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Abstract

Given a primal-dual pair of linear programs, it is well known that if their optimal
values are viewed as lying on the extended real line, then the duality gap is zero, unless
both problems are infeasible, in which case the optimal values are +∞ and −∞. In
contrast, for optimization problems over nonpolyhedral convex cones, a nonzero duality
gap can exist when either the primal or dual is feasible.

For a pair of dual conic convex programs, we provide simple conditions on the
“constraint matrices” and cone under which the duality gap is zero for every choice
of linear objective function and constraint right-hand side. We refer to this property
as “universal duality”. Our conditions possess the following properties: (i) they are
necessary and sufficient, in the sense that if (and only if) they do not hold, the duality
gap is nonzero for some linear objective function and constraint right-hand side; (ii)
they are metrically and topologically generic; and (iii) they can be verified by solving
a single conic convex program. We relate to universal duality the fact that the feasible
sets of a primal convex program and its dual cannot both be bounded, unless they are both
empty. Finally we illustrate our theory on a class of semidefinite programs that appear in
control theory applications.

Keywords. Conic convex optimization, constraint qualification, duality gap, universal du-
ality, generic property.

1 Introduction and background

It is well known that if a linear program and its Lagrangian dual are both feasible, then
strong duality holds for that pair of problems. That is, there is a zero duality gap, and both
(finite) optimal values are attained. A key to proving this result is Farkas’ Lemma. It is also
well known that for nonpolyhedral convex cones, simple generalizations of Farkas’ Lemma
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do not necessarily hold. (However an “asymptotic” Farkas Lemma does hold; see e.g., [12,
Theorem 3.2.3].) In fact there exist conic programs1 that admit a nonzero, and possibly finite,
duality gap when either the primal or dual is feasible; see [8, Section 6.1], [12, Section 3.2],
or [19, Section 4] for examples. The reason for the failure of simple extensions of Farkas’
Lemma to nonpolyhedral convex cones is the potential nonclosedness of the linear image
of a closed convex cone. (When the cone is polyhedral, its linear image is always closed.)
Other conditions under which closedness is guaranteed to occur can be found, e.g., in [10],
and the references therein.

As a consequence of the above-mentioned failure, in optimization over nonpolyhedral
convex cones, a regularity condition is often assumed in order to guarantee a zero duality
gap. An example of such a condition is the generalized Slater constraint qualification
(GSCQ). A sufficient condition for strong duality of a pair of dual conic programs is that
both problems satisfy the GSCQ. If the GSCQ holds for only one of the two problems, then
a zero duality gap still results, but the optimal values need not both be attained. Further
results on duality in linear and nonlinear programming can be found in, e.g., [9, Chapter 8].

In some contexts, one wishes to study a family of optimization problems parameterized
by their objective function or constraint right-hand side. For example, in a network opti-
mization problem, it may be the case that the network “structure” remains fixed, but say,
the arc costs or arc capacities vary. Under such circumstances, it would be desirable for
the “constraint matrices” (corresponding to the network “structure”) to be such that the
duality gap of the associated optimization problem and its dual to always be zero, regardless
of the objective function or constraint right-hand side (which may correspond to arc costs
or arc capacities).

In this work, motivated by such considerations, we give necessary and sufficient conditions on
the “constraint matrices” and cone that ensure, for every linear objective function and constraint
right-hand side, a zero duality gap holds for a conic program and its dual. We refer to this
property as “universal duality”. We explain how universal duality essentially implies stability
of families of optimization problems parameterized by their objective function and constraint
right-hand side.

Genericness of certain types of nondegeneracy of conic programs is a useful property, for
both theoretical and numerical reasons. It was shown in [2] that primal and dual nondegeneracy,
and strict complementarity, holds for Lebesgue almost all semidefinite programs. These results
were extended in [11] to the more general case of conic programs in “standard form”. As a
further contribution of the present paper, we show that universal duality holds generically in a
metric as well as a topological sense.

Finally, we show that universal duality—which gives duality information about an infinite
family of conic programs—can be verified by solving a single conic program with essentially the
same size and structure as that of the original “primal” problem.

The layout of this paper is as follows. Section 2 is devoted to notation and preliminaries.
In Section 3, we formally define universal duality and prove simple necessary and sufficient
conditions for it to hold. We also use these conditions to show how universal duality relates to
the boundedness or lack thereof of the feasible sets of a pair of dual conic programs. We show
in Section 4 that universal duality is a metrically generic and topologically generic property, and

1Throughout the paper, we shall refer to conic convex programs as simply conic programs.
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in Section 5 that universal duality for a pair of dual conic programs can be verified by solving
a single conic program. In Section 6 we apply our theory of universal duality to a semidefinite
program found in control theory. Finally, in Section 7 we state some conclusions.

2 Notation and preliminaries

Given a set S ⊆ Rn, we will write ri(S), int(S), and cl(S), to denote its relative interior,
interior, and closure, respectively. We endow Rn with the inner product 〈·, ·〉, which induces
a vector norm and a corresponding operator norm, both denoted by ‖ · ‖. The dual of S is
given by S∗ = {x ∈ Rn | 〈x, y〉 ≥ 0 ∀ y ∈ S} and the orthogonal complement of S is given
by S⊥ = {x ∈ Rn | 〈x, y〉 = 0 ∀ y ∈ S}. The adjoint of a linear operator A is denoted
by A∗. We denote the space of linear operators from Rn to Rm by Rm×n, and denote by
In the identity operator from Rn to Rn, and the identity matrix of order n. (When the
domain or range of the identity operator are clear, we may omit the subscript.)

A set K ⊆ Rn is said to be a convex cone if for all x1, x2 ∈ K and t1, t2 ≥ 0, we have
t1x1 + t2x2 ∈ K. The dual of any set is a closed convex cone. A cone whose interior is
nonempty is said to be solid. If K contains no lines, i.e., its lineality space K ∩ −K is the
origin, then K is said to be pointed. A cone that is closed, convex, solid, and pointed, is
said to be full.2 A convex cone K induces an quasi-ordering �K , where x �K y is defined by
x − y ∈ K. (If K is also pointed, then �K is a partial ordering.) If K is also solid, we write
x ≻K y to mean x − y ∈ int(K), We will use the standard convention that the infimum
(supremum) of an empty set is +∞ (−∞), and the infimum (supremum) of a subset of the
real line unbounded from below (above) is −∞ (+∞). The nullspace and range of a finite
dimensional linear operator A will be denoted by N (A) and Range(A) respectively. We will
write A(S) = {Ax | x ∈ S} to denote the image of a set S under a linear operator A.

We will use the following theorem of the alternative contained in [10, Theorem 4]. It is a
generalization of Stiemke’s theorem of the alternative for linear equalities and inequalities; see
e.g., [17, p. 95].

