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Abstract. In this work, we investigate conditions under which Gauss-Christoffel quadrature
estimates are insensitive under perturbation of the distribution function, deriving an error bound
that depends on the perturbation and the function to be integrated. We show that for the Riemann-
Stieltjes integral even a small perturbation of a discontinuous distribution function can cause large
difference of Gauss-Christoffel quadrature estimates.
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1. Introduction. Suppose we have two distribution functions ω(x) and ω̃(x)
which are close to each other, nondecreasing, and differentiable on the finite inter-
val [a, b], with ω′(x) and ω̃′(x) Riemann-integrable on [a, b]. We are interested in
estimating the two integrals

Iω =
∫ b

a

f(x) dω(x) =
∫ b

a

f(x)ω′(x) dx , (1.1)

Iω̃ =
∫ b

a

f(x) dω̃(x) =
∫ b

a

f(x)ω̃′(x) dx . (1.2)

Here we have used the fact that under our assumptions, the Riemann-Stieltjes integral
with the distribution function ω(x) reduces to the weighted Riemann integral with
the weight function ω′(x) [3, Sections 1.6.5 and 1.10]), and similarly for ω̃.

If we use Gauss-Christoffel quadrature [8] [3, Section 2.7] to compute the es-
timates, then ω(x) and ω̃(x) induce different sequences of orthogonal polynomials.
Therefore, the quadrature weights and nodes might be quite different from each other
and in fact can be unstable under small perturbations to ω(x); see [8, pp. 121-125],
[6, 5, 7]. Thus, although it is natural to expect that the Gauss-Christoffel quadrature
estimates of the same degree will be close, it is not immediately clear that this is true.
In this work we prove the result under certain conditions on distribution functions ω
and ω̃ and for sufficiently smooth functions f .

We formulate our problem in terms of Gauss-Christoffel quadrature of a Riemann-
Stieltjes integral, even though the assumption on the distribution functions ω(x) and
ω̃(x) given above reduces the problem to Gauss quadrature of the weighted Riemann
integrals (1.1) and (1.2). We do this for two reasons, different in nature.

The bounds we establish for Gauss quadrature of the weighted Riemann integral
can similarly be formulated and proved also for Gauss-Christoffel quadrature of a
general Riemann-Stieltjes integral. For the latter case, however, the interpretation
of the results is, particularly for discontinuous distribution functions, much more
complicated due to some subtle properties of orthogonal polynomials. Therefore we
consider it convenient to work with the Riemann-Stieltjes formulation (anticipating
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possible generalizations) under strong assumptions on the distribution function which
make the situation more transparent. Subsequently we will comment on the general
case.

Second, our interest in this problem originated in analysis of the conjugate gra-
dient method for solving linear systems and of the Lanczos method for solving the
symmetric eigenvalue problem. The close relationship of these methods of numerical
linear algebra with Gauss-Christoffel quadrature of the Riemann-Stieltjes integral has
been known since their introduction; see [14, § 14-18], [24, Chapter III]. In particular,
the conjugate gradient method generates a sequence of approximations to the piece-
wise constant distribution function that has jumps at the eigenvalues of the linear
operator equal in magnitude to the squared proportions of the initial residual along
the corresponding eigenfunctions; see Section 4. Moreover, the size of the A-norm of
the error at the kth step of the conjugate gradient method has a natural interpretation
as the scaled remainder of the kth order Gauss-Christoffel quadrature approximation
of the Riemann-Stieltjes integral.

This last result, published in [2], stimulated extensive work on estimating error
norms in the conjugate gradient method [4, 9, 11, 10, 17, 18, 1]. The survey paper [22]
compares different approaches and addresses the question of whether these estimates
are numerically stable in the presence of rounding errors; see also [11]. This leads
to a more general question of how to precisely explain the numerical behavior of the
conjugate gradient method, and, in particular, how to model the delay of convergence
caused by rounding errors. One algebraic model was introduced in [12, 13]; the de-
scription would simplify and also gain some elegance when formulated in the language
of the Gauss-Christoffel quadrature of the Riemann-Stieltjes integral. As a part of
such reformulation we need to resolve the question of when the results of the model
are insensitive with respect to small perturbations of the distribution function. This
question motivates our work and will be considered further in connection with the
model of numerical behavior of the conjugate gradient method in [20].

