Electronic Transactions on Numerical Analysis. ETNA
Volume 28, pp. 174-189, 2008. Kent State University
Copyright 0 2008, Kent State University. etna@mcs.kent.edu
ISSN 1068-9613.

IMPLEMENTING AN INTERIOR POINT METHOD FOR LINEAR PROGRAMS
ON A CPU-GPU SYSTEM*

JIN HYUK JUNG' AND DIANNE P. O’LEARY#
In memory of Gene Golub

Abstract. Graphics processing units (GPUSs), present in every laptdglasktop computer, are potentially pow-
erful computational engines for solving numerical prolde/e present a mixed precision CPU-GPU algorithm for
solving linear programming problems using interior poirgthods. This algorithm, based on the rectangular-packed
matrix storage scheme of Gunnels and Gustavson, uses thef@R0Omputationally intensive tasks such as ma-
trix assembly, Cholesky factorization, and forward anddzdbstitution. Comparisons with a CPU implementation
demonstrate that we can improve performance by using the fGP&ufficiently large problems. Since GPU archi-
tectures and programming languages are rapidly evolvirgexpect that GPUs will be an increasingly attractive
tool for matrix computation in the future.

Key words. GPGPU, Cholesky factorization, matrix decompositionwfard and back substitution, linear pro-
gramming, interior point method, rectangular packed farma

AMS subject classifications.90C05, 90C51, 15A23, 68W10

1. Introduction. Hidden inside your desktop or laptop computer is a very pbvpar-
allel processor, the graphics processing unit (GPU). This\ware is dedicated to rendering
images on your screen, and its design was driven by the denwditiie gaming industry. This
single-instruction-multiple-data (SIMD) processor hasown memory, and the host CPU is-
sues instructions and data to it through a data bus such a&s(P&iipheral Component Inter-
connect Express). A typical GPU is found in a graphics cara jreripheral expansion slot,
or perhaps integrated into the memory controller hub, atemwk as the north-bridge, which
controls high-speed devices; sé¢ for more detail. ATI's Radeon and NVIDIA's GeForce
series, the dominant products in the market, offer inexipermit very powerful GPUs.

Originally, GPUs were much slower than CPUs and had ventdidnprogrammability.
Now they show superior performance on some applicatiorsstlzgir speed is increasing at
a rate faster than Moore’s law predictions for CPW§][For example, NVIDIAs graphics
hardware GeForce 7800 GTX shows sustained performancesdBEEOPS (300 GFLOPS
at peak) compared to a 24.6 GFLOPS theoretical peak for a 3@elAPentium D (dual-core
processor) 10]. Originally, GPUs worked in half-precision or less, buteat support for
single precision floating point numbers and potentially Weyrecision makes them much
more attractive for numerical computation. In additionwee GPUs have the capacity to
store longer programs, making complicated algorithms iptessResearchers have applied
GPUs to general computations including evolutionary atgors [27], fluid dynamics B,
FFT [18], and othersZ2].

Recently GPUs have been used for linear algeBtaifcluding programs for matrix
multiplication [6], an iterative sparse system solvé},[a direct dense system solvéi,[and
others P2]. Our work to implement a direct solver for normal equati¢Bfis an exten-
sion of those efforts. Parallel Cholesky factorization $parse matrices on shared memory
multiprocessors was considered by Ng and Peyi@h [Such methods requires full scatter

*Received March 2, 2007. Accepted for publication Januar2@08. Recommended by M. Overton. This work
was supported in part by the US Department of Energy undent@®&FG0204ER25655.
fDepartment of Computer Science, University of Maryland, ll&@e Park, MD 20742, USA
(jung@cs.umd.edu).
tDepartment of Computer Science and Institute for Advancemh@iter Studies, University of Maryland, Col-
lege Park, MD 20742, USAofeary@cs.umd.edu).

174

ETNA

Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 175

operation, saving a computational result to a desired ilmecatn addition it requires support
for threads and synchronization among threads. Theserésatad not been supported un-
til the GeForce 8 Series and CUDA (Compute Unified Device Aedture) were recently
released?1].

In this paper we consider how use of the GPU can improve thfenpeance of interior
point methods (IPMs) for solving linear programming prabge We begin in sectiof with
a brief overview of GPU architecture and programming. ®ecii presents the linear pro-
gramming problem and the IPM and discusses how the work cpatigioned between the
CPU and the GPU. Timing results are presented in sedtamd conclusions in sectidn

2. GPU hardware and software. In this section we briefly describe the architecture and
programming of GPUs, concluding with an example of how twdric@s might be added.

2.1. GPU architecture. A functional block diagram of a GPU (GeForce 6 and 7 Series)
is presented in Figur@.1. The purpose of the GPU is rendering realistic two- or three-
dimensional scenes on two-dimensional displays. A sceagsismbled from streams of ver-
tices that specify polygons. Thesrtex processormanipulate each vertex depending on its
attributes, which include positions, colors, and normatees. Polygons are then tessellated
into triangles. Since current displays are two-dimendiama cannot directly show vector
graphics, triangles are projected onto two-dimensionaestspace and then transformed or
rasterized by theasterizerinto fragments To make the scenes realisttexture mappings
performed byfragment processoysvhich color or shade the fragments ustegturesspeci-
fied by a bitmap pattern. Each fundamental element of a texsueferred to as gexel

Avertex in three-dimensions is represented as a four-dsineal vectorz, y, z, w) rep-
resenting homogeneous coordinates in a three-dimensaopgdctive space. Using these
coordinates, a three-dimensional affine transformationbearepresented by a linear trans-
formation. A pixel's color is also represented as a fourligional vecto(r, g, b, a) where
r, g, b, anda denote red, green, blue, and alpha (opacity), respectiBath the vertex and
fragment processors are capable of processing four-diorais/ectors very efficiently.