Lemma 2.1. Let A be a linear operator and K be a closed convex cone. The following two
statements are equivalent.
(a) There exists a solution x to the system Ax = 0, x ∈ ri(K).
(b) A∗y ∈ K∗ ⇒ A∗y ∈ K⊥.

3 Universal duality in conic optimization

Any primal-dual pair of convex programs can be expressed in the “standard form”

uP = inf
x

{〈f, x〉 | Ax = b, x �K 0}, (1)

uD = sup
y,w

{〈b, y〉 | A∗y + w = f, w �K∗ 0}, (2)

2Some authors call such a cone proper or regular.
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or in the more general form

vP = inf
x

{〈f, x〉 | Ax = b, Cx �K d}, (3)

vD = sup
y,w

{〈b, y〉 + 〈d, w〉 | A∗y + C∗w = f, w �K∗ 0}, (4)

where A : Rn → Rm and C : Rn → Rp are linear operators, and K ⊂ Rp is a full cone.3

The primal formulation (3) can be found in, e.g., [3, Section 4.6.1], and for the case where
K is the positive semidefinite cone, in [21, Sections 3.1,4.2]. As is the case for all primal-dual
pairs of convex (and even nonconvex) programs, weak duality holds for (1)–(2) and (3)–(4),
viz., uP ≥ uD and vP ≥ vD. The feasible sets of (1) and (2) will be denoted by

FP = {x | Ax = b, x �K 0},

FD = {(y, w) | A∗y + w = f, w �K∗ 0}.

Unless otherwise stated, the following assumption will be in effect throughout.

Assumption 3.1. The equality constraints Ax = b in (1) and (3), and the “inequality”
constraints Cx �K d in (3) are nonvacuous, i.e., m, p > 0. (Of course, it is assumed also
that n > 0.)

In Remarks 3.11 and 5.5, we consider the cases where m = 0 or p = 0.
The problem (1) (resp. (3)) is said to be strongly feasible4 if {x | Ax = b, x ≻K 0}

(resp. {x | Ax = b, Cx ≻K d}) is nonempty. Its dual (2) (resp. (4)) is said to be strongly

feasible if {(y, w) | A∗y + w = f, w ≻K∗ 0} (resp. {(y, w) | A∗y + C∗w = f, w ≻K∗ 0})
is nonempty. Strong feasibility is equivalent to the GSCQ, and the following result holds; see
e.g., [13, Theorem 30.4].

Lemma 3.2. Fix A, C, and K. If (1) is strongly feasible for some b, then uP = uD for
every f . If (2) is strongly feasible for some f , then uP = uD for every b. Likewise, if (3) is
strongly feasible for some b and d, then vP = vD for every f , and if (4) is strongly feasible
for some f , then vP = vD for every b and d.

Lemma 3.2 gives sufficient conditions under which a zero duality gap occurs for a family of
conic problems parameterized by the linear objective function of the primal or dual. We will
investigate conditions under which a zero duality gap occurs for every linear objective function
and every right-hand side of (1)–(2) or (3)–(4).

The following notation will be used heavily throughout. Given linear operators A and C and
a closed convex cone G whose dimensions are compatible, define the sets

So(C,G) = {x | Cx ≻G 0}, Sc(C,G) = {x | Cx �G 0},

and the conditions

Property Po(A, C,G) : N (A) ∩ So(C,G) is nonempty, and A is onto;
Property Pc(A, C,G) : N (A) ∩ Sc(C,G) = {0}.

3It follows that K∗ is also a full cone.
4Some authors refer to strong feasibility as strict feasibility.
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(The subscripts o and c remind the reader that So(C,G) is open and Sc(C,G) is closed.)
Note that properties Po(A, C,G) and Pc(A, C,G) are mutually exclusive. Figure 1 shows three
possible geometrical positions for the sets N (A) and Sc(C, K), for an instance of (3)–(4) in
which So(C, K) is nonempty.

N (A)

0 0

Sc(C, K) := {x : Cx ∈ K}

0

Figure 1: The first and second plots from the left depict situations where properties Po(A,C,K) and

Pc(A,C,K) hold, respectively. The third plot shows how both properties can fail to hold.

Before proceeding to define and characterize universal duality, we conclude the introductory
portion of this section by proving some useful properties that relate So, Sc, Po, and Pc, for the
matrices and cone in (3)–(4).

Lemma 3.3. If So(C, K) is nonempty, then So(C, K) = int(Sc(C, K)).

Proof. Suppose that C and K are such that So(C, K) is nonempty, and let So := So(C, K)
and Sc := Sc(C, K). Clearly So = int(So) ⊆ int(Sc), so it suffices to show that int(Sc) ⊆ So.
To prove this, let xc ∈ int(Sc) and xo ∈ So. Then there exists α > 0 such that xc−αxo ∈ Sc

and, since K is a cone, αxo ∈ So. Therefore C(xc − αxo) �K 0 and αCxo ≻K 0. Since
xc = (xc − αxo) + αxo, it follows that Cxc ≻K 0, i.e., xc ∈ So. �

Lemma 3.4. The following relations between Po and Pc hold.
(a) Property Po(A, C, K) holds if and only if property Po

([

A 0
C −I

]

, I,Rn × K
)

holds.
(b) Property Pc(A, C, K) holds if and only if property Pc

([

A 0
C −I

]

, I,Rn × K
)

holds.
(c) Property Po(A, C, K) holds if and only if property Pc([A

∗ C∗], I,Rm × K∗) holds.
(d) Property Pc(A, C, K) holds if and only if property Po([A

∗ C∗], I,Rm × K∗) holds.

Proof. Statements (a) and (b) can be easily verified from the definitions of Po and Pc. We
now prove statements (c) and (d). It follows from Lemma 2.1 that, for a linear operator L and
a solid closed convex cone K, the system Lx = 0, x ≻K 0 has a solution x if and only if
L∗y ∈ K∗ ⇒ L∗y = 0. So property Po(L, I, K), which amounts to “Lx = 0, x ≻K 0 has a
solution x, and L is onto”, is equivalent to “L∗y ∈ K∗ ⇒ L∗y = 0, and L onto”, which in turn
is readily seen to be equivalent to the implication L∗y ∈ K∗ ⇒ y = 0. So property Po(L, I, K)
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is equivalent to the implication L∗y ∈ K∗ ⇒ y = 0. Now replacing L and K by
[

A 0
C −I

]

and
Rn × K respectively, and using (a), yields (c) after simplification. Replacing A, C, and K in
(c) by [A∗ C∗], I, and Rm ×K∗ respectively, we obtain statement (d) after simplification. �

3.1 Universal duality

We first focus on universal duality for the standard form (1)–(2).

Definition 3.5. Given a linear operator A : Rn → Rm and a full cone K ⊂ Rp, we say that
universal duality holds for (A, K) if for all choices of b and f , uP = uD holds in (1)–(2).
(A common value of +∞ or −∞ is permitted.)

