regularization for large-scaleproblems isiterative regular-
ization. In this case, an iterative method such as LSQR [30] is applied to the least squares
problem,

(1.3) min
x

‖b − Ax‖2.

When applied to ill-posed problems, iterative methods suchas LSQR exhibit an interest-
ing “semiconvergence” behavior. Specifically, the early iterations reconstruct information
about the solution, while later iterations reconstruct information about the noise. This be-
havior can be observed (if the exact solution is known) by plotting the relative errors,‖xk −
x true‖2/‖x true‖2, wherex true is the exact solution andxk is the solution at thekth iteration.
This is illustrated schematically in the left plot of Figure1.1, where we plot the typical be-
havior of the relative error as the iteration proceeds. (Specific examples are detailed in later
sections.) If we terminate the iteration when the error is minimized, we obtain a regular-
ized solution. Unfortunately the exact solutionx true is not known in practical problems, so
a plot of the relative errors cannot be used to find the optimaltermination point. However,
parameter selection methods such as the discrepancy principle, GCV and L-curve (see, for
example, [18]) can be used to estimate this termination point. The difficulty is that these tech-
niques are not perfect, and, as illustrated in the left plot in Figure1.1, an imprecise estimate
of the termination point can result in a solution whose relative error is significantly higher
than the optimal.

The semiconvergence behavior of LSQR can be stabilized by using a hybrid method
that combines an iterative Lanczos bidiagonalization algorithm with a direct regularization
scheme, such as Tikhonov [1, 2, 4, 16, 22, 23, 25, 29] or truncated SVD. The basic idea of this
approach is to project the large-scale problem onto Krylov subspaces of small (but increasing)
dimension. The projected problem can be solved cheaply using any direct regularization
method. The potential benefits of this approach are illustrated in the right plot of Figure1.1.
Notice that, in contrast to the behavior of the relative errors for LSQR, the hybrid approach
can effectively stabilize the iteration so that an imprecise (over) estimate of the stopping
iteration does not have a deleterious effect on the computedsolution.

A disadvantage of the hybrid approach is that at each iteration we must choose a new
regularization parameter for the projected problem. Although this is not computationally
expensive, in order for the approach to be viable for practical problems, we must choose
good parameters. Optimal choices for the parameter at each iteration result in convergence
behavior similar to that illustrated in the right plot of Figure1.1. However, our computational
experience indicates that such optimal behavior cannot be expected when using parameter
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FIG. 1.1. These plots represent relative errors,‖xk − x true‖2/‖x true‖2, wherex true is the true solution,
andxk is the solution at thekth iteration. The left plot illustrates semiconvergence behavior of the iterative method
LSQR for an ill-posed problem; a regularized solution is computed by terminating the iteration when the relative
error is small, but the error can be very large if this termination point is over-estimated. The right plot illustrates
how this semiconvergence behavior can be stabilized with aniterative LSQR-Tikhonov hybrid method.

selection methods such as the discrepancy principle, GCV and the L-curve; see also [23].
In this paper we consider a Lanczos-hybrid method, using Tikhonov regularization, with

the regularization parameter for the projected problem chosen by GCV. We show that GCV
has a strong tendency to over-estimate the regularization parameter, but that a weighted-GCV
(W-GCV) method can be very effective.

An outline for the rest of the paper is as follows. In section2 we review Tikhonov
regularization, the GCV method, and SVD based implementations. In section3 we describe
the Lanczos-hybrid method, with Tikhonov regularization for the projected problem. We
illustrate the deficiencies of using GCV with that method in section4. We show that although
it is efficient, it generally provides a parameter estimate that is too large. This can seriously
degrade the overall convergence behavior. In section5, we describe the W-GCV method and
show how it is related to the standard GCV. Numerical experiments are provided in section6
that illustrate the effectiveness of the W-GCV method on thetest problems (introduced in
section4.1), and some concluding remarks are given in section7.

2. Tikhonov regularization and GCV. To establish notation used in the paper, we
briefly review Tikhonov regularization and GCV. In particular, we show that by using the
SVD of the matrixA, we can recast the Tikhonov problem as a filtering method. In addition,
the SVD allows us to put the GCV function into a computationally convenient form. Although
this SVD approach is impractical for large-scale problems,it is both an extremely useful tool
for problems of small dimension and an important component of the Lanczos-hybrid method.