A texture is the counterpart of an array on a CPU and can betosegbresent vectors
and matrices. The texture is frequently referred to assthreamin the streaming model
perspective. For typical graphics applications, a bitnsagtdred in a texture, but, for general
computation, numerical values are stored. The outputsx@pgenerated by the fragment
processors are stored frame-buffermemory which holds scenes to be displayed. Current
GPUs are also capable aénder-to-texturdor rendering computational results directly to
textures, which, in turn, can be fed back into the GPUs as npwtistreams without being
copied back from the frame-bulffer.

A computationakernelor aGPU fragment progranis a set of GPU instructions which
are initiated by a host CPU and applied to every element ataist of fragments. Every frag-
ment processor runs the same instruction at each cycleratigla In addition, instruction-
level parallelism allows up to 4 arithmetic operations topeeformed simultaneously in a
fragment processor.

Most computations involve a series of kernel callssiAgle-passlgorithm uses a single
rasterization process, whilenaulti-passalgorithm is composed of multiple rasterization pro-
cesses. A kernel is initiated with a stream of vertices iddyethe host CPU. Since the shape
of a matrix or a vector is rectangular, kernels for typicaghr algebra operations are initiated
by drawing a rectangle with four vertices. A kernel procedbe entire stream of fragments

1Beginning with the GeForce 8 Series, GPUs have unified psocesand different stages of the rendering
pipeline. The new pipeline stage is very flexible and confpativith the previous version; se2l] for more details.

ETNA

Kent State University
etna@mcs.kent.edu

176 J. H. JUNG AND D. P. O'LEARY
Issue ‘draw a quad’ command with texture
Host CPU coordinates assigned to each vertex

Programmable: Manipulate
vertex properties such as
position, color and texture
coordinates

Vertex Processor

. Tessellate shapes to generate
Cull/Clip/Setup E triangles. Filter invisible part.
1 Generates a stream of fragments
| Z.Cull |« Rastarizer % from the triangles. Interpolate
the vertex properties and pass

them to the fragment program

Programmable: Assign color
or numerical value to each
fragment.The program may fetch
input textures.

Fragment Processor

T Z-Compare/Blend

Resul d h
— Memory(Framebuffer/Texture) E SSUIS are sved to the

framebuffer or target textures.

Fig. 2.1: GPU pipeline for NVIDIA GeForce 6 and 7 Series. Tleetex and fragment pro-
cessors are the highly parallel and programmable compsireatGPU.

generated from the stream of vertices before a subsequeral kg initiated. Kernel calls are
managed by the GPU driver, so the CPU can compute and issue katls asynchronously.

The architecture of the GPU is not much different from thahefILLIAC IV, a machine
from the mid-1970s. This machine had 4 control units (CUs) 286 processing elements
(PEs) [L3]. The PEs synchronously executed commands from the CUsedJmbical GPUSs,
up to four PEs could communicate with each other.

A more recent GPU, the GeForce 8800 GTX, has a set of MPs fimudtssors) each
of which has multiple SPs (single processot&)]] Moreover, each MP supports threaded
computing. SPs in a single MP share memory and execute theigatruction at a particular
cycle. Different MPs can independently execute differastructions. GPUs are evolving to
look more and more like general-purpose parallel machines.

2.2. GPU programming. The core of GPU programming is the kernel. Kernels are
written in specialized shading languages such as C for gra§€qg) [L4], high level shader
language (HLSL) 16], and OpenGL shading language (GLSI24]. Shapes are drawn
through a graphics application programming interface jA®pen graphics library (OpenGL)
[28] is one of the most widely used APlIs in various platformsinithg Windows and Linux.
DirectX [17] is widely used for developing applications for Windows.our work we use Cg
and OpenGL on a GeForce 7 Series GPU.

To make programming easier, Buck et al. introduced Brook@&RWrhich provides ab-
straction for kernels and simplifies implementation and@ation of kernels. With BrookGPU,
drawing a shape is replaced by invoking a kernel just as wédinuoke a function written in
the C programming languag2d]. In addition, BrookGPU offers a convenient invocation of
aparallel reductionoperation such as computing the minimum, maximum or arittmseim

ETNA

Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 177

.5 1.5 25 3.5 45 55
L L L L

\ 4
X

1.5

2.5

3.5

4.5

5.5

6.5

Y Y

(a) Storage of a lower triangular mattixin a texture. When (b) Storage of a lower triangular matrix in a
we fetch an element of a texture, we point to its center. For texture using a packed storage scheme of Gun-
instance, the elements is stored a(2.5,4.5). nels and Gustavson. Tliex 6 matrix is stored
in a3 x 7 texture, with the entries arranged as
indicated.

Fig. 2.2: Lower triangular matrices stored in textureshwialues stored as intensities of red.
The samé x 6 matrices are stored with different format. For the packedhéd shown in (b),
we transpose and move the lower triangular submatrix atdttern right of (a) to the unused
upper left corner. For subsequent figures, we use variowsfar better visualization.

of a stream, which abstract3(logn) passes of a multi-pass rendering algorithm. Despite
those convenient features, we cannot use BrookGPU bedadses not support triangular
rasterization, which is key to exploiting the structure yfngnetric or triangular matrices.

Recently NVIDIA introduced CUDAZ1], a development framework for general purpose
applications on the GeForce 8 Sefiett provides CUBLAS, the BLAS library working on
GPUs. CUDA does not support triangular rasterization, Whas critical to the performance
of the algorithms we discuss below, but spawning multiptedaks and having each of them
identify its target location could be used to replace tridagrasterization]2].

2.3. An example of a GPU algorithm. Given these powerful fragment processors, how
might they be used for computational linear algebra? Wetilate the ideas on a simple
algorithm, adding two matrices.