With this application in mind we therefore need to consider both piecewise con-
stant distribution functions with finite or infinite points of increase, and continuous
and differentiable distribution functions with Riemann-integrable derivatives. We
present the main tool for our analysis in Section 2 in a general way, and then com-
plete the discussion in Section 3 focusing for clarity of exposition on the latter case.
Then we comment in Section 4 on other more complicated cases, illustrating them
numerically, and concluding with Section 5.

2. The main tool: a formula for interpolation error. The main tool in our
analysis is a slight generalization of a result found in the classic textbook of Isaacson
and Keller [15] in Theorem 3 (p. 329) and in the second line of the identity (6)
on p. 334. Although the textbook is standard, the result is not, absent even in
the very thorough and detailed survey by Gautschi [8]. The standard approach to
Gauss quadrature of the Riemann integral and to Gauss-Christoffel quadrature of
the Riemann-Stieltjes integral is based on Hermite interpolation and is attributed to
Markov; see, e.g. [8, p. 82]. What we need are results based on Lagrange interpolation,
and oddly enough, we have found them only in the textbook of Isaacson and Keller
[15], the book by Milne-Thomson [19, pp. 173–177] referenced there, and a book
by Lanczos [16, Chapter VI, §10]. The idea of using the Lagrange interpolation
polynomial Lk(x) of degree k − 1 which coincides with f(x) at the points λ1, . . . , λk

was also used (with f(x) a polynomial of degree at most 2k − 1) in the proof of
Theorem 3.4.1 in [23, p. 46]. The use of Lagrange interpolation rather than Hermite is
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essential to our work – it allows us in the following theorem to retain k free parameters
in the remainder term for the kth order quadrature. The proof follows the ideas from
[15, pp. 329-330, 334]. We include it here for completeness, and for the subsequent
presentation of an interesting consequence of the interpolatory principle.

Theorem 2.1. Consider a nondecreasing function ω(x) on a finite interval [a, b].
Let pk(x) = (x − λ1) . . . (x − λk) be the kth monic orthogonal polynomial with respect
to the inner product defined by the Riemann-Stieltjes integral on the interval [a, b] with
the distribution function ω(x). Choose k distinct points µ1, . . . , µk in [a, b] different
from the points λ1, . . . , λk. Let

Iω =
∫ b

a

f(x) dω(x) , (2.1)

where f ′ is continuous on [a, b], and let Ik
ω be the approximation to Iω obtained from

the k-point Gauss-Christoffel quadrature rule. Then the error of this approximation
is given by

Ek
ω(f) ≡ Iω − Ik

ω =
∫ b

a

pk(x)(x − µ1) . . . (x − µk)f [λ1, . . . , λk, µ1, . . . , µk, x] dω(x)

where f [λ1, . . . , λk, µ1, . . . , µk, x] is the (2k)th divided difference of the function f(x)
with respect to the nodes λ1, . . . , λk, µ1, . . . , µk, x .

Proof. Let L2k−1(x) be the Lagrange interpolation polynomial of degree 2k−1 for
the function f(x), with f(λj) = L2k−1(λj), f(µj) = L2k−1(µj), j = 1, . . . , k. Then
f(x) can be written as

f(x) = L2k−1(x) + R2k−1(x) (2.2)

where the interpolation error is given by the formula

R2k−1(x) = pk(x)(x − µ1) . . . (x − µk)f [λ1, . . . , λk, µ1, . . . , µk, x] .