Tikhonov regularization requires solving the minimization problem given in (1.2). For
ease of notation, we takeL to be the identity matrix. LetA = UΣVT denote the SVD ofA,
where the columnsui of U andvi of V contain, respectively, the left and right singular vectors
of A, andΣ = diag(σ1, σ2, . . . , σn) is a diagonal matrix containing the singular values ofA,
with σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0. ReplacingA by its SVD and performing a little algebraic
manipulation, we obtain the Tikhonov regularized solution

xλ =

n∑

i=1

φi
uT

i b
σi

vi,(2.1)



ETNA
Kent State University 
etna@mcs.kent.edu

152 J. CHUNG, J. NAGY, AND D. O’LEARY

whereφi =
σ2

i

σ2
i + λ2

∈ [0, 1] are the Tikhonov filter factors; cf. [18]. Note that choosing

λ = 0 corresponds toφi = 1 for all i, which in turn gives the solution to (1.3). The regular-
ization parameter,λ, plays a crucial role in the quality of the solution. For example, if λ is too
large, the filter factors damp (or, equivalently, filter out)too many of the components in the
SVD expansion (2.1), and the corresponding solution isover-smoothed. On the other hand,
if λ is too small, the filter factors damp too few components, and the corresponding solution
is under-smoothed.

As mentioned in the introduction, a variety of parameter choice methods can be used
to determineλ. We choose to use GCV, which is a predictive statistics-based method that
does not require a priori estimates of the error norm. The basic idea of GCV is that a good
choice ofλ should predict missing values of the data. That is, if an arbitrary element of the
observed data is left out, then the corresponding regularized solution should be able to predict
the missing observation fairly well [18]. We leave out each data valuebj in turn and seek the
value ofλ that minimizes the prediction errors, measured by the GCV function

G
A, b

(λ) =
n‖(I − AA†

λ)b‖2
2(

trace(I − AA†
λ)
)2 ,(2.2)

whereA†
λ = (AT A + λ2I)−1AT represents the pseudo-inverse of

[
A
λI

]
, and gives the

regularized solution,xλ = A†
λb. ReplacingA with its SVD, (2.2) can be rewritten as

G
A, b

(λ) =

n

(
n∑

i=1

(
λ2uT

i b
σ2

i + λ2

)2

+

m∑

i=n+1

(uT
i b)2

)

(
(m − n) +

n∑

i=1

λ2

σ2
i + λ2

)2 ,(2.3)

which is a computationally convenient form to evaluate, thus making GCV easily used with
standard minimization algorithms.

3. Lanczos-hybrid methods.Using GCV to determine the Tikhonov regularization pa-
rameter can be quite effective, but the minimization function (2.3) requires that the SVD of
the matrixA be computed, and this is not feasible whenA is too big. This leads us to Lanczos-
hybrid methods, which make computing the SVD of the operatorfeasible by projecting the
problem onto a subspace of small dimension. As described in section1 and illustrated in
Figure1.1, hybrid methods can be an effective way to stabilize the semiconvergent behavior
that is characteristic of iterative methods like LSQR when applied to ill-posed problems. Us-
ing an iterative method like Lanczos bidiagonalization (LBD) in combination with a direct
method like Tikhonov regularization on the projected problem, we can hope to efficiently
solve large-scale, ill-posed inverse problems. In this section, we provide some background
on the Lanczos-hybrid methods.

Given a matrixA and vectorb, LBD is an iterative scheme that computes the decompo-
sition

W T AY = B ,

whereW andY are orthonormal matrices, andB is a lower bidiagonal matrix. Thekth it-
eration of LBD computes thekth columns ofY and B, and the(k + 1)st column ofW.
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Specifically, at iterationk, for k = 1, . . . , n, we have anm × (k + 1) matrix Wk, ann × k
matrix Yk, ann × 1 vectoryk+1, and a(k + 1) × k bidiagonal matrixBk such that

AT Wk = YkBT
k + αk+1yk+1eT

k+1,(3.1)

AYk = WkBk,(3.2)

whereek+1 denotes the last column of the identity matrix of dimension(k+1) andαk+1 will
be the(k+1)st diagonal entry ofBk+1. MatricesWk andYk have orthonormal columns, and
the first column ofWk is b/‖b‖.

Given these relations, we approximate the least squares problem

min
x

||b − Ax||2

by theprojectedLS problem

min
x∈R(Yk)

||b − Ax||2 = min
f

||WT
k b − Bkf||2

= min
f

||βe1 − Bkf||2 ,(3.3)

whereβ = ‖b‖, and choose our approximate solution asxk = Ykf. Thus each iteration of
the LBD method requires solving a least squares problem involving a bidiagonal matrixBk.
Implementations of LBD iterative methods such as LSQR do notexplicitly form the matrices
Wk, Yk, andBk when solving well-conditioned problems. Instead, efficient updating of the
solution is used, and only a few vectors are stored [30]. For ill-conditioned problems, though,
the matrices are often stored so that regularization can be applied.