We choose to store a matrix as a two-dimensional texturetivémumeric values stored
as intensities of red.Figures2.2aand?2.2billustrate this storage scheme. General matrices
are simply arranged with columns along the x-axis and rowsglthe y-axis as described
in Figure2.2a Lower triangular or symmetric matrices can be stored inragarct form as

2At the time of our development CUDA was not available.

SStoring four numerical values as red, green, blue and alpha a single texel us-
ing a four channel texture may increase storage capacity amdy improve perfor-
mance, but we choose the single channel texture for easy eingpitation. See
http://www.mathematik.uni-dortmund.de/"goeddeke/gpg pu/oldstuff/PerformanceTuning.pdf
for further discussion of the trade-offs.

http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/oldstuff/PerformanceTuning.pdf

ETNA

Kent State University
etna@mcs.kent.edu

178 J. H. JUNG AND D. P. O'LEARY

float main(uniform samplerRECT A,
uniform samplerRECT B,
float2 index : WPOS) @ COLOR {
return texRECT(A, index.xy)+texRECT(B, index.xy);

V(00) V(3.0

}

(b) A kernel for adding two matrices, written in C)4).

V(©03) V(33)

for (x = 0;x < 3;x++)

(@) To computeC = A + B, the ker- for (y = Oy < 3;y++) = Drawing a square

nel fetches and adds entries frafnand B -

and stores the result in the target textQre AL IEVIEI Y = Addition fragment program

Each entry ofC in the figure is color-coded

to indicate the elements #fandB that con- (c) The effect of the kernel is to perform the operations is th
tribute to its value. nested loop, where the loop indices are specified by spegifyi

the vertices of a square.

Fig. 2.3: Adding two matrices on a GPU.

illustrated in Figure2.2h To access an entry in a texture, we use coordinates, just ase/
indices to specify an entry of an array in a CPU program. Uuofately, x-coordinates in a
texture correspond to column indices, while y-coordinatdgate row indices, so the index
ordering is exactly opposite to that for an array.

As described in Figurg.1, a kernel is initiated by drawing a shape, usually a quadrila
eral. The shape is then transformed to a stream of fragmehtize equal to the number
of pixels in the shape) by the rasterizer. Fragments up tantimeber of processors can be
processed simultaneously. The coordinates and positieadf fragment are passed to frag-
ment processors as inputs. Then, each fragment processputes a color or a numerical
value for the fragment. Letting the rasterizer divide thaphinto fragments is faster than
specifying fragments explicitly. Thewizzle operatiois a convenient feature of GPUs; when
fetching an entry of a texture, the coordinates of a multefisional variable can be per-
muted at no cost. This can be used, for example, to form axaamspose, by specifying
b.yx instead ob.

A kernel specifies the operation to be performed on each elethat it processes, and
the elements are specified by vertices passed to the kermelexample, as depicted in
Figure2.33 to perform3 x 3 matrix-matrix addition, we issue four vertices to speclig t
textureC designated as the target of the rendering. FiguBe gives a CPU-equivalent of
the GPU kernel specified in Figuge3h After the vertex processors process “per vertex”
operations (nothing in this example), the rasterizeratés a stream of nine fragments and
passes each linearly interpolated vertex property set tagifent processor. Then the frag-
ment processors run the kernel simultaneously. Each fragprecessor fetches and adds
values from input textures and stores the result of the imddit the target textur€.

In Figure2.3h the input parametdndex specifies the position of the fragment. The
attributeWPO3Sndicates that it is an interpolated position. For a matrikeat the first row
and the second column, the interpolated position of theesponding fragment igc, y) =
(1.5,0.5). We may use other semanticEEXCOORD@nd TEXCOORD{or instance, to
have the kernel receive other interpolated vertex progerés explained later. The attribute
COLORdenotes that the return value of the kern®in represents color. The keyword
texRECT is used for fetching an element of the input texture. The legfloat2 means
the declared variable consists of two single precisione&l$ee 4] for more details of the
Cg language.

This introduction to GPUs should be enough to understandltfogithms presented later.

ETNA

Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 179

3. Interior point methods for linear programming using a GPU. Linear program-
ming is the problem of minimizing a linear objective functisubject to a set of linear con-
straints, either equalities or inequalities. The standamah is

(3.1) min cI'x
(3.2) s.t. AX =D,
(3.3) x>0,

wherec andx are real vectors of size, b is a real vector of size:, andA is anm x n real
matrix with rankm < n. The dual problem, involving the Lagrange multipliexsfor the
nonnegativity constraints, is specified by

(3.4) max bTA
(3.5) st. ATA+s=c,
(3.6) s>0,

whereX ands are real vectors of sizew andn, respectively.

A primal-dual interior point method (IPMPP] is a standard approach to solving the lin-
ear programming problen3(1)-(3.3) Solving the linear programming problem is equivalent
to finding a solution to the KKT (Karush-Kuhn-Tucker) conalits:

(3.7) ATXx+s=c,
(3.8) AX = b,
(3.9 x5, =0, 1=1,2,...,n,
(3.10) x>0, s>0.

The IPM solves this system of equations using a variant ofthielw method. The search
direction at each iteration is obtained by solving eitherlerturbed KKT conditions,

0 A O AX —ry
(3.11) AT 0 | Ax | =] —=r. |,
0 S X As s
or, equivalently, the normal equations,
(3.12) ADZATAN = —r, + A(ST'Xr. + S 'r,),
(3.13) As= —r. — ATAN,
(3.14) Ax = —S ! (r . + XAs),

whereD? = S7'X;r, = Ax —b;r. = A”TAx +s—c e= (1,..,1)7; andX andS are
diagonal matrices with entriesands. The vector ., has two definitionsr,, = XSe for
the affine-scaling step used as a predictor, Bnd= XSe — ope + AX¥ ASe for the
combined predictor-corrector step that is actually usedpbate, x, ands [29]. Herecs is
acentering parameteand . = x*'s/n is thecomplementarity measurd@he affine-scaling
direction is the pure Newton direction f08.()-(3.9), while the corrector step attempts to
maintain distance from the nonnegativity constraints.