Then

Ek
ω(f) =

∫ b

a

L2k−1(x) dω(x) +
∫ b

a

R2k−1(x) dω(x)

−
k∑

j=1

ωjL2k−1(λj) −
k∑

j=1

ωjR2k−1(λj)

where λj , ωj, j = 1, . . . , k are the nodes and weights of the k-point Gauss-Christoffel
quadrature rule. Because L2k−1(x) has degree at most 2k − 1, its Gauss-Christoffel
quadrature is precise, so

∫ b

a

L2k−1(x) dω(x) =
k∑

j=1

ωjL2k−1(λj) .

Moreover, the continuity of f ′(x) guarantees the finiteness of R2k−1(λj), and, conse-
quently, R2k−1(λj) = 0 for j = 1, . . . , k, by construction. Therefore,

Ek
ω(f) =

∫ b

a

R2k−1(x) dω(x)

3



which completes the proof.

If we set µ1 = λ1, . . . , µk = λk, then replacing the Lagrange interpolant by the
Hermite interpolant gives (under the assumption f ′′ continuous in [a, b]) the formula
(cf. [19, p. 175] and [15, p. 330]),

E(k)
ω (f) =

∫ b

a

p2(x)f [λ1, . . . , λk, λ1, . . . , λk, x] dω(x) .

The proof of Theorem 2.1 relies on the fact that the k-point Gauss-Christoffel
quadrature rule is interpolatory with the nodes of interpolation given by the roots
of the corresponding kth orthogonal polynomial pk(x). Apart from the assumption
that µ1, . . . , µk are k distinct points in [a, b] different from the points λ1, . . . , λk, the
auxiliary nodes µ1, . . . , µk are arbitrary. It is easy to see that the proof will follow
in the same way also if L2k−1(x) is replaced by Lk−1(x), where Lk−1(x) denotes
the Lagrange interpolation polynomial for f(x) such that Lk−1(λj) = f(λj), j =
1, . . . , k. Similarly, we can instead replace L2k−1(x) by Lk+m−1(x), the Lagrange
interpolation polynomial for f(x) such that Lk+m−1(λj) = f(λj), j = 1, . . . , k and
also Lk+m−1(µj) = f(µj), j = 1, . . . , m, m ≤ k. Summarizing, we get the following
statement.

Corollary 2.2. Let pk(x), λ1, . . . , λk, and µ1, . . . , µk be as in Theorem 2.1,
and assume that f ′ is continuous on [a, b]. Then

E(k)
ω (f) =

∫ b

a

pk(x)(x − µ1) . . . (x − µk)f [λ1, . . . , λk, µ1, . . . , µk, x] dω(x)

=
∫ b

a

pk(x)f [λ1, . . . , λk, x] dω(x)

=
∫ b

a

pk(x)(x − µ1) . . . (x − µm)f [λ1, . . . , λk, µ1, . . . , µm, x] dω(x) ,

where the last equality holds for any m between 1 and k. If f ′′ is continuous on [a, b],
then the statement holds for any distinct µ1, . . . , µk, even if some of them coincide
with some of the points λj.

Proof. It remains to comment on the case λ1 = µ1, . . . , λm = µm, m ≤ k. Under
the assumed continuity conditions on f ′′, taking the limit µj → λj for j = 1, . . . , m
in the divided difference finishes the proof.

3. The main result: sensitivity of Gauss quadrature estimates of Rie-
mann integrals. We state and prove our result for the weighted Riemann integral
with nonnegative weight function that is (for simplicity) continuous on the finite in-
terval [a, b]. The continuity assumption is not essential but simplifies the exposition.