An important property of LBD is that the singular values ofBk for small values ofk tend
to approximate the largest and smallest singular values ofA [12]. Since the original problem
is ill-posed,Bk may become very ill-conditioned. Therefore, regularization must be used to
compute

fλ = βB†
k,λe1 ,

as described in section2. Notice that since the dimension ofBk is very small compared
to A, we can afford to use SVD-based filtering methods to solve forfλ and SVD-based pa-
rameter choice methods to findλ at each iteration. O’Leary and Simmons [29] proposed
using Tikhonov regularization to solve the projected problem, and Bj̈orck [1] suggested using
truncated SVD (TSVD) with GCV to choose the regularization parameters. A variety of ex-
isting methods can be implemented. For a comparative study;see Kilmer and O’Leary [23].
Björck [1] also suggested using GCV as a way to determine an appropriate stopping iteration.

In the next section we illustrate how well this method works for Tikhonov regularization,
using the GCV function,

G
Bk, βe1

(λ) =
k‖(I − BkB†

k,λ)βe1‖2
2

(
trace(I − BkB†

k,λ)
)2 ,

to choose regularization parameters for (3.3) at each iteration. Note that if we define the SVD
of the(k + 1) × k matrix Bk as

(3.4) Bk = Pk

[
∆k

0
T

]
QT

k ,
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thenG
Bk, βe1

(λ) can be written as

G
Bk, βe1

(λ) =

kβ2

(
k∑

i=1

(
λ2

δ2
i + λ2

[
PT

k e1

]
i

)2

+
([

PT
k e1

]
k+1

)2
)

(
1 +

k∑

i=1

λ2

δ2
i + λ2

)2 ,(3.5)

where
[
PT

k e1

]
j

denotes thejth component of the vectorPT
k e1, andδi is theith largest singular

value ofBk (i.e., theith diagonal element of∆k).

4. Experimental results using Lanczos-hybrid methods and GCV. To illustrate the
behavior of the GCV and W-GCV methods in Lanczos-hybrid methods, we use six problems.
All computations are done in MATLAB. Data and code used in this paper can be obtained
from http://www.mathcs.emory.edu/˜nagy/WGCV .

4.1. Test problems.The first problem comes from the iterative image deblurring pack-
age, ‘RestoreTools’ [26]. Image deblurring has the formb = Ax true + ε, where the vector
x true represents the true image scene,A is a matrix representing a blurring operation, andb
is a vector representing the observed, blurred and noisy image. GivenA andb, the aim is to
reconstruct an approximation ofx true. The RestoreTools package has several data sets and
tools (such as matrix construction and multiplication routines) that can be used with iterative
methods. The data set we use consists of a true image of asatelliteand a so-called point
spread function (PSF) that defines the blurring operation. The matrixA is constructed from
the PSF, using a matrix construction routine in RestoreTools. We then form the noise-free
blurred image asb true = Ax true. The MATLAB instructions are:

>> load satellite
>> A = psfMatrix(PSF);
>> b_true = A*x_true;

The images have256 × 256 pixels, so the vectorsb true and x true have length2562 =
65, 536. The functionpsfMatrix uses an efficient data structure scheme to represent the
65, 536 × 65, 536 matrix A, and the multiplication operator, *, is overloaded to allowfor
efficient computation of matrix-vector multiplications; see [26] for more details.

The other five test problems are taken from the ‘Regularization Tools’ package [17].
In each case we generate ann × n matrix A, true solution vectorx true, and (noise-free)
observation vectorb true, settingn = 256.

• Phillips is Phillips’ “famous” test problem.A, b, andx true are obtained by discretiz-
ing the first kind Fredholm integral equationb(s) =

∫ 6

−6
a(s, t)x(t)dt, where

a(s, t) =

{
1 + cos(π(s−t)

3 ) , |s − t| < 3,
0 , |s − t| ≥ 3,

x(t) =

{
1 + cos(πt

3 ) , |t| < 3,
0 , |t| ≥ 3,

b(s) = (6 − |s|)
(

1 +
1

2
cos(

πs

3
)

)
+

9

2π
sin(

π|s|
3

).

In MATLAB, the problem can be constructed with the simple statement:
>> [A, b_true, x_true] = phillips(n);

wheren is the dimension of the problem.

http://www.mathcs.emory.edu/~nagy/WGCV
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• Shaw is a one-dimensional image restoration problem.A andx true are obtained by
discretizing, on the interval−π

2 ≤ s, t ≤ π
2 , the functions

a(s, t) = (cos(s) + cos(t))

(
sin(u)

u

)2

, u = π(sin(s) + sin(t)),

x(t) = 2 exp(−6(t − 0.8)2) + exp(−2(t + 0.5)2) ,

andb true = Ax true. The data can be constructed with the simple MATLAB state-
ment:

>> [A, b_true, x_true] = shaw(n);
wheren is the dimension of the problem.