In characterizing universal duality in terms of properties Po and Pc, we will use the following
two lemmas. Some parts of these lemmas are well known, but for ease of reference, we give a
complete proof for Lemma 3.6 here. Lemma 3.7 is proven in a similar way.

Lemma 3.6. The following statements are equivalent.
(a) Property Po(A, I, K) holds.
(b) For every f , the set FD is bounded (and possibly empty).
(c) For every b, (1) is feasible.
(d) For every b, (1) is strongly feasible.

Proof. First, observe from Lemma 3.4(c) that properties Po(A, I, K) and Pc([A
∗ I], I,Rm ×

K∗) are equivalent. Now the latter property can be expressed in the following way: the only
z ∈ Rm × K∗ satisfying [A∗ I]z = 0 is z = 0. But this characterization is none other than
that of the nonexistence of a (nonzero) recession direction for FD. Hence (a)⇔(b). This same
characterization of nonexistence can be rewritten as {y | A∗y ∈ K∗} = {0}. Taking the dual of
each side of this equality yields the equivalent statement cl(A(K)) = Rm. Now cl(A(K)) = Rm

if and only if A(K) = Rm, which is nothing other than feasibility of (1) for every b. Hence
(b)⇔(c). Finally, suppose that A(K) = Rm. Taking the relative interior of each side yields the
equivalent statement ri(A(K)) = Rm. Now the relation ri(A(K)) = A(ri(K)) holds since A is
a linear operator A and K is a convex set [13, Theorem 6.6]. Moreover, ri(K) = int(K) since
K has nonempty interior. So (c) is equivalent to A(int(K)) = Rm, i.e., (1) is strongly feasible
for every b. Hence (c)⇔(d). �

Lemma 3.7. The following statements are equivalent.
(a) Property Pc(A, I, K) holds.
(b) For every b, the set FP is bounded (and possibly empty).
(c) For every f , (2) is feasible.
(d) For every f , (2) is strongly feasible.

We are now ready to characterize universal duality for (A, K) in terms of the properties Po

and Pc.

Theorem 3.8. Universal duality holds for (A, K) if and only if either property Po(A, I, K)
or property Pc(A, I, K) holds.
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Proof. (⇒) If A and K are such that both properties Po(A, I, K) and Pc(A, I, K) fail, then
it follows from the implications (c)⇒(a) in Lemmas 3.6 and 3.7 that for some b and f , (1)
and (2) are infeasible, i.e., uP = +∞ and uD = −∞. Clearly universal duality cannot hold for
(A, K).
(⇐) If either of the two properties hold, then implications (a)⇒(d) in Lemmas 3.6 and 3.7 imply
that strong feasibility holds for every right-hand side of (1) or for every right-hand side of (2).
Universal duality for (A, I, K) now follows from Lemma 3.2. �

We now define a related concept of universal duality for the formulation (3)–(4).

Definition 3.9. Given linear operators A : Rn → Rm and C : Rn → Rp, and a full cone
K ⊂ Rp, we say that universal duality holds for the triple (A, C, K) if for all choices of b, d,
and f , vP = vD holds in (3)–(4). (A common value of +∞ or −∞ is permitted.)

A characterization of universal duality for (A, C, K) is readily obtained, analogous to Theo-
rem 3.8.

Theorem 3.10. Universal duality holds for (A, C, K) if and only if either property Po(A, C, K)
or property Pc(A, C, K) holds.

Proof. Let Ā =
[

A 0
C −I

]

and K̄ = Rn ×K. Observe that Lemma 3.4(a),(b) implies properties
Po(Ā, I, K̄) and Po(A, C, K) are equivalent, as are Pc(Ā, I, K̄) and Pc(A, C, K). So by Theo-
rem 3.8, property Po(A, C, K) or property Pc(A, C, K) holds, if and only if uP = uD for every
b1, b2 and f , where

uP = −〈f,
[

0
b2

]

〉 + inf
x′

{〈
[

I
C

]∗
f, x′〉 | Ax′ = b1, Cx′ �K b2},

uD = −〈f,
[

0
b2

]

〉 + sup
y′,w′

{〈b1, y
′〉 + 〈b2, w

′〉 | A∗y′ + C∗w′ =
[

I
C

]∗
f, w′ �K∗ 0}.

(Here we have replaced A and K in (1)–(2) by Ā and K̄.) The vectors b1 ∈ Rm and b2 ∈ Rp

are such that b =
[

b1
b2

]

, where b is from (1)–(2). Note that
[

I
C

]∗
is onto regardless of C, so

given any f̄ , there exists a solution f to the linear system f̄ =
[

I
C

]∗
f . It follows that uP = uD

for every b1, b2 and f if and only universal duality holds for (A, C, K). �

Remark 3.11. Theorems 3.8 and 3.10 still apply when m = 0 or p = 0, under appropriate
conventions. We will adopt the convention that if m = 0, then A is onto and N (A) =
Rn. Properties Po(A, C, K) and Pc(A, C, K) then become property P′

o(C, K) : So(C, K)
is nonempty, and property P′

c(C, K) : Sc(C, K) = {0}, respectively. Properties P′
o(C, K)

and P′
c(C, K) are mutually exclusive. Further, we will adopt the convention that if p =

0, then K = Rp = {0}, and So(C, K) = Sc(C, K) = Rn. Properties Po(A, C, K) and
Pc(A, C, K) then become property P′′

o(A) : A is onto, and property P′′
c (A) : A is one-to-one,

respectively. If p = 0 and A is invertible (so that m = n), then clearly properties P′′
o(A)

and P′′
c (A) both hold. Otherwise these two properties are mutually exclusive. Under these

conventions, Theorems 3.8 and 3.10 hold when m = 0 or p = 0, with properties Po(A, C, K)
and Pc(A, C, K) replaced by their primed versions defined above.
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It is clear from the definitions that universal duality for (A, I, K) implies universal duality
for (A, K). The converse also holds. That is, the set of linear operators A for which a zero
duality gap is obtained in (1)–(2) for every permissible constraint right-hand side and objective
function is unchanged when the primal constraint x �K 0 is replaced by x �K d.

Theorem 3.12. Universal duality holds for (A, I, K) if and only if universal duality holds
for (A, K).

Proof. As was just pointed out, the forward implication is a direct consequence of the defini-
tions. We prove that if universal duality fails to hold for (A, I, K), then it also fails to hold for
(A, K). Suppose that universal duality does not hold for (A, I, K). Then for some b, d, and f ,
(3)–(4) with C = I exhibits a nonzero duality gap. Now consider (3)–(4) with C = I, and let
x̂ = x − d and b̂ = b − Ad. Then the primal constraints become Ax̂ = b̂ and x̂ �K 0, and the
primal objective function becomes 〈f, x̂〉 + 〈f, d〉. Noting that any dual feasible solution (y, w)
must satisfy w = f − A∗y, we can write the dual objective function as 〈b̂, y〉 + 〈f, d〉. So (3)
and (4) take the form of (1) and (2) respectively, except for the addition of a common constant
term 〈f, d〉 in each objective function. Hence universal duality does not hold for (A, K). �

In some applications in which one wishes to study the behavior of the duality gap under
perturbations in the right-hand side and objective function coefficient data, it is likely that the
perturbed data will be restricted. The following result shows that as long as the set of perturbed
data contains the origin in its interior, then a zero duality gap ensues for that set of data (if
and) only if universal duality holds. We formally state and prove this result for the standard
form.