Theorem 3.1. Let w(x) and w̃(x) be nonnegative and continuous functions on
the finite interval [a, b]; let

ω(x) =
∫ x

a

w(t) dt, ω̃(x) =
∫ x

a

w̃(t) dt, x ∈ [a, b]

be the corresponding distribution functions. Consider the weighted Riemann integrals
(1.1) and (1.2). Let pk(x) = (x−x1) . . . (x−xk) be the kth orthogonal polynomial with
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respect to (1.1), and let p̃k(x) = (x− x̃1) . . . (x− x̃k) be the kth orthogonal polynomial
with respect to (1.2). Denote by p̂s(x) = (x−z1) . . . (x−zs) the least common multiple
of the polynomials pk(x) and p̃k(x). If f ′ is continuous on [a, b], then the difference
between the approximation Ik

ω to Iω and the approximation Ik
ω̃ to Iω̃, obtained from

the k-point Gauss quadrature rule, is bounded as

|Ik
ω − Ik

ω̃ | ≤
∣∣∣∣∣
∫ b

a

p̂s(x)f [z1, . . . , zs, x](w(x) − w̃(x)) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

f(x)(w(x) − w̃(x)) dx

∣∣∣∣∣ . (3.1)

Proof. Consider the difference between the two Gauss quadrature approximations:

|Ik
ω − Ik

ω̃| = |Ik
ω − Iω + Iω̃ − Ik

ω̃ + Iω − Iω̃ |
≤ |Ik

ω − Iω + Iω̃ − Ik
ω̃ | + |Iω − Iω̃ | .

Assume, for a moment, that the roots {xi} are distinct from the roots {x̃i}. We apply
Theorem 2.1 to the first term twice. For Ik

ω −Iω, the points λ1, . . . , λk in Theorem 2.1
are the zeros of the polynomial pk(x), and we set the points µ1, . . . , µk to be the zeros
of the polynomial p̃k(x). For Iω̃ − Ik

ω̃, the points λ1, . . . , λk are the zeros of p̃k(x), and
we set the points µ1, . . . , µk to be the zeros of pk(x). The result is

|Ik
ω − Iω + Iω̃ − Ik

ω̃| =

∣∣∣∣∣−
∫ b

a

pk(x)p̃k(x)f [x1, . . . , xk, x̃1, . . . , x̃k, x]w(x) dx

+
∫ b

a

p̃k(x)pk(x)f [x̃1, . . . , x̃k, x1, . . . , xk, x]w̃(x) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

pk(x)p̃k(x)f [x1, . . . , xk, x̃1, . . . , x̃k, x](w̃(x) − w(x)) dx

∣∣∣∣∣

The second term is

|Iω − Iω̃| =

∣∣∣∣∣
∫ b

a

f(x)(w(x) − w̃(x)) dx

∣∣∣∣∣ ,

and adding these terms together yields the desired result.
Consider now the general case when pk(x) and p̃k(x) have k − m common zeros,

numbered so that xm+1 = x̃m+1, . . . , xk = x̃k. Let s = 2k−m and use the last equality
of Corollary 2.2 twice. For Ik

ω − Iω , set the points λ1, . . . , λk in the corollary to be
the zeros of pk(x), and set the points µ1, . . . , µm to be the first m zeros x̃1, . . . , x̃m

of p̃k(x). For Iω̃ − Ik
ω̃ , set the points λ1, . . . , λk to be the zeros of p̃k(x), and set the

points µ1, . . . , µm to be the first m zeros x1, . . . , xm of pk(x). The rest of the proof
follows as above.

As a consequence of this theorem we obtain, using the same notation, the following
sufficient condition:
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The Gauss quadrature estimates will be close if the absolute values of
the integrands |p̂s(x)f [z1, . . . , zs, x](w(x) − w̃(x))| and |f(x)(w(x) −
w̃(x))| are small on [a, b] except possibly on a union of subintervals,
denoted J1, with a small enough total length.

In order to get a simpler condition we consider subintervals on which w(x) differs from
w̃(x), and denote their union by J2. This leads to the following sufficient condition:

The Gauss quadrature estimates will be close if
∫ b

a

|w(x) − w̃(x)| dx

is small and if |f(x)| and |p̂s(x)f [z1, . . . , zs, x]| are small on J2 where
w(x) differs from w̃(x).

It seems, however, difficult to derive nontrivial general statements about the size of
∣∣∣∣∣
∫ b

a

p̂s(x)f [z1, . . . , zs, x](w(x) − w̃(x)) dx

∣∣∣∣∣
or about the size of |p̂s(x)f [z1, . . . , zs, x]| on J2.