• Deriv2 constructsA, b andx true by discretizing a first kind Fredholm integral equa-
tion, b(s) =

∫ 1

0
a(s, t)x(t)dt, 0 ≤ s ≤ 1, where the kernela(s, t) is given by the

Green’s function for the second derivative:

a(s, t) =

{
s(t − 1) , s < t,
t(s − 1) , s ≥ t.

There are several choices forx andb; in this paper, we usex(t) = t andb(s) =
(s3 − s)/6. The data can be constructed with the simple MATLAB statement:

>> [A, b_true, x_true] = deriv2(n);
wheren is the dimension of the problem.

• Baart constructsA, b andx true by discretizing the first kind Fredholm integral equa-
tion b(s) =

∫ π

0
a(s, t)x(t)dt, 0 ≤ s ≤ π

2 , where

a(s, t) = exp(s cos t),

x(t) = sin t,

b(s) =
2 sinh s

s
.

The data can be constructed with the simple MATLAB statement:
>> [A, b_true, x_true] = baart(n);

wheren is the dimension of the problem.
• Heat is an inverse heat equation using the Volterra integral equation of the first kind

on [0, 1] with kernela(s, t) = k(s − t), where

k(t) =
t−3/2

2
√

π
exp

(
− 1

4t

)
.

The vectorx true does not have a simple functional representation, but rather is con-
structed directly as a discrete vector; see [17] for details. The right-hand sideb is
produced asb true = Ax true. The data can be constructed with the simple MATLAB
statement:

>> [A, b_true, x_true] = heat(n);
wheren is the dimension of the problem.

In order to simulate noisy data, as modeled by equation (1.1), for each test problem, we
generate a noise vectorε whose entries are chosen from a normal distribution with mean 0
and variance 1, and scaled so that

‖ε‖2

‖Ax true‖2
= 0.1 (i.e., noise level = 10%).
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4.2. What goes wrong in using GCV-Lanczos?.We solved these test problems with
the Lanczos-based hybrid method, using GCV to choose the Tikhonov regularization pa-
rameterλk at each iteration. The results are shown in Figure4.1. In all of our examples,
LSQR, which is essentially LBD with no regularization, exhibits semiconvergent behavior,
as we expect. If we use ‘optimal’ regularization parametersat each iteration (determined us-
ing knowledge ofx true to make the relative error in the solution as small as possible), then
Lanczos-hybrid methods would be excellent at stabilizing the regularized solution, as shown
with the dashed lines. However, in realistic situations, wedo not know the optimal solution,
so this is impossible. On thePhillips, ShawandDeriv2 problems, the performance of stan-
dard GCV, though slightly worse than optimal, is acceptable. For the other three problems,
the convergence behavior for GCV is significantly worse thanoptimal.

A major concern is the possibility that rounding errors in the computation of the ma-
tricesWk, Yk andBk are causing the poor behavior. Björck, Grimme and Van Dooren [2]
showed that in some cases reorthogonalization may be necessary for better performance,
and Larsen [25] considered partial reorthogonalization. However, in ourtests GCV still had
difficulty even after reorthogonalization. Another optionis to use a different regularization
method such as TSVD or exponential filtering, but we found little to no improvement in the
solution. In addition, we delayed regularization until after k > kmin to wait until Bk more
fully captures the ill-conditioning ofA, but that attempt proved futile as well.

We now know that there are good choices of the regularizationparameter, so the poor be-
havior is caused by the suboptimal parameter chosen by GCV. In the next section we propose
replacing it by a weighted-GCV method which shows much better behavior.

5. Weighted-GCV. In this section we describe a modification of the GCV function,
which we callweighted-GCV(W-GCV), that will improve our ability to choose regulariza-
tion parameters for the projected problem. We first describethe approach for Tikhonov regu-
larization for a general linear system of equations, and then show in section5.3how to apply
it to the projected problem.

5.1. W-GCV for Tikhonov regularization. The standard GCV method is a popular
parameter choice method used in a variety of applications; however, as we have just seen,
the method may not perform well for certain classes of problems. Other studies in statisti-
cal nonparametric modeling and function approximation noted that in practical applications,
GCV occasionally chose Tikhonov parameters too small, thereby under-smoothing the so-
lution [6, 9, 24, 28, 31]. To circumvent this problem, these papers use a concept that we
call weighted-GCV. In contrast, we observed over-smoothing difficulties when using GCV
in Lanczos-hybrid methods, which motivated us to use a different range of weights in the
W-GCV method.

Instead of the Tikhonov GCV function defined in (2.2), we consider the weighted-GCV
function

G
A, b

(ω, λ) =
n||(I − AA†

λ)b||2
(

trace(I − ωAA†
λ)
)2 .