Theorem 3.13. Let B ⊆ Rm and F ⊆ Rn be neighborhoods of the origin. Universal duality
holds for (A, K) if and only if uP = uD for every b ∈ B and f ∈ F .

Proof. Clearly the forward implication holds. To prove the reverse implication, let b and f in
(1)–(2) be arbitrary. There exists α > 0 such that αb ∈ B and αf ∈ F , so

uP = inf
x

{〈f, x〉 | Ax = b, x �K 0}

=
1

α2
inf
x

{〈αf, x〉 | Ax = αb, x �K 0}

=
1

α2
sup
y,w

{〈αb, y〉 | A∗y + w = αf, w �K∗ 0}

= sup
y,w

{〈b, y〉 | A∗y + w = f, w �K∗ 0}

= uD,

where we have used the mappings x → αx and (y, w) → α(y, w). �

3.2 Universal duality and the boundedness of primal and dual feasible

sets

It is shown in [4, Theorem 1] that if a convex program has a nonempty bounded feasible set,
then its dual must have an unbounded feasible set. This turns out to be a direct corollary of
the following result that connects the boundedness or lack thereof of the feasible sets FP and
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FD to properties Po and Pc. The results in this section are phrased in terms of the standard
form, but are easily extended to (3)–(4).

Theorem 3.14. (a) If property Po(A, I, K) holds, then for every b and f , FD is bounded
(and possibly empty), and FP is unbounded.
(b) If property Pc(A, I, K) holds, then for every b and f , FP is bounded (and possibly
empty), and FD is unbounded.
(c) If properties Po(A, I, K) and Pc(A, I, K) both fail, then for every b and f , both FP and
FD are unbounded or empty.

Proof. To prove (a), suppose that property Po(A, I, K) holds. It follows from the implications
(a)⇒(b) and (a)⇒(c) in Lemma 3.6 that for every b and f , FD is bounded (and possibly
empty) and FP is nonempty. Now it has already been noted that properties Po(A, I, K) and
Pc(A, I, K) are mutually exclusive, so it must be the case that Pc(A, I, K) fails. It then follows
from the implication (b)⇒(a) in Lemma 3.7, that for some b, FP is unbounded, i.e., contains
a recession direction. Since FP is nonempty for every b, we conclude it is unbounded for every
b. This concludes the proof of statement (a). Statement (b) is proved similarly. To prove
(c), observe that if properties Po(A, I, K) and Pc(A, I, K) both fail, then Lemmas 3.6 and 3.7
imply that for some b and f , both FP and FD are unbounded. Hence both FP and FD contain
recession directions, and so whenever these sets are nonempty they are unbounded. �

We conclude this section by giving alternative necessary and sufficient conditions for universal
duality of (A, K), which involve boundedness or lack thereof of FP and FD.

Theorem 3.15. (a) If for some b and f , either FP or FD is nonempty and bounded, then
universal duality holds for (A, K).
(b) If universal duality holds for (A, K), then one of FP and FD is unbounded for every b
and f , and the other is bounded (and possibly empty) for every b and f .

Proof. (a) If for some b and f , either FP or FD is nonempty and bounded, then the contra-
positive of Theorem 3.14(c) shows that either property Pc(A, I, K) or Po(A, I, K) holds. So
by Theorem 3.8, universal duality holds for (A, K).
(b) Appealing again to Theorem 3.8, observe that if universal duality holds for (A, K), then
exactly one of properties Po(A, I, K) and Pc(A, I, K) holds. Hence either statement (a) or (b)
in Theorem 3.14 applies. �

It has been shown e.g., in [13, Theorem 30.4], that for a pair of dual convex programs, if the set
of primal or dual optimal solutions is nonempty and bounded, then a zero duality gap results.
It may be of interest to compare this result with Theorem 3.15(a).

4 Generic properties of universal duality

On a Euclidean space X, we can speak of a metrically generic property that holds at “almost
all” points in X, or a topologically generic property that holds on a residual set in X. Here,
“almost all” is in the sense of Lebesgue measure, and a residual set in X is one that contains a
countable intersection of open dense subsets in X.5 Focusing on (3)–(4), we will take X to be

5Neither type of genericness is implied by the other. The terminology “topologically generic” and “met-
rically generic” can be found in, e.g., [18].
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Rm×n×Rp×n, since this is the domain of the pair of linear operators (A, C). We will show that
for a fixed full cone K, universal duality for (A, C, K) is both a metrically generic property and
a topologically generic property on X. Universal duality for (A, K) enjoys similar properties.

4.1 Metric genericness of universal duality

In showing that universal duality for (A, C, K) is metrically generic, we will use several
lemmas. The first two results are well known; the first follows from Fubini’s theorem; see
e.g., [7, p. 147, Theorem A]. The third one is proved in the appendix.

Lemma 4.1. A Lebesgue measurable set W ⊆ Rm ×Rn has zero Lebesgue measure if and
only if the set {x ∈ Rm | (x, y) ∈ W} has zero Lebesgue measure for Lebesgue almost every
y ∈ Rn.

Lemma 4.2. The set of matrices in Rm×n containing a square singular submatrix has
zero Lebesgue measure. In particular, the set of rank deficient matrices in Rm×n has zero
Lebesgue measure.

Lemma 4.3. Let S ⊆ Rn be a solid closed convex cone, and let p be a positive integer.
Then the sets

M1 = {M ∈ Rp×n | N (M) ∩ int(S) is empty, and N (M) ∩ S 6= {0}},

M2 = {M ∈ Rn×p | Range(M) ∩ int(S) is empty, and Range(M) ∩ S 6= {0}}

have zero Lebesgue measure.

Theorem 4.4. Universal duality for (A, C, K) is metrically generic. Specifically, given a
full cone K, the set of pairs (A, C) such that universal duality fails to hold for (A, C, K)
has zero Lebesgue measure in Rm×n ×Rp×n.

Proof. Let T be the set of pairs (A, C) such that universal duality fails to hold for (A, C, K).
We consider the two cases m ≥ n and m < n.

First, suppose that m ≥ n. Then by Theorem 3.10 we have

T ⊆ {(A, C) | property Pc(A, C, K) fails}

= {(A, C) | N (A) ∩ Sc(C, K) 6= {0}}

⊆ {A ∈ Rm×n | N (A) 6= {0}} ×Rp×n

= {A ∈ Rm×n | rank(A) < n} ×Rp×n.