In order to get an idea about the size of the difference |Ik
ω − Ik

ω̃| and about the
size of the individual terms in the bound (3.1), we present an example illustrating
the behavior of quadrature estimates as the size of the perturbation function varies.
Consider as an example the weight function

w(x) = c0

√
x − x2

on the interval [0, 1] where c0 is a constant chosen so that
∫ 1

0

w(x) dx = 1 .

This is the weight function for the shifted Chebyshev polynomials of the second kind.
We perturb w(x) to form

w̃ = (1 − α) w(x) + α c1(e−16x − e−27x)

where c1 is chosen so that

c1

∫ 1

0

(e−16x − e−27x) dx = 1 .

We use Gauss quadrature to estimate the integrals

Iω =
∫ 1

0

1
x + δ

w(x) dx, Iω̃ =
∫ 1

0

1
x + δ

w̃(x) dx,

for various values of α. We choose δ = 0.1 to avoid singularity of the integration
function.

All experiments in this paper were performed using MATLAB on a computer with
machine precision ≈ 10−16. In this section, the Gauss quadrature nodes and weights
were determined from the explicitly generated sequences of orthogonal polynomials.
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Fig. 3.1. The error in the quadrature estimates for w(x) = c0
√

x − x2 and w̃(x) (coinciding
black dash-dotted line and blue dashed line), and the difference between the original and perturbed
estimates (red solid line) as the perturbation parameter α varies for the continuous weight function.
The dotted line measures the difference between the true integrals. The horizontal axis is k, the
number of nodes in the quadrature estimate.

The results, which are typical for smooth weight functions, are shown in Figure
3.1. Here we plot the error of the Gauss quadrature approximations |Iω − Ik

ω| (dash-
dotted line), |Iω̃ − Ik

ω̃ | (dashed line) and the difference between the Gauss quadrature
approximations |Ik

ω̃ − Ik
ω| (solid line). The dash-dotted line and the dashed line coin-

cide. Note that for small k (the number of nodes), the errors of the two estimates are
much larger than the difference between them. Eventually the two estimates must
separate because they aim at approximating different integrals. The value of k at
which the difference between the two estimates exceeds the error in each estimate
decreases as α increases.

The level on which the two estimates separate is essentially determined by the
difference between the original integrals (the second term in (3.1), plotted on Fig. 3.1
by dots). This is further illustrated in Figure 3.2 which shows, using α = 10−3, the
behavior of the product p(x)p̃(x)(w(x)−w̃(x)) (the integrand in the first term in (3.1))
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Fig. 3.2. The product p(x)p̃(x)(w(x)− w̃(x)) as a function of x for the continuous weight func-
tion w(x) = c0

√
x − x2, with perturbation parameter α = 10−3 and different number of quadrature

nodes k.

as a function of x . Figure 3.3 shows differences between roots of the corresponding
orthogonal polynomials. Clearly, the roots are for this example very stable – the
maximal change is less then 10−4.

As a second example, we took the highly oscillatory weight function

w(x) = 1 + cos(10πx)

on the interval [0, 1] and w̃(x) determined as in the previous example. The results,
shown in Figure 3.4 (the other figures analogous to Figures 3.2 and 3.3 are omitted),
are very similar to the first example.

Based on experiments it seems that for weighted Riemann integrals with smooth
weight functions, the second term in the bound (3.1) dominates the first one. We
do not know whether this is true in general. At least it seems difficult to find a
counterexample.

The following section will show that for the Gauss-Christoffel quadrature of
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Fig. 3.3. The change in the polynomial roots for the continuous weight function w(x) =
c0
√

x − x2 with perturbation parameter α = 10−3. The horizontal axis is k, the number of nodes
in the quadrature estimate. The vertical axis shows the differences between the sorted roots of the
corresponding orthogonal polynomials.