Usually solving the normal equations is preferred to sawime KKT system, because
the matrix for the normal equations is much smaller. Moredkwe matrix is symmetric and
positive definite, and thus we can use Cholesky factorimatichich is faster than LU and
requires no pivoting.

In the following sections we discuss how the componentseff can be implemented
on a GPU.

ETNA

Kent State University
etna@mcs.kent.edu

180 J. H. JUNG AND D. P. O'LEARY

3.1. Matrix assembly and Cholesky decomposition on a GPUn [8] we discuss as-
sembling and factoring the matidD?A” on a GPU, so we give only a brief overview in this
section.

Gunnels and Gustavso§][proposedectangular-packed formdbr symmetric or trian-
gular matrices, saving half the storage space by transpasid moving the lower triangu-
lar submatrix at the bottom right to the unused upper lefhegras shown in Figures.2a
and2.2h Storing anm x m matrix in packed format results in@ x h texture, where
w = [m/2] andh = m + mod(m + 1, 2).

In order to implement GPU algorithms based on the rectanguaeked format, we need
to generate interpolated indices for fetching input tes$uusing the rasterizer to minimize
instruction count4]. We useV (z,y) to represent a vertex arid#(x, y) to denote texture
coordinates. Since the access pattern of the lower traghézdifferent from that of the upper
triangle, we consider two cases.

We assemble the matrixD?A” by taking the sum of, outer products. Théth of these
involves thekth column ofA, scaled byd%, , multiplied by the transpose of theh column
of A. We store thekth scaled column oA in a temporary texturd. Assigning texture
coordinates for the triangle covering the lower trapezsithe same as for the full format.
The access pattern of a fragment in the upper triangle istilited in Figure3.1.

In factoring the matrix, we use the outer-product versiothefCholesky algorithm. At
stepk (k = 0,...,m — 2), we update elements in columps= k + 1,...,m — 1 and rows
i=7j,...,m—1by

Ei]» = 6” — gikgjlv

We draw two triangles to initiate the outer product subtceckernel in stepg = 0,...,w — 1,
as explained ing]. Attaching texture coordinates to the triangle coverimg fower trapezoid
is not much different from doing so for a matrix in the full foat. To obtain texture coor-
dinates attached to the triangle covering the upper trimngubmatrix, we imagine fetching
inputs at the original position of an active fragment assilfated in Figure3.2a In steps
k =w,...,m — 2, all required entries are in the same submatrix where theeathgment
is, as illustrated in Figurd.2h, so attaching texture coordinates is straightforward.

3.2. Forward and back substitution on a GPU. Once we compute the Cholesky factor
of the matrix, we then solve the system of equations throoghdrd and back substitution.

One option is to transfer the Cholesky factor to the CPU mgraad perform the com-
putation there. For reference, we list in Algoritdna CPU version of forward substitution to
solveLy = f whereL is a lower triangular matrix. This algorithm needs to be rfiedifor
rectangular-packed storage. In this case we partitionytbies as

EIBR0
Lar Loo Yo IR CEE

Remembering thalt ;; andL,; are stored in the lower trapezoid ahd, is stored in the
upper triangle of our texture, as illustrated in Fig@€, it is a simple exercise to rewrite
Algorithm 1 to access the proper entries. Back substitution is similar.

We can avoid the expensive transfer of thiactor from the GPU to the CPU by perform-
ing forward and back substitution on the GPU. Then we onlydrtedransfer the resulting
vectorx of sizem x 1. However, we will see in sectiof.1 that this approach is slower
than transferring the Cholesky factor to the CPU memory artbpming forward and back
substitutions using the CPU.

Referring to Algorithml, we need kernels for two operations: division and sub-calum
subtraction. The inner loop disappears, replaced by spegithe vertices in the calls to the

ETNA

Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 181

AD?A’ A

(k+.b, j+w)

(i+w, .5)

b o |

@

Fig. 3.1: Forming the matriAD?A” on a GPU using outer product updates. Atiiiestep,
we add the outer product of the vectofwhich storesi;. times thekth column ofA) with

the kth column ofA. Updates within both the large green and the smaller reddlés are
formed in parallel by one kernel call initiated by drawing tiwo triangles at the same time.
The two colors for each elementAD?A” identify the vector elements whose product forms
its update. Note that we take advantage of the relation tetivandA so that we can use the
same kernel in both the green and red triangle. A fragmeatéatin the upper triangle with
texture coordinateg, j) receives a contribution of a texel Afat (k + .5, j + w) multiplied

by a texel ofb at (i + w,.5). So for a vertex al/(z,y), we attach texture coordinates
TO(k + .5,y + w) andT1(z + w, .5).

AN (i, k-w+.5) (i, k-w+.5)
LR oo
RSP G)
N

-~
(k+.5, i+w+1) M \

(j+w, itw+l)

(a) To understand the access pattern for an activ®) Whenk > w, the entries that generate the update
fragment(z, j) located in the upper triangle, it helps are in the upper triangular submatrix.

to remember its position before packing:+w, i +

w + 1). This figure shows an update when< w.

Fig. 3.2: Forming a Cholesky factor using the the outer pebdubtraction kernel whem is
even. Colored fragments are processed in parallel.

ETNA

Kent State University
etna@mcs.kent.edu

182 J. H. JUNG AND D. P. O'LEARY

Algorithm 1 A CPU version of forward substitution

/ We assume array index starts frém
/I Indices are in (row, column) order
for k = 0to m-2do

/I Division

f(k) = y(k)/L (k,K);

/I Sub-column subtraction

for i = k+1 to m-1do

f(i) = (i) - f(K)*L(i,k);

end for
end for
f(m-1) =f(m-1)L (m-1,m-1);

kernels listed in Kernel& and2. We need to keep in mind that the vectds stored in an
m x 1 texture inwidth x height ordef. Due to the packing, we need to treat stepsw — 1
and stepsv to m — 2 differently.