It follows from Lemma 4.2 that {A ∈ Rm×n | rank(A) < n} has zero Lebesgue measure,
and then from Lemma 4.1 that T has zero Lebesgue measure.

Suppose now m < n. Consider the following conditions on A and C: (i) N (A) ∩ So(C, K)
is empty, and (ii) N (A) ∩ Sc(C, K) 6= {0}. Consider also the sets

T1 = {(A, C) | conditions (i) and (ii) hold, and So(C, K) is empty},

T2 = {(A, C) | conditions (i) and (ii) hold, and So(C, K) is nonempty}.
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Noting the relationship between property Po(A, C, K) and condition (i), and between property
Pc(A, C, K) and condition (ii), we see that Theorem 3.10 implies

T ⊆ {(A, C) | A is not onto} ∪ T1 ∪ T2. (5)

The first set on the right-hand side of (5) has zero Lebesgue measure by Lemmas 4.2 and 4.1. We
now proceed to show that T1 and T2 also have zero Lebesgue measure. In view of Lemma 4.2
we can restrict our attention to matrices C (and A) having full rank. If rank(C) = p, then
Range(C) = Rp, so that So(C, K) is nonempty. Therefore we can assume that any C such
that (A, C) ∈ T1 satisfies rank(C) = n < p. Now

T1 = {(A, C) | So(C, K) is empty, and (ii) holds}

⊆ {(A, C) | So(C, K) is empty, and Sc(C, K) 6= {0} }

= {(A, C) | Range(C) ∩ int(K) is empty, and Range(C) ∩ K 6= {0}},

where the last equality holds due to C having full column rank. (This condition implies
that Sc(C, K) 6= {0} if and only if Range(C) ∩ K 6= {0}.) It follows from Lemmas 4.3
and 4.1 that T1 has zero Lebesgue measure. Now in view of Lemma 3.3, any C satisfying
(A, C) ∈ T2 will also satisfy So(C, K) = int(Sc(C, K)), and hence Sc(C, K) will be solid.
So any A ∈ Rm×n such that (A, C) ∈ T2 lies in the set

{A | N (A) ∩ int(Sc(C, K)) is empty, and N (A) ∩ Sc(C, K) 6= {0}}.

By Lemma 4.3 this set has zero Lebesgue measure, so it follows from Lemma 4.1 that T2 also
has zero Lebesgue measure. �

For the standard form (1)–(2), a metric genericness result of the following form can be obtained.

Theorem 4.5. Given a full cone K, the set

{A | universal duality fails for (A, K)}

has zero Lebesgue measure in Rm×n.

Proof. Similar to that of Theorem 4.4. (We set C = I and also use Theorem 3.12.) �

Note that Theorem 4.5 neither implies nor is implied by Theorem 4.4.

4.2 Topological genericness of universal duality

Theorem 4.6. Universal duality for (A, C, K) is topologically generic. In fact, given a full
cone K, the set of pairs (A, C) for which universal duality holds for (A, C, K) is open and
dense in Rm×n ×Rp×n.

Proof. The complement of a set having zero Lebesgue measure is dense. (If not, then that
set would contain an open hypercube, which must have positive measure.) So Theorem 4.4
implies that the set of pairs (A, C) such that universal duality holds for (A, C, K) is dense
in Rm×n ×Rp×n. We now show that:
(a) The set of pairs (A, C) such that property Po(A, C, K) holds is open in Rm×n ×Rp×n;
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and
(b) The set of pairs (A, C) such that property Pc(A, C, K) holds is open in Rm×n ×Rp×n.

To prove (a), suppose that (A, C) is such that property Po(A, C, K) holds. When
m > n, A cannot be onto, so it must be the case that m ≤ n. Further, if m = n, then
N (A)∩So(C, K) is empty whenever A is onto, so property Po(A, C, K) fails to hold. Hence
m < n. Now let {(Ai, Ci)}i be an infinite sequence such that (Ai, Ci) → (A, C). Since the
set of full rank matrices is open, then Ai is onto for i large enough. So it is enough to show
that N (Ai) ∩ So(C

i, K) is nonempty for i large enough. Let x ∈ N (A) ∩ So(C, K) and
let xi be the orthogonal projection of x onto N (Ai). Then limi→∞ xi = x. Now writing
Cixi − Cx = Ci(xi − x) + (Ci − C)x, we have

‖Cixi − Cx‖ ≤ ‖Ci‖‖xi − x‖ + ‖Ci − C‖‖x‖. (6)

As i → ∞, the right-hand side of (6), and hence the left-hand side, tends to zero. It follows
from Cx ≻K 0 that Cixi ≻K 0 for i large enough. That is, xi ∈ N (Ai)∩ So(C

i, K) for such
i. This proves statement (a).

To prove (b), let S be the set of pairs (A, C) such that property Pc(A, C, K) holds.
Proceeding by contradiction, we suppose that S is not open in Rm×n×Rp×n. Then for some
(A, C) ∈ S, there exists a sequence {(Ai, Ci)}i with (Ai, Ci) /∈ S for all i, but (Ai, Ci) →
(A, C). So for each i, there exists a nonzero xi ∈ N (Ai) ∩ Sc(C

i, K). Now set yi = xi/‖xi‖
so that ‖yi‖ = 1, Aiyi = 0 and Ciyi �K 0 for all i. Since {yi} is a bounded sequence, it
contains a convergent subsequence. Passing to such a subsequence if necessary, we conclude
that there exists a limit point y 6= 0. Since K is closed, y ∈ N (A) ∩ Sc(C, K), so that
(A, C) /∈ S—a contradiction. �

For the standard form (1)–(2), a topological genericness result of the following form can be
obtained.

Theorem 4.7. Given a full cone K, the set

{A | universal duality holds for (A, K)}

is open and dense in Rm×n.

Proof. Similar to that of Theorem 4.6. (We set C = I and also use Theorem 3.12.) �

Note that Theorem 4.7 neither implies nor is implied by Theorem 4.6.

5 Verifying universal duality

We show that universal duality for (A, C, K) or (A, K) can be checked by solving a single
conic program with essentially the same size and “structure” as that in (3). We first state
two well known results.

Lemma 5.1. Let the set S be such that S∗ (defined with respect to the inner product 〈·, ·〉)
has nonempty interior. Then for any y ∈ S and z ∈ int(S∗), 〈y, z〉 ≤ 0 implies that y = 0.

Lemma 5.2. If K ⊂ Rp is a full cone, then int(K) ∩ int(K∗) is nonempty.

12



We now show how properties Po(A, C, K) and Pc(A, C, K), and hence universal duality
for (A, C, K), can be verified by solving a single conic program.