Riemann-Stieltjes integral with discontinuous distribution function the situation is
quite different.

4. Sensitivity of Gauss-Christoffel quadrature estimates for Riemann-
Stieltjes integrals. The Riemann-Stieltjes analog of the bound 3.1 is given by

|Ik
ω − Ik

ω̃| ≤
∣∣∣∣∣
∫ b

a

p̂s(x)f [z1, . . . , zs, x] dω(x) −
∫ b

a

p̂s(x)f [z1, . . . , zs, x] dω̃(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

f(x) dω(x) −
∫ b

a

f(x) dω̃(x)

∣∣∣∣∣ . (4.1)

Since (4.1) can be considered a simple consequence of Theorem 2.1 and Corollary 2.2,
it is valid for any functions ω(x) and ω̃(x) that are nondecreasing on the interval
[a, b]. This fact, however, does not immediately yield conditions under which the
Gauss-Christoffel quadrature is insensitive to small perturbations to the distribution
function. If, however, the first term is insignificant compared to the second term, then
(4.1) implies that the difference between the Gauss-Christoffel quadrature approxi-
mations |Ik

ω − Ik
ω̃| is bounded from above (with a small inaccuracy) by the size of the

difference between the true integrals.
We will present examples of a discontinuous distribution function ω(x) with finite

points of increase and demonstrate the principal difficulties one has to deal with when
investigating sensitivity of the Gauss-Christoffel quadrature for a general Riemann-
Stieltjes integral. We use a distribution function from [21] with points of increase
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Fig. 3.4. The error in the quadrature estimates for w(x) = 1+cos(10πx) and w̃(x) (coinciding
black dash-dotted line and blue dashed line), and the difference between the original and perturbed
estimates (red solid line) as the perturbation parameter α varies for the continuous weight function.
The dotted line measures the difference between the true integrals. The horizontal axis is k, the
number of nodes in the quadrature estimate.

0 < γ1 ≡ a < · · · < γn ≡ b, with

γi = γ1 +
i − 1
n − 1

(γn − γ1) ρn−i, i = 2, . . . , n − 1,

where ρ ∈ (0, 1) is a properly chosen parameter. The size of the individual jumps
δi, i = 1, . . . n − 1 is randomly generated using the MATLAB command rand and
normalized so that ω(γn) =

∑n−1
i=1 δi = 1.

We construct the related distribution ω̃(x) to have two points of increase for each
single point of increase of ω(x). Given a positive perturbation parameter ζ, where
ζ � γ1 and ζ � γ2 − γ1, we replace each point of increase γi of ω by two close points
γ̃2i−1 ≡ γi − ζ and γ̃2i ≡ γi + ζ, and proportion the jumps δ̃2i−1 and δ̃2i randomly
(using again the MATLAB function rand) with scaling so that δ̃2i−1+δ̃2i = δi. Clearly,
for a small ζ the distribution functions ω and ω̃ are close to each other.
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Fig. 4.1. Sensitivity of the Gauss-Christoffel quadrature, ζ = 10−8. The error of the Gauss-
Christoffel quadrature approximation for f(x) = x−1 corresponding to the original distribution func-
tion ω (dash-dotted line) and to its “perturbation” ω̃ with doubled points of increase (dashed line), the
absolute value of their difference (solid line) and the difference between the approximated integrals
(dots).

Now consider a smooth function f(x) so that the absolute value of the difference

∆ =

∣∣∣∣∣
∫ b

a

f(x) dω(x) −
∫ b

a

f(x) dω̃(x)

∣∣∣∣∣ (4.2)

is small. We will demonstrate that the difference between the Gauss-Christoffel
quadrature estimates (4.1) can for some values of k become much larger than ∆.