Kernel 1 The GPU kernel for division

float main(uniform samplerRECT f : TEXUNITO,
uniform samplerRECT L : TEXUNITL,
float2 f_index : WPOS,
float2 L_index : TEXCOORDO) : COLOR {
return texRECT(f, f_index)/texRECT(L, L_index);

}

(The semantic keywordSEXUNIT:, TEXCOORDand WPOSepresent theét” input texture, the?” interpolated
texture coordinates, and the position of the active fragjen

Kernel 2 The GPU kernel for sub-column subtraction

float main(uniform samplerRECT f : TEXUNITO,
uniform samplerRECT L : TEXUNITL,

float2 f_index : WPOS,
float2 f_pivot_index : TEXCOORDO,
float2 L_index : TEXCOORD1) : COLOR {

return texRECT(f, f_index).x
- texRECT(f, f_pivot_index).x * texRECT(L, L_index.yx).x ;

For thek!" division operation, we draw a point of sizex 1 atV (k + .5, .5) with a set
of attached texture coordinates. Suppose thas even. Then in the first set of steps we
fetch the diagonal entry df, stored in the trapezoid, from positi¢h + .5, £ + 1.5). In the
second set of steps, the required diagonal enttyisfstored in the upper triangle in position
(k—w+ .5,k —w —+ .5). Obtaining the attached texture coordinates for odid not much
different.

For thek!" sub-column subtraction, we draw a line of widtlzovering the entries from
k + 1tom — 1 of f. Texture coordinateg0 for fetchingf are fixed for all active fragments.

4This scheme restricts the maximum size of a vector to 4096kiRga vector in a rectangle texture can remove
this restriction 9].

ETNA

Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 183
(k+.5,.5) (i, .5) (k+.5,.5) (i,.5)
flopel [[[] fl |
(i-w, k-w+.5)
(k+.5,i+1) o
L L

(a) In the first half of the iterations, active fragments(b) In the second half of the iterations, active frag-
fetch elements from the lower trapezoid. ments fetch elements from the upper triangle.

Fig. 3.3: These figures describe how we acdeasdL and attach the texture coordinates
to each vertex for the sub-column subtraction wheis even. Colored fragments fhare
processed in parallel. We used the same color for an actiggrfent and its corresponding
elementinL.

So attaching’0 to vertices is straightforward. To attach the second sebdfite coordinates
T'1 for fetchingL, we need to understand the access pattern of active fragment

Kernel 3 The GPU kernel for sub-row subtraction

float main(uniform samplerRECT f : TEXUNITO,
uniform samplerRECT L : TEXUNITL,

float2 f_index : WPOS,
float2 f pivot_index : TEXCOORDO,
float2 L_index : TEXCOORD1) : COLOR {

return texRECT(f, f_index).x
- texRECT(b, f_pivot_index.xy).x * texRECT(L, L_index).x

In the first set of steps, as illustrated in Figu&a an active fragment dt, .5) needs
to fetch a texel oL at (k + .5,7 + 1). The texture storing is laid out horizontally. Thus,
we cannot have the rasterizer interpolate texture coatenzertically, but we generate inter-
polated coordinateg1(i + 1, k + .5) by attachindl'1(xz + 1,k + .5) to a vertex al/(«x, y).
By swizzling the interpolated texture coordinateindex as in Kernel we can handle the
necessary transpose operation.

In the second set of steps, as illustrated in FiguB# an active fragment dt, .5) needs
to fetch a texel oL at (: — w, k — w + .5). We can generate the coordinates by attaching
T1(x —w,k—w+.5) to avertex al/ (z,y). No swizzle is necessary, so the kernel, Kefel
is slightly different.

By understanding the access pattern, we can in a similar weyedthe algorithm for
back substitution.

3.3. A CPU-GPU interior point method for linear programming. Algorithm 2 uses
a variant of Mehrotra’s predictor-corrector (MPC) methoahi [29] to solve the linear pro-

ETNA

Kent State University
etna@mcs.kent.edu

184 J. H. JUNG AND D. P. O'LEARY

gramming problem3.1)-(3.6), performing most of the computation on the GPU.
We stop the iteration when the relative residual and theityuakasure are smaller than
some small tolerance

max{[[1y[loc, [Felloc} €7 — bTAI} -,

(3.15) max{ ,
max{||blloc, [[C]loc, [[Allc} ™ 14 [cTX|

The coefficient matrixA is written to the GPU only once, at the beginning. At each
iteration, we transfer only a few vectors, including théntipand side of the normal equation
(3.12 and the main diagonal @. Ideally, matrix assembly, factorization, and forward and
back substitution are performed on the GPU; for the remainfiehe computation we use
MATLAB functions on the CPU. But since our current GPU doessupport double preci-
sion, we use the CPU for matrix assembly and factorizatidatar iterations in order to get
accurate results We monitor the quality of the combined predictor-correstiep by testing
whether the relative residual norm f&.12 is too large:

Ir — AD2ATAN||
>0y,

(3.16) TAN — HrH =

wherer is the right hand side of3(12 andd, is a threshold parameter. 13.(L6) is satisfied,
we form and solve the normal equations on the CPU.