Theorem 5.3. Let e ∈ int(K)∩ int(K∗). Universal duality for (A, C, K) can be verified by
solving the conic program

r̄ = sup
x, r

{r | Ax = 0, Cx �K re, 〈Cx, e〉 = 1}. (7)

Specifically,6

(a) Property Po(A, C, K) holds if and only if r̄ > 0 and A is onto;
(b) Property Pc(A, C, K) holds if and only if r̄ < 0 and N (A) ∩N (C) = {0}.

Proof. We first show that (a) holds. It suffices to show that N (A)∩So(C, K) is nonempty
if and only if r̄ > 0.
(⇒) The nonemptiness of N (A) ∩ So(C, K) implies that there exists x̃ such that Ax̃ = 0
and Cx̃ ≻K 0. Hence Cx̃ − r̃e ≻K 0 for some r̃ > 0 sufficiently small. Since Cx̃ − r̃e ∈ K
and e ∈ K∗, we have k := 〈Cx̃, e〉 = 〈Cx̃ − r̃e, e〉 + r̃〈e, e〉 > 0. Hence (x̃/k, r̃/k) is feasible
for (7), so that r̄ ≥ r̃/k > 0.
(⇐) Suppose r̄ > 0. Then there exists r̃ > 0 and x̃ such that Ax̃ = 0 and Cx̃ �K r̃e ≻K 0,
i.e., x̃ ∈ N (A) ∩ So(C, K).

We now prove statement (b).
(⇒) Suppose that Pc(A, C, K) holds. Then 0 ⊆ N (A) ∩ N (C) ⊆ N (A) ∩ Sc(C, K) = {0},
so N (A) ∩N (C) = {0}. It remains to prove that r̄ < 0.

If (x, r) with r ≥ 0 satisfies the constraints Ax = 0 and Cx �K re (�K 0) in (7), then
x ∈ N (A) ∩ Sc(C, K). Since Pc(A, C, K) holds, we must have x = 0, but this violates the
constraint 〈Cx, e〉 = 1. Hence every pair (x, r) with r ≥ 0 is infeasible for (7). It follows
that r̄ ≤ 0. We now rule out the case r̄ = 0.

If (7) is infeasible, there is nothing to prove, so suppose that (7) is feasible for (x̂, r̂)
with r̂ < 0. Consider the set T of feasible points (x, r) satisfying r̂ ≤ r ≤ 0. Suppose there
exists a recession direction (dx, dr) ∈ Rn ×R for T . Since r is bounded in T , dr = 0, and
dx satisfies Adx = 0, Cdx �K 0, and 〈Cdx, e〉 = 0. Since e ≻K∗ 0, then by Lemma 5.1, the
last two conditions imply that Cdx = 0. So dx ∈ N (A) ∩ N (C), which was shown to be
the origin. Hence the nonempty set T is bounded. It follows from the closedness of K that
the feasible set of (7), and hence T , is closed. So r̄, which equals the supremum of a linear
function over the compact set T , is achieved. Since we showed that (x, r) is infeasible for
every r ≥ 0, it follows that r̄ < 0.
(⇐) If r̄ < 0, then r = 0 is infeasible for (7), so there does not exist an x such that
Ax = 0, Cx �K 0, and 〈Cx, e〉 > 0. That is, any x satisfying Ax = 0 and Cx �K 0 must
also satisfy 〈Cx, e〉 ≤ 0, which implies Cx = 0 by Lemma 5.1, since e ≻K∗ 0. In other
words, N (A)∩Sc(C, K) = N (A)∩N (C). Since N (A)∩N (C) = {0}, property Pc(A, C, K)
holds. �

Remark 5.4. Theorem 5.3 can be used to check universal duality for (A, K) by setting
C = I and using Theorem 3.12.

6The set of instances for which r̄ < 0 includes those for which (7) is infeasible, i.e., r̄ = −∞. In contrast,
it is not possible for A, C, and K to be such that r̄ = +∞. In fact the constraints in (7) imply that
r̄ ≤ 1/‖e‖2.

13



Remark 5.5. If p = 0, then Remark 3.11—with properties Po(A, C, K) and Pc(A, C, K)
replaced by P′′

o(A) and P′′
c (A)—tells us that for a pair of dual problems containing linear

equality constraints only, universal duality holds for (A, C, K) if and only if A is onto or one-
to-one. Of course there is no need to solve a conic program to verify whether A satisfies
these conditions. If m = 0, then Theorem 5.3—with properties Po(A, C, K) and Pc(A, C, K)
replaced by P′

o(C, K) and P′
c(C, K)—holds under the convention specified in Remark 3.11.

6 An application of universal duality

In this section, we consider certain semidefinite programs (SDPs) derived from the Kalman-
Yakubovich-Popov (KYP) lemma, which are of interest in control theory and signal processing.
Specifically we study one type of KYP-SDP from [21, Section 2.2]. First let us define the
necessary notation. Denote the space of symmetric matrices of order n by Sn and the cone
of positive semidefinite matrices by Sn

+. The standard inner product defined on Sn is given by
〈M, N〉 = trace(MN) for M, N ∈ Sn. It can be shown that the positive semidefinite cone
is a full cone that is also self-dual, i.e., (Sn

+)∗ = Sn
+. The interior of Sn

+ is the set of positive
definite matrices. In this section, � refers to the ordering induced by the positive semidefinite
cone. That is, given matrices M, N ∈ Sn, M � N means that M −N is a positive semidefinite
matrix.

Consider the continuous-time dynamical system

ẋ(t) = Ax(t) + Bu(t), t ≥ 0, x(0) = x0,

where A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn, and u(t) ∈ Rm. Given a matrix M ∈ Sn+m, we
seek the optimal state vector x and control vector u such that the cost functional

J(u) =

∫ ∞

0

[

x(t)
u(t)

]T

M
[

x(t)
u(t)

]

dt

is minimized over (say) the space of piecewise continuous controls u, subject to the above
differential equation and the constraint that x(t) → 0 as t → ∞. Define the linear operator
L : Sn → Sn+m by

L(P ) =

[

AT P + PA PB
BT P 0

]

.

This optimal control problem is closely linked ([21, Section 2.2]) to the SDP

v = sup
P∈Sn

{〈P, x0x
T
0 〉 | L(P ) � −M}, (8)

in that, whenever the optimal value of J exists, it is given by v. A sufficient condition for this
to hold is that the pair of matrices (A, B) is controllable, i.e., the matrix

[B AB A2B · · ·An−1B] (9)

has full (row) rank. (This condition is not necessary however, as the following trivial example
shows: n = m = 1, A = −1, B = 0, x0 = 1, M = I2, with v = 1/2.) The following
characterization of controllability of (A, B) in terms of L can be found in [20, Lemma 1].
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Lemma 6.1. The pair (A, B) is controllable if and only if the following implication holds:

L(P ) � 0 =⇒ P = 0. (10)

The dual of (8) is the SDP

inf
Z∈Sn+m

{〈M, Z〉 | L∗(Z) = −x0x
T
0 , Z � 0}. (11)

Note that (11) is in “primal standard form”, i.e., in the form of (1), with L∗ and Sn+m
+ playing

the role of A and K in (1). It turns out that controllability of (A, B) is precisely what is needed
for universal duality to hold for the pair (L∗,Sn+m

+ ):

Theorem 6.2. Universal duality holds for (L∗,Sn+m
+ ) if and only if (A, B) is controllable.