In our experiment we take f(x) = x−1, a = 0.1, b = 100, n = 24. In Fig. 4.1
we plot the error of the Gauss-Christoffel quadrature approximations |Iω − Ik

ω| (dash-
dotted line) and |Iω̃ − Ik

ω̃| (dashed line), the difference between the Gauss-Christoffel
approximations |Ik

ω̃ − Ik
ω| (solid line) and the difference between the approximated

integrals ∆ = |Iω − Iω̃ | (dots). For this figure ρ = 0.55 and ζ = 10−8, which gives
∆ ≈ 10−7. We can see that for k ≥ 8 the Gauss-Christoffel approximations of the
integrals Iω̃ and Iω start to differ very dramatically, and the size of that difference
exceeds 10−1 for k = 10. After that it is approximately equal to |Iω̃ − Ik

ω̃| until that
quantity drops below the size of the difference between the approximated integrals.

This observed phenomenon can be explained from the link between the Gauss-
Christoffel quadrature and orthogonal polynomials. Though the distribution functions
ω and ω̃ seem very close, the corresponding systems of orthogonal polynomials can
become very different. This is illustrated in Fig. 4.2 which shows the quadrature nodes
(given by the zeros of the corresponding orthogonal polynomials) for ω and ω̃. We
see that the Gauss-Christoffel quadrature approximations for ω and ω̃ can for some
k be close while several nodes are very different.

Results are similar for different values of ζ, providing that ζ � γ1, ζ � γ2 − γ1.
We illustrate this in Fig. 4.3 – Fig. 4.4, for which ζ = 10−12 with all other parameters
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Fig. 4.2. Quadrature nodes corresponding to the distribution function ω (circles) and ω̃
(plusses). The horizontal axis is the number of nodes k in the quadrature.

unchanged.
The Gauss-Christoffel quadrature nodes and weights were computed as the eigen-

values and the squared first components of the corresponding eigenvectors of the
symmetric tridiagonal matrices generated via the double-reorthogonalized Lanczos
process for the diagonal matrix A = diag(γ1, . . . , γn) resp. Ã = diag(γ̃1, . . . , γ̃2n)
with the starting vector v1 = [(δ1)

1
2 , . . . , (δn)

1
2 ]T resp. ṽ1 = [(δ̃1)

1
2 , . . . , (δ̃2n)

1
2 ]T ;

see [22]. In this way we exploited the close relationship between the Gauss-Christoffel
quadrature and the Lanczos process (the conjugate gradient method).

5. Conclusions. The difference between the quadrature approximations is in
(3.1) and (4.1) bounded by sum of two terms where the second one represents the
difference between the approximated integrals. In our paper we consider a sufficiently
smooth function f so that the investigated phenomena are not affected by its partic-
ular behavior.

For the weighted Riemann integral with smooth weight functions it seems difficult
to find examples for which the bound in (3.1) is not essentially determined by the
difference between the approximated integrals. This suggests that in this case the
Gauss quadrature is, under some conditions which are not too restrictive, possibly
stable with respect to small perturbations of the weight function. Justification or
disproving this conjecture needs further investigation.

In constrast, for the Riemann-Stieltjes integral, even a small perturbation of a
discontinuous distribution function can cause dramatic differences between the Gauss-
Christoffel quadrature approximations much above the level determined by the dif-
ference between the approximated integrals.

The instability of the Gauss-Christoffel quadrature described in this paper is
closely related to the behavior of the Lanczos process and the conjugate gradient
method, in particular to delay of convergence of the conjugate gradient method due

12
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Fig. 4.3. Sensitivity of the Gauss-Christoffel quadrature, ζ = 10−12. The error of the Gauss-
Christoffel quadrature approximation for f(x) = x−1 corresponding to the original distribution func-
tion ω (dash-dotted line) and to its “perturbation” ω̃ with doubled points of increase (dashed line), the
absolute value of their difference (solid line) and the difference between the approximated integrals
(dots).

to rounding errors. The general results presented in this paper will be used for detailed
investigation of this relationship in further work [20].
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[21] Z. Strakoš, On the real convergence rate of the conjugate gradient method, Linear Algebra

Appl., 154–156 (1991), pp. 535–549.
[22] Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient method and why it

works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56–80
(electronic).
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