Notice the function’s dependency on a new parameterω in the denominator trace term.
Choosingω = 1 gives the standard GCV function (2.2). If we chooseω > 1, we obtain
smoother solutions, whileω < 1 results in less smooth solutions. The obvious question here
is how to choose a good value forω. To our knowledge, in all work using W-GCV, only ex-
perimental approaches are used to chooseω. For smoothing spline applications, Kim and Gu
empirically found that standard GCV consistently producedregularization parameters that
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FIG. 4.1. These plots show the relative error,‖xk − x true‖2/‖x true‖2, at each iteration of LSQR and the
Lanczos-hybrid method. Upper left: Satellite. Upper right: Regtools-Phillips. Middle left: Regtools-Shaw. Middle
right: Regtools-Deriv2. Bottom left: Regtools-Baart. Bottom right: Regtools-Heat. The standard GCV method
chooses regularization parameters that are too large at each iteration, which causes poor convergence behavior.

were too small, while choosingω in the range of 1.2-1.4 worked well [24]. In our problems,
though, the GCV regularization parameter is chosen too large, and thus we seek a parame-
terω in the range0 < ω ≤ 1. In addition, rather than using a user-defined parameter choice
for ω as in previous papers, we propose a more automated approach that is also versatile and
can be used on a variety of problems.

5.2. Interpretations of the W-GCV method. In this section, we consider the W-GCV
method and look at various theoretical aspects of the method. By looking at different in-
terpretations of the W-GCV method, we hope to shed some lighton the role of the new
parameterω.
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As mentioned in section2, the standard GCV method is a “leave-one-out” prediction
method. In fact, in leaving out thejth observation, the derivation seeks to minimize the
prediction error(bj − [Ax]j)

2, whenx is the minimizer of

m∑

i=1,i 6=j

(bi − [Ax]i)
2 + λ2||x||22.

If we define them × m matrix

Ej = diag(1, 1, ...1, 0, 1, ...1),

where0 is thejth entry, then the above minimization is equivalent to

min
x

||Ej(b − Ax)||22 + λ2||x||22.

We can derive the W-GCV method in a similar manner, but we instead use aweighted
“leave-one-out” philosophy. More specifically, consider the case0 < ω < 1. Then define the
matrix

Fj = diag(1, 1, ...1,
√

1 − ω, 1, ...1),

where
√

1 − ω is the jth diagonal entry ofFj . By using the W-GCV method, we seek a
solution to the minimization problem,

min
x

||Fj(b − Ax)||22 + λ2||x||22.

In this problem, thejth observation is still present but has been down-weighted by the factor√
1 − ω; thus it is completely left out whenω = 1. A derivation of the W-GCV method

follows immediately from the derivation of the GCV method found in [11].
By introducing a new parameter in the trace term of the GCV function, we not only intro-

duce a new weighted prediction approach, but also change theinterpretation of the function
we are minimizing. We consider the special case of Tikhonov regularization and look at how
the GCV function is altered algebraically and graphically with the new parameter. Using the
SVD expansion ofA, it can be shown that the trace term in the standard GCV function is
given by

trace(I − AA†
λ) =

n∑

i=1

λ2

σ2
i + λ2

+ (m − n).

In contrast, the trace term for the W-GCV function is given by:

trace(I − ωAA†
λ) =

n∑

i=1

(1 − ω)σ2
i + λ2

σ2
i + λ2

+ (m − n)

=

n∑

i=1

(1 − ω)φi +

n∑

i=1

λ2

σ2
i + λ2

+ (m − n).

Thus, if ω < 1 then we are adding a multiple of the sum of the filter factors tothe original
trace term, and ifω > 1 we are subtracting a multiple. The graph of the GCV function also
undergoes changes asω is changed from 1. The denominator becomes zero for some value
of ω > 1, so the W-GCV function has a pole. Fortunately, in our case,0 < ω ≤ 1. Note
that larger values ofω result in larger computed regularization parameters, and smaller values
of ω result in smaller values ofλ.
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5.3. W-GCV for the bidiagonal system. In the previous subsection we discussed W-
GCV in the context of Tikhonov regularization on the original (full) system of equations
involving A andb. This allowed us to provide a general description, but our aim is to apply W-
GCV to choosing regularization parameters for the projected problem, (3.3). In this specific
case, the W-GCV function has the form

G
Bk, βe1

(ω, λ) =
k‖(I − BkB†

k,λ)βe1‖2
2

(
trace(I − ωBkB†

k,λ)
)2

=

kβ2

(
k∑

i=1

(
λ2

δ2
i + λ2

[
PT

k e1

]
i

)2

+
([

PT
k e1

]
k+1

)2
)

(
1 +

k∑

i=1

(1 − ω)δ2
i + λ2

δ2
i + λ2

)2 ,

where, using the notation introduced in (3.5), Pk is an orthogonal matrix containing the left
singular vectors ofBk, δi is the ith largest singular value ofBk, and W T

k b = βe1 with
β = ‖b‖. Note that this reduces to the expression in (3.5) whenω = 1.