Proof. We show that controllability of (A, B) is equivalent to the absence of a duality gap
between the optimal values of (8) and (11), with x0x

T
0 replaced by Q, for all M and Q ∈ Sn.

Equivalently, in (8), further replace “sup” with “−inf” and Q with −Q, and view this transformed
SDP as being in primal form (3) with vacuous explicit equality constraints. To prove the claim, it
then suffices to show that (A, B) is controllable if and only if either property P′

o(L,Sn+m
+ ) holds

or property P′
c(L,Sn+m

+ ) holds—see Remark 3.11. Now property P′
o(L,Sn+m

+ ) is equivalent to
the existence of a P such that L(P ) is positive definite. But such a P cannot exist since the
(2, 2) block of L(P ) is zero. Finally, it can be easily verified that property P′

c(L,Sn+m
+ ) is none

other than the implication (10). So the claim follows from Lemma 6.1. �

Corollary 6.3. If (A, B) is controllable, then the pair (8)–(11) admits a zero duality gap
for every M and every x0.

Does universal duality for (L∗,Sn+m
+ ) hold generically on the space of pairs (A, B)? Since

the operator L, due to its specific form, is restricted to lie in a subspace of the space of linear
operators mapping Sn to Sn+m, the genericness results of Section 4 have no bearing. Still,
because it is equivalent to controllability of (A, B), universal duality for (L∗,Sn+m

+ ) is indeed
metrically and topologically generic in the space of all matrix pairs (A, B). This follows from
the characterization of controllability in (9).

7 Conclusions

Given a pair of dual convex problems in conic form, we introduced the concept of universal
duality, which is said to hold if a zero duality gap occurs for every linear objective function
and constraint right-hand side. We obtained simple necessary and sufficient conditions
on the “constraint matrices” and cone that guarantee universal duality. We also gave
a relationship between universal duality for conic optimization, and boundedness or lack
thereof of the primal and dual feasible sets. A corollary of this relationship is the well known
result that the feasible sets of a pair of dual conic programs cannot both be bounded (unless
they are both empty). Further, we showed that universal duality holds almost everywhere, and
holds on an open, dense set of “constraint matrices”, and that universal duality, which gives
duality information about an infinite family of conic programs, can be verified by solving a single
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conic optimization problem. Finally, we showed how our universal duality framework could be
applied to a problem found in control theory.

Universal duality and its genericness has consequences for the stability (well-posedness) of
conic programs. If A, C, and K are such that universal duality holds for (A, C, K), then for any
change in the objective function and right-hand side data, a zero duality gap will result, and the
optimal Lagrange multipliers will thus be meaningful for any data whenever the optimal value
is finite. Since universal duality hold generically as A, C, and K vary, meaningfulness of the
Lagrange multipliers is also generic, and thus conic programs are generically well-posed.

Acknowledgments. We are also grateful to Pierre-Antoine Absil, Carlos Berenstein, Ben-
jamin J. Howard, Daniel Hug, John W. Mitchell, Gábor Pataki, Rolf Schneider, and Henry
Wolkowicz, for helpful discussions related to this work. We also thank two anonymous referees
who made many valuable suggestions. In particular, they pointed out the result in Lemma 2.1,
alerted us to [11], and suggested improvements in the organization of Section 3.

A Appendix: Proof of Lemma 4.3

Our aim is to show that the sets M1 and M2 have zero Lebesgue measure. These sets are
closely related to the set of q-dimensional linear subspaces L of Rn for which L∩int(S) is empty
and L ∩ S 6= {0}, where q = n − p and p, respectively. We exploit this correspondence by
invoking a deep theorem on convex bodies in [16, p. 93]. (The result there was first stated
in [22].) This result is adapted as Lemma A.1 below, which concerns the Hausdorff measure
of a particular subset of G(n, q)—the metric space of q-dimensional linear subspaces of Rn.7

Before stating this result, we discuss Hausdorff measure on metric spaces, and the distance
function (i.e., metric) we will associate with the metric space G(n, q).

Given a metric space (X, ρ), where ρ is the distance function, and given t ≥ 0, the
t-dimensional Hausdorff (outer) measure of T ⊆ X is defined by

Ht
ρ(T ) = lim

δ→0
inf

{

∑

i

dρ(Ui)
t
∣

∣ {Ui} is a δ-cover of T

}

. (A-1)

(The limit in (A-1) always exists, though its value may be infinite.) Here dρ is the diameter
function

dρ(T ) = sup {ρ(x, y) | x, y ∈ T},

and a δ-cover of T is a countable collection of sets {Ui} satisfying T ⊆
⋃

i Ui and 0 <
dρ(Ui) ≤ δ for each i.

Suppose now that t is a positive integer. It can be shown that on a t-dimensional Euclidean
space endowed with the usual Euclidean distance function, the associated t-dimensional Haus-
dorff measure of a set T ⊆ Rt is a constant multiple of the Lebesgue outer measure of T in
Rt; see e.g., [14, Theorem 30]. Since a set having zero Lebesgue outer measure is Lebesgue

7The set G(n, q) together with a specified “differentiable structure”, is known as the Grassmann manifold.
We will not explicitly use any topological properties of this manifold however.
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measurable [15, p. 57, Lemma 6], it follows that a set T ⊂ Rt has zero t-dimensional Hausdorff
measure if and only if T is Lebesgue measurable and its Lebesgue measure L(T ) equals zero.

For any positive integers n and q with n > q, the Hausdorff measure on G(n, q) referred
to throughout this appendix will be that associated with the “arc-length” distance function
ρ, which is the distance function induced by the unique (to scale) “rotation-invariant Rie-
mannian metric” on G(n, q). It is pointed out in [1, Section 3] that this distance function
can be expressed as the two-norm of the vector of “principal” or “canonical” angles between
linear subspaces. See also [5, p. 337].

In the sequel, a q-dimensional affine subspace L ⊂ Rn with 1 ≤ q ≤ n − 1 is said to
support a nonempty closed convex set S, if L is contained in a supporting hyperplane of S,
and L ∩ S is nonempty.