The matrixAD?A” can become ill-conditioned in two ways, also making it neeegto
use the double precision CPU solver. First, the dual prolsteay have fewer tham active
constraints, which causes more than- m entries ofD? to approach zero. To monitor this,
we count the number of entries ih smaller than some small tolerange > 0 and use the
CPU if

(3.17) i d} <esfori=1,..n}>n-—m,

whered,; is thei'" diagonal element ob. Second, some of the primal variablesnay
be unbounded, which causes some diagonal entridd’db grow too fast relative to the
others R9]. To monitor this, we measure the ratio between the larggstnd the smallest?,
among diverging entries. So, given parametgrandé,, we use the CPU if

(3.18) max (d3;)/ min (d7;) > 0,.

dfi >ubq dfi >ubq

4. Results. To test our algorithms, we used an NVIDIA GeForce 7800 GTXftag-
ment processors, 580 MHz core clock cycle, 1750 MHz memoogkckycle, 512 MB
GDDR3 memory, 256 bit bus) and an Intel Xeon 3.0GHz (1 MB L2hea8GB DDR2
dual channel memory, 400 MHz effective memory clock cyclé 80 MHz FSB). The op-
erating system is Linux Red Hat 3.4.5-2 64bit. We compiledande using gcc 3.4.5. We
implemented and ran the IPM using MATLAB 7.2.0.283 (R200&h)ch uses Intel's Math
Kernel Library for BLAS and LAPACK function calls. Results [8] showed that packing
does not degrade overall performance for matrix assemhlyfagtorization, and GPU al-
gorithms outperform ATLAS (Automatically Tuned Linear Algra Software) routines for
sufficiently large matrices.

5In fact, even the single precision arithmetic on the GPU tsfity compliant with the IEEE standar@(, 21],
S0 it is important to monitor the quality of the results.

ETNA

Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 185

Algorithm 2 GPU-Powered Mehrotra’s Predictor-Corrector Algorithm

Specify the parametetseg, 6, 64, andé,,.
Transfer the coefficient matriX in single precision packed format to GPU memaory.
SetuseGPUas true.
Generate an initial pointx”, A°, s”) according to 1.
for k=0,1, 2 .do
Sety = X'st .
Terminate if the convergence criteria are met or iteratimmt limit is reached.
SetuseGPUas false if any of§.16), (3.17) and (.19 is satisfied.
if useGPUthen
Transfer the diagonal of the scaling matiix to GPU memory.
Compute and factohAD2AT" using the GPU.
Transferr .. for the predictor to GPU memory.
else
Compute and factoAD2AT" in double precision non-packed form using the CPU.
end if
Use forward and back substitution to soh&1(2) for the predictor step, transferring the resulting
AN to CPU memory iuseGPUis true.
Use (.13-(3.14) to computeAx®" and A,
Determine the predictor step length:

ot = arg max (X + aAx® > 0}, a%¥ = arg max {s" + aAs®™) > 0}.
agel0,1 ael0,1

Determine the centering parameter:

(Xk + ag#AXaﬁ)T(Sk + OzgfolalASaﬁ)

n

o = (par/p)°*, Wherguay =

Use forward and back substitution to sole1(2) for the combined predictor-corrector step, trans-
ferring r.s to GPU memory and transferring the resultidg\ to CPU memory ifuseGPU is
true.

Use 8.13-(3.14 to computeAx andAs.

Determine step size parameter§, * andag":

o™ =0.99 x arg nax {X + aAx > 0},

" = 0.99 x arg max {s + aAs > 0}.

Setx" 1t = xF 4 aPMAx, (AFFL) = (AR $F) + ol (AN, As).
end for

4.1. Forward and back substitution. Figure4.1 compares our forward and back sub-
stitution algorithms withstrsv of ATLAS 3.6.0 [26]. In contrast to matrix assembly and
factorization, the GPU algorithms for forward and backwaubstitution have no perfor-
mance advantage over the CPU algorithms. Kefnisl inherently a non-parallel process,
since it must wait until Kerne? and3 finish. So each iteration cannot start until the previous
iteration completes. Notice that the graphs for forward laack substitution on the GPU are
almost linear inm, while the arithmetic complexity is quadratic. The host Cs8uds a fixed
number of vertices (and attached texture coordinatesftn easterization process,©@(m)
vertices in total. Therefore it seems that the latency itiating GPU kernels dominates the
overall time, for the problem sizes tested.

ETNA
Kent State University
etna@mcs.kent.edu

186 J. H. JUNG AND D. P. O'LEARY

Forward and back substitution

0.3

—— GPU (forward) A
o

0.25 1—= GPU (back)
strsv (forward) /
0.2 A

—— GPU (download)

0.15
0.1

0.05 /

0 e T

0 512 1024 1536 2048 2560 3072 3584 4096
m

Time (sec)

Fig. 4.1: Timing result for forward and back substitution.

The combined time required for moving the packed Choleskyofato the CPU and
performingstrsv is much less than that for the GPU algorithms. Thus, trariefgthe
factor to the CPU memory and doing forward and back substitutsing the CPU results in
better performance in the IPM, unless the CPU can be penfgrmiher useful work while
the GPU is computing.

4.2. Interior point method. We set the termination tolerance parameteo 10~5.
Other parameters are set as follows:

0, =102, e, =10"%,64 = 10%, andf, = 10°.

We used the packed version for matrix assembly and factaizaWe implemented the two
options for the substitution: transferring the Choleslgtdato the CPU, or using the GPU to
solve the triangular systems. We compared these two optitthsour full double precision
MATLAB implementatior? without using the GPU for solving the normal equatiofsip)
and with MATLAB's linprog function. The results are shown in Tablel and in Fig-
ure4.2.

The NETLIB problems are not large enough to gain a performauvantage using the
GPU. As illustrated in Tablé.1, the full double precision CPU version usually needs fewer
iterations to terminate than the GPU versions. We generatedom problems with each
constraint in the dual tangent to the unit sphere as destiibi@5]. Results are summarized
in Figure4.2. Our algorithms using the GPU are slower for small problentsféister than
the full double precision CPU version fat > 640. In solving small problems, data transfer
cost and communication latency prevent the solver fromeaitng good performance.