5.4. Choosingω. For many ill-posed problems, a good value ofω is crucial for the
success of Lanczos-hybrid methods. In this section we consider how different values ofω
may affect convergence behavior and present an adaptive approach for finding a good value
for ω.

Consider the test problemHeat, whose convergence graph with Tikhonov regularization
and the standard GCV method is given in the bottom right corner of Figure4.1. To illustrate
the effects of using the W-GCV function with Lanczos-hybridmethods, we present results
using the same fixed value ofω at all steps of the iteration. The results are shown in Figure5.1.

For this particular example, it is evident thatω = 0.2 is a good value for the new param-
eter. However, finding a goodω in this way is not possible since the true solution is generally
not available. Hence, we introduce an automated, adaptive approach that in our experience
produces adequate results.

Recall from section3 that at each iteration of the Lanczos-hybrid method, we solve the
projected LS problem (3.3) using Tikhonov regularization. Since the early iterations of LBD
do not capture the ill-conditioning of the problem, we expect that little or no regularization
is needed to solve the projected LS problem. Letλk,opt denote the optimal regularization
parameter at thekth iteration. Then, we can assume that for smallk, λk,opt should satisfy

0 ≤ λk,opt ≤ σmin (Bk) ,

whereσmin denotes the smallest singular value of the matrix. If at iteration k, we assume
that we knowλk,opt, then we can findω by minimizing the GCV function with respect toω.
That is, solving

∂

∂λ

(
G

Bk, βe1
(ω, λ)

)∣∣∣∣
λ=λk,opt

= 0.

Since we do not knowλk,opt, we instead find̂ωk corresponding toλk,opt = σmin (Bk).
In later iterations, this approach fails becauseσmin (Bk) becomes nearly zero due to ill-
conditioning. For these iterations, a better approach is toadaptively take

ωk = mean{ω̂1, ω̂2, . . . , ω̂k} .
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FIG. 5.1.This figure shows plots of the relative errors,‖xk − x true‖2/‖x true‖2, for LSQR and the Lanczos-
hybrid method for the Heat example from Regtools. The various plots show how the convergence behavior changes
when regularization parameters are chosen using the W-GCV method with different values ofω. Note thatω = 1 is
equivalent to using standard GCV, andω = 0 is equivalent to using no regularization.

By averaging the previously computedω values, we are essentially using the earlier well-
conditioned components of our problem to help stabilize theharmful effects of the smaller
singular values. There are two disadvantages to this approach. First, it over-smooths the
solutions at early iterations, since it uses a rather large value ofλ for a well-conditioned
problem. Since these solutions are discarded, this is not a significant difficulty. Second, it
undersmooths values for largek, so semiconvergence will eventually reappear. However, in
practice we will also be using a method like GCV to choose a stopping iteration, sok will not
be allowed to grow too large; this is discussed in the following subsection.
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5.5. Stopping criteria for LBD. The next practical issue to consider is an approach
to determine an appropriate point at which to stop the iteration. Björck [1] suggested using
GCV for this purpose, when TSVD is used to solve the projectedproblem. However, Bj̈orck,
Grimme and Van Dooren [2] showed that modifications of the algorithm were needed to make
the approach effective for practical problems. Specifically, they proposed a fairly complicated
scheme based on implicitly restarting the iterations.

In this section we describe a similar approach for Tikhonov regularization, but we do not
need implicit restarts. We begin by defining the computed solution at each iteration of the
Lanczos hybrid method as

(5.1) xk = Ykfλk
= Yk(BT

k Bk + λ2
kI)−1BT

k WT
k b ≡ A†

kb .

Using the basic idea of GCV, we would like to determine a stopping iteration,k, that mini-
mizes

Ĝ(k) =
n‖(I − AA†

k)b‖2
2(

trace(I − AA†
k)
)2 .(5.2)

Using (5.1) and (3.2), the numerator of equation (5.2) can be written as

n‖(I − AA†
k)b‖2

2 = n‖(I − Bk(BT
k Bk + λ2

kI)−1BT
k )βe1‖2

2 .