Lemma A.1. Let S ⊆ Rn be a closed convex cone, q be an integer satisfying 1 ≤ q ≤ n−1,
and ℓ = q(n − q). The set of linear subspaces lying in G(n, q) that support S, and that
contain a ray of S, has zero ℓ-dimensional Hausdorff measure.8

Proof. From the theorem in [16, p. 93], the result holds when S is a convex body, i.e., S is
nonempty, compact, and convex. Now let S′ be the intersection of the closed convex cone
S with some convex body containing the origin in its interior. Clearly, S′ is a convex body,
and any linear subspace that supports S will also support S′. Since the result holds when
S is replaced by S′, it also holds for S itself. �

We now state a useful result that specializes [14, Theorem 29].

Lemma A.2. Let (X, µ) and (Y, ν) be metric spaces, and T ⊆ X. Let f : T → Y be a
Lipschitz mapping, viz., there exists a constant k > 0 independent of x1 and x2 such that

ν(f(x1), f(x2)) ≤ kµ(x1, x2) ∀x1, x2 ∈ T.

Then for any r ≥ 0,
Hr

ν(f(T )) ≤ kHr
µ(T ).

In particular, if Y = Rr and T is such that Hr
µ(T ) = 0, then L(f(T )) = 0.

Our final preliminary result shows that if T ⊂ G(n, n− q) has zero q(n− q)-dimensional
Hausdorff measure, then the set of matrices whose nullspace or range is T has zero Lebesgue
measure.

Lemma A.3. Let n and q with n > q be positive integers, and ℓ = q(n − q). Let T ⊂
G(n, n−q) be such that Hℓ

ρ(T ) = 0. Then the set {A ∈ Rq×n | N (A) ∈ T} has zero Lebesgue

measure. Dually, if T ⊂ G(n, q) is such that Hℓ
ρ(T ) = 0, then {A ∈ Rn×q | Range(A) ∈ T}

has zero Lebesgue measure.

Proof. Let
U = {N ([Iq B]) for some B ∈ Rq×(n−q)} ⊂ G(n, n − q),

8A stronger result is stated in [16]. In particular, the set of linear subspaces in the lemma has σ-finite
(ℓ − 1)-dimensional Hausdorff measure. A set having σ-finite measure can be written as a countable union
of sets having finite measure. Here ℓ is both the “topological dimension” and the “Hausdorff dimension” of
the entire metric space G(n, q).
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and let Ũ denote the complement of U . The set {A ∈ Rq×n | N (A) ∈ Ũ} is the set of ma-
trices in Rq×n whose leading square full-dimensional submatrix is singular. By Lemma 4.2,
this set has zero Lebesgue measure, and therefore so does {A ∈ Rq×n | N (A) ∈ T ∩ Ũ}.
To complete the proof of the first claim of the lemma, it therefore suffices to show that
{A ∈ Rq×n | N (A) ∈ T ∩ U} has zero Lebesgue measure.

We proceed by first defining the map φ : U → Rq×(n−q) by N ([Iq B]) 7→ B.9 Let

Ui = {L ∈ U | ‖φ(L)‖ ≤ i}

for each positive integer i. (Here ‖ · ‖ is an operator norm on Rq×(n−q).) It can be verified
that the restriction of φ to each Ui is Lipschitz continuous with respect to the arc-length
distance function ρ on Ui and the metric induced by the operator norm ‖ · ‖ on Rq×(n−q).
Since Hℓ

ρ(T ∩ Ui) ≤ Hℓ
ρ(T ) = 0 for each i, and the range of φ has dimension ℓ, it follows

from Lemma A.2 that L(φ(T ∩ Ui)) = 0 for each i.
Now let GLq denote the set of square nonsingular matrices of order q with real entries.10

Define the map g : GLq × Rq×(n−q) → Rq×n by (M, B) 7→ M [Iq B], and let V = GLq ×
φ(T ∩ U). It can be verified that

g(V ) = {A ∈ Rq×n | N (A) ∈ T ∩ U},

so we need to show that L(g(V )) = 0.
Now define GLq,i = {M ∈ GLq | ‖M‖ ≤ i} and Vi = GLq,i × φ(T ∩ Ui) for positive

integers i. It is clear that the restriction of g to each Vi is Lipschitz continuous. Since
L(φ(T ∩ Ui)) = 0 for each i, it follows from Lemma 4.1 that L(Vi) = 0 for each i. Now the
domain and range of g are of the same dimension qn, so it follows from Lemma A.2 that
L(g(Vi)) = 0 for each i. Finally, since V =

⋃∞
i=1 Vi is a countable union, we have

L(g(V )) = L
(

g
(

∪i Vi

))

= L
(

∪i g(Vi)
)

≤
∑

i

L(g(Vi)) = 0.

The dual statement is proved similarly, using

U =
{

Range
([

Iq

B

])

for some B ∈ R(n−q)×q
}

⊂ G(n, q),

and the maps φ : U → R(n−q)×q defined by Range
([

Iq

B

])

7→ B, and g : GLq ×R(n−q)×q →

Rn×q defined by (M, B) 7→
[

Iq

B

]

M . �

With these results in hand, we now complete the proof of Lemma 4.3.
Proof. If p ≥ n, then Lemma 4.1 implies that the sets {M ∈ Rp×n | N (M) 6= {0}} and
{M ∈ Rn×p | Range(M) 6= Rn} have zero Lebesgue measure. Hence the sets M1 and M2

also have zero Lebesgue measure. Now suppose 1 ≤ p ≤ n − 1, and define

Ĝ(n, q, S) = {L ∈ G(n, q) | L ∩ int(S) is empty, and L ∩ S 6= {0}}

9To see that φ is a single-valued mapping, suppose that B1, B2 ∈ Rq×(n−q) are such that φ−1(B1) =
φ−1(B2), i.e., N ([Iq B1]) = N ([Iq B2]). Then there exists a nonsingular matrix M ∈ Rq×q such that
[Iq B1] = M [Iq B2]. It follows that M = Iq and B1 = B2. The map φ is one of the canonical “chart
mappings” that give the Grassmann manifold its “differentiable structure”.

10Typically, GLq is used to denote the general linear group of order q over R, equipped with matrix
multiplication. In a slight abuse of notation, we use GLq to denote the set of matrices in this group.

18



for q = p, n− p. Suppose L ∈ Ĝ(n, q, S). Since S is solid, it follows from [6, p. 17, Exercise 1]
that L supports S. Moreover, L ∩ S is the intersection of two convex cones, and is therefore
itself a convex cone. Since L ∩ S 6= {0}, this cone must have dimension at least one. That
is, L contains a ray of S. It follows from Lemma A.1 that Hℓ

ρ(Ĝ(n, p, S)) = 0. Hence from

Lemma A.3, the sets {M ∈ Rp×n | N (M) ∈ Ĝ(n, n− p, S)} and {M ∈ Rn×p | Range(M) ∈
Ĝ(n, p, S)} have zero Lebesgue measure. Apart from the requirement that these sets contain
only full rank matrices, these sets are M1 and M2 respectively. In view of Lemma 4.2, we
conclude that M1 and M2 also have zero Lebesgue measure. �
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