6]t is also possible to implement a CPU version of a hybrid leingnd double precision IPM,
but MATLAB 7.2 running on 64bit Linux has a bug in interfacingith single precision BLAS rou-
tines. This bug prevented us from forming the normal equatipatrix in single precision; see
http://www.mathworks.com/support/bugreports/details .html?rp=268001 . This bug is fixed in MAT-
LAB 7.4.

http://www.mathworks.com/support/bugreports/details.html?rp=268001

ETNA

Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 187
Time
80 ‘ ‘ :
—e— GPU (CPU subst.)
S 60f GPU (GPU subst.) e :
@ v CPU = v
qé40’ -o- linprog 7 . a7y 7
F 20t]
O > - | | |
0 200 400 600 800 1000 1200
m (n = 4m)
Iterations
20 ‘
..... G,
%) L ‘,E - -|:|\ P v """ v i
.5 15 C o v v
g v ,
g 10+ \ B
5)) \IJ——‘—E-——E‘———E———‘D
0 200 400 600 800 1000 1200
m (n = 4m)
(a) Our algorithms are compared with MATLAB®prog
Time
40 : : : :
—e— GPU (CPU subst.) v
< 30r GPU (GPU subst.) b
& v CPU ’
o 20 1
£
= 10 |
O < e wrwn v V) i L L L
0 200 400 600 800 1000 1200
m (n = 4m)
Timing Ratio
15 ‘
o i L . e e e R
©
14 05 —e— GPU (CPU subst.) |
' GPU (GPU subst.)
---1.0
O L L L L L
0 200 400 600 800 1000 1200

m (n = 4m)

(b) Timing result forlinprog is eliminated to magnify gap between the combined CPU-
GPU solvers and the CPU only solver. In the bottom figure, woe tble ratio of the time
for the CPU solver to that for the GPU-powered solvers. \&lgeeater than 1 indicate a
performance advantage for the GPU solver.

Fig. 4.2: We measured running time and iteration count obAtgm 2 on random problems.
For sufficiently large problems, using the combined CPU-G@Wer yields better perfor-
mance. The horizontal axis represemtswhere we set = 4m. GPU in the label means that
the GPU is used for assembling and factoring matrices in titlyo 2, whereas CPU means
that the GPU is not used at all.

ETNA

Kent State University
etna@mcs.kent.edu

188 J. H. JUNG AND D. P. O'LEARY

Table 4.1: We measured the running time and iteration cotiAgorithm 2 on NETLIB
problems. The iteration count in parentheses represeatautmber of iterations at which
the GPU is used for assembling and factoring the matrix femthrmal equations. We used
two versions of the GPU algorithm. The one labeled (GPU sphstes the GPU to solve
the triangular systems, and the other one, labeled (CPU.}uises the CPU. None of these
problems is sufficiently large to get performance gain tigtousing a GPU.

GPU (GPU subst.) | GPU (CPU subst.) CPU
Problem Size Iterations Time (S)| Iterations Time (s)| Iterations Time (S)
afiro 27 x 51 9(7) 0.19 9(7) 0.21 9 0.01
adlittle 56 x 138 11 (9) 0.47 11 (9) 0.34 11 0.01
agg2 516 x 758 20 (15) 6.16 20 (15) 4.07 20 2.68
agg3 516 x 758 20 (16) 6.35 28 (17) 5.25 20 2.68
bandm 305 x 472 17 (8) 2.06 17 (8) 1.39 17 0.61
beaconfd 173 x 295 9(4) 0.59 9(4) 0.39 9 0.09
blend 74 x 114 11 (6) 0.34 11 (6) 0.22 11 0.01
€226 223 x 472 22 (11) 224 | 21(11) 1.53 22 0.44
sc50b 50 x 78 8 (5) 0.21 8 (5) 0.13 8 0.01
sctapl 300 x 660 15(12) 3.17 15 (12) 2.16 15 0.65

MATLAB’s linprog is slower than our algorithms even when it terminates withefie
iterations. It fails to converge to an optimal solution fooplems withm > 512. It uses LIP-
SOL [30] which always uses a Cholesky-infinity factorization sugipg only sparse matri-
ces. This causes overhead in factorization of dense noquatiens matrices. Modifying the
Cholesky-infinity factorization to support dense matriaesild improve the performance.

5. Conclusions. We have presented a CPU-GPU algorithm for solving lineagyaim-
ming problems using interior point methods. This algorithees rectangular-packed matrix
storage] and uses the GPU for tasks such as matrix assembly, Chofastgrization,
and forward and back substitution. By comparing our impletatons with a CPU imple-
mentation, we demonstrated that we can improve performapcising the GPU and mixed
precision for sufficiently large dense problems. For sonsspproblems, techniques such
as supernodal multifrontal approaches can be used to ateas® submatrices for which a
GPU might be used. Since GPU architectures and programmamgibges are rapidly evolv-
ing, we expect that GPUs will be an increasingly attractba for matrix computation in the
future.

Acknowledgments.We are grateful to the referees for their helpful comments.

REFERENCES

[1] J. BoLz, I. FARMER, E. GRINSPUN, AND P. SCHROODER, Sparse matrix solvers on the GPU: conjugate
gradients and multigridin ACM SIGGRAPH 2003 Papers, ACM, New York, NY, 2003, pp. 9924.

[2] I. Buck, T. FOLEY, D. HORN, J. SUGERMAN, K. FATAHALIAN , M. HOUSTON, AND P. HANRAHAN,
Brook for GPUs: stream computing on graphics hardwareACM SIGGRAPH 2004 Papers, ACM,
New York, NY, 2004, pp. 777-786.

[3] Z. FaN, F. Qu, A. KAUFMAN, AND S. YOAKUM-STOVER, GPU cluster for high performance computing
in Proceedings of the 2004 ACM/IEEE Conference on Supercomgy, IEEE, Washington, DC, 2004,
p. 47.