If we now replaceBk with its SVD (3.4), we obtain

n‖(I − AA†
k)b‖2

2 = nβ2

∥∥∥∥∥∥∥∥∥∥∥





λ2

k

δ2

1
+λ2

k

. ..
λ2

k

δ2

k
+λ2

k

1




PT

k e1

∥∥∥∥∥∥∥∥∥∥∥

2

2

= nβ2

(
k∑

i=1

(
λ2

k

δ2
i + λ2

k

[
PT

k e1

]
i

)2

+
([

PT
k e1

]
k+1

)2
)

.(5.3)

Similarly, the denominator of equation (5.2) can be written as

(5.4)
(

trace
(

I − AA†
k

))2

=

(
(m − k) +

k∑

i=1

λ2
k

δ2
i + λ2

k

)2

.

Thus, combining (5.3) and (5.4), equation (5.2) can be written as

(5.5) Ĝ(k) =

nβ2

(
k∑

i=1

(
λ2

k

δ2
i + λ2

k

[
PT

k e1

]
i

)2

+
([

PT
k e1

]
k+1

)2
)

(
(m − k) +

k∑

i=1

λ2
k

δ2
i + λ2

k

)2 .

This is the form ofĜ(k) that we use to determine a stopping iteration in our implementations.
The numerator isn/k times the numerator in (3.5) for G

A, b
(λk), and the denominator differs

only in its first term.
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In the ideal situation where the convergence behavior of theLanczos-hybrid method is
perfectly stabilized, we expectλk to converge to a fixed value corresponding to an appropri-
ate regularization parameter for the original problem (1.2). In this case the values of̂G(k)
converge to a fixed value. Therefore, we choose to terminate the iterations when these values
change very little,

∣∣∣∣∣
Ĝ(k + 1) − Ĝ(k)

Ĝ(1)

∣∣∣∣∣ < tol ,

for some prescribed tolerance.
However, as remarked in the previous subsection, it may be impossible to completely

stabilize the iterations for realistic problems, resulting in slight semiconvergent behavior of
the iterations. In this case, the GCV valuesĜ(k) will begin to increase. Thus, we implement
a second stopping criteria to stop at iterationk0 satisfying

k0 = argmin
k

Ĝ(k) .

In the next section we present some numerical experiments with an implementation of the
Lanczos-hybrid method that uses this approach.

6. Numerical results. We now illustrate the effectiveness of using the W-GCV method
in Lanczos-hybrid methods with Tikhonov regularization.

6.1. Results on various test problems.We implement the adaptive method presented
in section5.4for choosingω and provide numerical results for each of the test problems.The
resulting convergence curves are displayed in Figure6.1.

In all of the test problems, choosingω adaptively provides nearly optimal convergence
behavior. The results for thePhillips and Shawproblems are excellent with the adaptive
W-GCV approach. TheSatellite, BaartandHeat examples exhibit a slowed convergence
compared to Tikhonov with the optimal regularization parameter but achieve much better
results than with the standard GCV. This slowed convergenceis due to the fact that at the
early iterations the projected problem is well conditionedand W-GCV produces a solution
that is too smooth. At later iterations, when more small singular value information is captured
in the bidiagonalization process, betterω, and henceλ, parameters are found, and the W-
GCV parameter choice is close to optimal. In addition, W-GCVavoids the early stagnation
behavior that GCV exhibits.

It should be noted that when LBD takes many iterations, preconditioning could be used
to accelerate convergence. It is interesting to note that the Deriv2 example converges, but
eventually exhibits small signs of semiconvergent behavior. Nevertheless, the results are still
better than the standard GCV, and, moreover, if combined with the stopping criteria described
in the previous section, the results are quite good. To illustrate, in Table6.1 we report the
iteration at which our code detected a minimum ofĜ(k).

TABLE 6.1
Results of usingbG(k) to determine a stopping iteration. The numbers reported in this table are the iteration

index at which our Lanczos-hybrid code detected a minimum ofbG(k).

Problem Satellite Phillips Shaw Deriv2 Baart Heat
Stopping Iteration 197 18 23 20 9 21

Comparing the results in Table6.1 with the convergence history plots shown in Fig-
ure6.1, we see that our approach to choosing a stopping iteration isvery effective. Although
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FIG. 6.1. These plots show the relative error,‖xk − x true‖2/‖x true‖2, at each iteration of LSQR and the
Lanczos-hybrid method. Upper left: Satellite. Upper right: Regtools-Phillips. Middle left: Regtools-Shaw. Middle
right: Regtools-Deriv2. Bottom left: Regtools-Baart. Bottom right: Regtools-Heat. The standard GCV method
chooses regularization parameters that are too large at each iteration, which cause poor convergence behavior.
However, the W-GCV method, with our adaptive approach to chooseω produces near optimal convergence behavior.

the scheme does not perform as well on theBaartexample, the results are still quite good con-
sidering the difficulty of this problem. (Observe that with no regularization, semiconvergence
happens very quickly, and we should therefore expect difficulties in stabilizing the iterations.)
These results show that our W-GCV method performs better than standard GCV, and that we
are able to determine an appropriate stopping iteration on awide class of problems.

We also remark that theSatelliteexample is a much larger problem than the other ex-
amples, and so more iterations are needed. However, the Lanczos-hybrid method can easily
incorporate standard preconditioning techniques to accelerate convergence. For theSatellite
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image deblurring example, we used a Kronecker product basedpreconditioner [20, 21, 27]
implemented in RestoreTools [26]. In this case, the Lanczos-hybrid method, with W-GCV,
detects a minimum of̂G(k) in only 54 iterations. The corresponding solution has relative er-
ror 0.4001, which is actually slightly lower than the relative error 0.4061 achieved at iteration
197 when using no preconditioning.

6.2. Effect of noise onω. We now consider how the choice ofω depends on the amount
of noise in the data. In particular, we report on numerical results for the test problems de-
scribed in section4.1with three different noise levels:

‖ε‖2

‖Ax true‖2
= 0.1, 0.01, and0.001.

Thus these problems have 10%, 1% and 0.1% noise levels respectively. Some of the results
reported in previous sections for 10% noise are repeated here for comparison purposes.

Recall that because standard GCV computes regularization parameters that are too large,
we should choose0 < ω ≤ 1 in W-GCV. Generally we observe that the over-smoothing
caused by standard GCV is more pronounced for larger noise levels. Therefore large noise
levels typically need smaller values ofω, while small noise levels need larger values ofω.
Our next experiments were designed to see how far the “optimal” value of ω differs from the
GCV valueω = 1. The results are shown in Table6.2, which displaysω values that allow
W-GCV to compute near-optimal regularization parameters at each iteration of the Lanczos-
hybrid method. For example, in Figure5.1we see that for 10% noise,ω = 0.2 produces near
optimal convergence behavior for theHeatproblem, and thus this value appears in the first
row, last column of table.

TABLE 6.2
Values ofω (found experimentally) that produce optimal convergence behavior of the Lanczos-hybrid method

for different noise levels. Figure6.2shows how these values perform on the Baart and Heat examples.

Satellite Phillips Shaw Deriv2 Baart Heat
Noise Level ωopt ωopt ωopt ωopt ωopt ωopt

10 % 0.40 0.20 0.05 0.10 0.01 0.20
1% 0.50 0.40 0.05 0.20 0.05 0.40

0.1% 0.80 0.50 0.10 0.60 0.10 0.80

The results reported in Table6.2 were found experimentally. We see clearly from this
table that optimal values ofω depend on the noise level (increasing with decreasing noise
level), as well as with the problem. However, more work is needed to better understand these
relationships.

Figure 6.2 shows how our adaptive approach to choosingω compares to the optimal
values on two of the test problems (Baart andHeat) and for the various noise levels. These
two test problems are representative of the convergence behavior we observe with the other
test problems. We see that if a good choice ofω can be found, W-GCV is very effective
(much more so than GCV) at choosing regularization parameters, and thus at stabilizing the
convergence behavior, especially for high noise levels. Moreover, although we do not yet have
a scheme that chooses the optimal value ofω, these results show that our adaptive approach
produces good results on a wide class of problems, and for various noise levels.

7. Concluding remarks. In this paper, we have considered using a weighted-GCV
method in Lanczos-hybrid methods for solving large scale ill-posed problems. The W-GCV
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FIG. 6.2. These plots show the relative error,‖xk − x true‖2/‖x true‖2, at each iteration of LSQR and the
Lanczos-hybrid method. The plots on the left correspond to the Baart example, for three different noise levels. The
plots on the right correspond to the Heat example. Optimal choices ofω (found experimentally) produce optimal
convergence behavior, and our adaptive approach to chooseω produces near optimal convergence behavior. It can
be observed that standard GCV is ineffective for moderate tohigh levels of noise.

method requires choosing yet another parameter, so we proposed and implemented an adap-
tive, automatic approach for choosing this parameter. We demonstrated through a variety of
test problems that our approach was effective in stabilizing semiconvergence behavior.

The MATLAB implementations used to generate the results presented in this paper can
be obtained fromhttp://www.mathcs.emory.edu/˜nagy/WGCV .

Several open questions remain. With the ability to obtain near optimal solutions, Lanczos-
hybrid methods should have a significant impact on many applications. Recently, Kilmer,
Hansen and Español [22] suggested a projection-based algorithm that can be implemented
for more general regularization operators. We can treat this iterative method as a hybrid

http://www.mathcs.emory.edu/~nagy/WGCV
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method and apply W-GCV. In addition, we would like to see how well W-GCV works in
combination with truncated SVD and Lanczos-hybrid methods. Finally, work remains to be
done on alternative ways to determine the new parameter in the W-GCV method.
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