[4] N. GALoPPO, N. K. GOVINDARAJU, M. HENSON, AND D. MANOCHA, LU-GPU: Efficient algorithms for
solving dense linear systems on graphics hardwaré&roceedings of the 2005 ACM/IEEE Conference
on Supercomputing, IEEE, Washington, DC, 2005, p. 3.

(5]
(6]

(7]
(8]

9]
[10]
(11]
[12]
(13]

(14]

[15]
(16]
(17]

(18]

ETNA

Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 189

J. A. GUNNELS AND F. G. GUSTAVSON, A new array format for symmetric and triangular matricés
PARA04 Workshop on State-of-the-Art in Scientific Commgj 2004, pp. 247-255.

J. HAaLL, N. CARR, AND J. HART, Cache and bandwidth aware matrix multiplication on the
GPU, Tech. Report UIUCDCS-R-2003-2328, University of lllisoat Urbana-Champaign, 2003.

http://graphics.cs.uiuc.edu/"jch/papers/UIUCDCS-R-2 003-2328.pdf
INTEL CORP, Intel 945G express chipset product bri2005.
http://lwww.intel.com/products/chipsets/945g/index.h tm.

J. H. UNG AND D. P. O’LEARY, Exploiting structure of symmetric or triangular matrices a GPU,
in Workshop for General Purpose Processing on GraphicseBRsow Units, Boston, MA, Oct. 2007,
Computer Science Department Report CS-TR-4914, Instfartéddvanced Computer Studies Report
UMIACS-TR-2008-12, Jan. 2008itp://hdl.handle.net/1903/7984

J. KRUGER AND R. WESTERMANN, Linear algebra operators for GPU |mplementat|on of numatialgo-
rithms in ACM SIGGRAPH 2005 Courses, ACM, New York, NY, 2005, p. 234

D. LUEBKE, General-purpose computation on graphics hardwe#¢GGRAPH 2005 GPGPU Course, Aug.
2005. http://www.gpgpu.org/s2005/

D. LUEBKE, M. HARRIS, J. KRUGER, T. PURCELL, N. GOVINDARAJU, |. Buck, C. WOOLLEY, AND
A. LEFOHN, GPGPU: general purpose computation on graphics hardwardd\CM SIGGRAPH 2004
Course Notes, ACM, New York, NY, 2004, p. 33.

D. LUEBKE, NVIDIA C oRP, Personal communicatioroct. 2007.

F. T. Luk, Computing the singular-value decomposition on the ILLINCACM Trans. Math. Software, 6
(1980), pp. 524-539.

W. R. MARK, R. S. GANVILLE, K. AKELEY, AND M. J. KILGARD, Cg: a system for programming
graphics hardware in a C-like languagm ACM SIGGRAPH 2003 Papers, ACM, New York, NY, 2003,
pp. 896-907.

S. MEHROTRA, On the implementation of a primal-dual interior point medh&IAM J. Optim., 2 (1992),
pp. 575-601.

MICROSOFTCORP, High-level shader languagen DirectX 9.0 Graphics, 2003.
http://msdn.microsoft.com/directx

MICROSOFTCORP, DirectX 9.0 graphicsin Dlrectx 9.0 Graphics, 2005.
http://msdn.microsoft.com/directx

K. MORELAND AND E. ANGEL, The FFT on a GPU in Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,-kai¢ille, Switzerland, Eurograph-
ics Association, 2003, pp. 112-119.

E. NG AND B. W. PEYTON, A supernodal Cholesky factorization algorithm for sharedmory multiproces-
sors SIAM J. Sci. Comput., 14 (1993), pp. 761-769.

NVIDIA CoRP, Fast texture downloads and readbacks using pixel buffeeabjin OpenGL Technical
Brief, Santa Clara, CA, Aug. 2005.

NVIDIA C orpr, CUDA Programming GuideSanta Clara, CA, Feb. 2007.

J. D. OWENS, D. LUEBKE, N. GOVINDARAJU, M. HARRIS, J. KRUGER, A. E. LEFOHN, AND T. J.
PURCELL, A survey of general-purpose computation on graphics hardw@omputer Graphics Forum,
26 (2007), pp. 80-113.

D. M. RiTcHIE, The development of the C langua§GPLAN Notices, 28 (1993), pp. 201-208.

R. J. RosT, OpenGL(R) Shading Languagkddison-Wesley Longman Publishing Co., Redwood City, CA,
2004.

A. L. TiTs, P.-A. ABsIL, AND W. P. WOESSNER Constraint reduction for linear programs with many
inequality constraintsSIAM J. Optim., 17 (2006), pp. 119-146.

R. C. WHALEY AND A. PETITET, Minimizing development and maintenance costs in supgpp@nsistently
optimized BLASSoftware: Practice and Experience, 35 (2005), pp. 101-121

M.-L. WONG, T.-T. WONG, AND K.-L. FOK, Parallel evolutionary algorithms on graphics processingtu
in 2005 IEEE Congress on Evolutionary Computation, 20052286—2293.

M. W00, J. NEIDER, T. DAvIS, AND D. SHREINER, OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Version 1,2ddison-Wesley Longman Publishing Co., Boston, MA, 2005.

S. J. WRIGHT, Primal-Dual Interior-Point MethodsSIAM, Philadelphia, PA, 1997.

Y. ZHANG, Solving large—scale linear programs by interior—point freds under the MATLAB environ-
ment Tech. Report 96-01, Department of Mathematics and Statidiniversity of Maryland Baltimore
County, Baltimore, MD, 1996.

http://graphics.cs.uiuc.edu/~jch/papers/UIUCDCS-R-2003-2328.pdf
http://www.intel.com/products/chipsets/945g/index.htm
http://hdl.handle.net/1903/7984
http://www.gpgpu.org/s2005/
http://msdn.microsoft.com/directx
http://msdn.microsoft.com/directx

