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Abstract

Given an n × n symmetric possibly indefinite matrix A, a modified
Cholesky algorithm computes a factorization of the positive definite ma-
trix A+E, where E is a correction matrix. Since the factorization is often
used to compute a Newton-like downhill search direction for an optimiza-
tion problem, the goals are to compute the modification without much
additional cost and to keep A + E well-conditioned and close to A.

Gill, Murray and Wright introduced a stable algorithm, with a bound
of ‖E‖2 = O(n2). An algorithm of Schnabel and Eskow further guarantees
‖E‖2 = O(n). We present variants that also ensure ‖E‖2 = O(n).

Moré and Sorensen and Cheng and Higham used the block LBLT fac-
torization with blocks of order 1 or 2. Algorithms in this class have a
worst-case cost O(n3) higher than the standard Cholesky factorization,
We present a new approach using an LTLT factorization, with T tridiag-
onal, that guarantees a modification cost of at most O(n2).

1 Introduction

Modified Cholesky algorithms are widely used in nonlinear optimization to com-
pute Newton-like directions. Given a symmetric possibly indefinite n×n matrix
A approximating the Hessian of a function to be minimized, the goal is to find a
positive definite matrix Â = A+E, where E is small. The search direction ∆x
is then computed by solving the linear system (A+ E)∆x = −g(x) where g(x)
is the gradient of the function to be minimized. This direction is Newton-like
and guaranteed to be downhill. Four objectives to be achieved when computing
E are listed below [5, 15, 16].
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Objective 1. If A is sufficiently positive definite, E = 0.

Objective 2. IfA is not positive-definite, ‖E‖ is not much larger than inf{‖∆A‖ :
A+∆A is positive definite} for some reasonable norm.

Objective 3. The matrix A+ E is reasonably well-conditioned.

Objective 4. The cost of the algorithm is only a small multiple of n2 higher
than that of the standard Cholesky factorization, which takes 13n

3+O(n2)
flops ( 16n

3 +O(n2) multiplications and 1
6n
3 +O(n2) additions).

Objective 1 ensures that the fast convergence of Newton-like methods on
convex programming problems is retained by the modified Cholesky algorithms.
Objective 2 keeps the search direction close to Newton’s direction, while Objec-
tive 3 implies numerical stability when computing the search direction. Objec-
tive 4 makes the work in computing the modification small relative to the work
in factoring a dense matrix.

There are two classes of algorithms, motivated by the simple case when
A is diagonal: A = diag(d1, d2, . . . , dn). In this case we can make A + E =

diag(d̂1, d̂2, . . . , d̂n) positive definite by choosing d̂k := max{|dk|, δ} for k =
1, . . . , n, where δ > 0 is a preset small tolerance. We call such a modification
algorithm a Type-I algorithm. Alternatively, we can choose d̂k := max{dk, δ}.
We call modified Cholesky algorithms of this kind Type-II algorithms. In both
types of algorithms, δ must be kept small to satisfy Objective 2, but large enough
to satisfy Objective 3. Early approaches were of Type-I [10, Chapter 4][13],
whereas more recently Type-II algorithms have prevailed [5, 15, 16].

There are three useful factorizations of a symmetric matrix A as PAP T =
LXLT , where P is a permutation matrix for pivoting, and L is unit lower
triangular:

1. the LDLT factorization, where X is diagonal1.

2. the LBLT factorization, where X is block diagonal with block order 1 or
2, [2, 3, 4].

3. the LTLT factorization, where X is a tridiagonal matrix, and the off-
diagonal elements in the first column are all zero [1, 14].

Existing modified Cholesky algorithms use either the LDLT factorization
[10, Chapter 4][15, 16] or the LBLT factorization [5, 13]. We present new
modified LDLT factorizations and an approach via the LTLT factorization.

In all we review five modified Cholesky algorithms in the literature and give
five new ones, each of which depends on a modification tolerance parameter
δ > 0. Satisfaction of Objectives 1–3 is measured by bounds, discussed in detail
as the algorithms are introduced, and referenced in Table 1, where the new
algorithms are in boldface.

Table 2 lists some notation used in this paper. We use diag(a1, . . . , an) to
denote the diagonal matrix formed by a1, . . . , an, and Diag(A) to denote the
diagonal matrix formed by the diagonal of matrix A.

1If D is nonnegative, it is the Cholesky factorization in the LDLT form.
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Table 1: Satisfaction of the four objectives for Modified Cholesky algorithms.

Algorithm Type δ Obj. 1 Obj. 2 Obj. 3 Obj. 4

LDLT :
GMW81 I εM (4) (3) (25) O(n2)
SE90 II τη (32) (12) (13) (33) O(n2)
SE99 II τ̄ η (32) (12) (19) (33) O(n2)

GMW-I I εM (32) (22) (25) O(n2)
GMW-II II τ̄ η (32) (24) (25) O(n2)

SE-I I τ̄ η (32) (29) (19) (33) O(n2)
LBLT :
MS79 I εM (34) (35) (41) ≤ O(n3)
CH98 II

√
u‖A‖∞ (34) (36) (42) ≤ O(n3)

LTLT :
LTLT -MS79 I εM (45) (46) (48) O(n2)
LTLT -CH98 II τ̄ η (45) (47) (49) O(n2)

The organization of this paper is as follows. Section 2 presents the modified
LDLT factorizations in the literature and Section 3 presents our new variants.
Section 4 describes modified LBLT factorizations in the literature. Section 5
gives our new LTLT algorithms. Section 6 summarizes the results of our com-
putational tests. Concluding remarks are given in Section 7.

2 Modified LDLT Algorithms

Given a LDLT factorization of a symmetric matrix A, a näıve way to modify A
to be positive definite is by making nonpositive elements in the diagonal matrix

D positive. However, the factorization of A may fail to exist (e.g.,

[
0 1
1 0

]
),

and even if it does, this method fails to meet Objective 2. For example, in the
LDLT factorization

A =

[
ε 1
1 0

]
=

[
1 0
1
ε 1

] [
ε 0
0 − 1ε

] [
1 1

ε
0 1

]
= LDLT ,

the modification is unbounded when ε → 0+. A 3×3 example is given in [10,
Chapter 4].

In a modified LDLT algorithm for a positive definite Â = A + E, E =
diag(δ1, δ2, . . . , δn) is typically diagonal, with δk ≥ 0 computed at the kth step
of the factorization, for k = 1, . . . , n Denote the Schur complement at the kth

step by Ak =

[
ak cTk
ck Āk

]
for k = 1, . . . , n, where ak ∈ R and ck is a column

vector of n−k elements. Initially A1 := A. The factorization can be computed
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Table 2: Notation.

Symbol Description

εM machine epsilon
u unit roundoff, εM/2
A an n× n symmetric matrix
ξ maximum magnitude of off-diagonal elements of A
η maximum magnitude of diagonal elements of A

λi(A) ith smallest eigenvalue of A
λmin(A) smallest eigenvalue of A
λmax(A) largest eigenvalue of A

τ 3
√
εM

τ̄ 3
√

ε2M

by setting

L(k+1:n, k :k) :=
ck

ak + δk
, D(k, k) := ak + δk and Ak+1 := Āk −

ckc
T
k

ak + δk
(1)

for k = 1, . . . , n − 1. The challenge is to determine δk to satisfy the four ob-
jectives. All the algorithms in Sections 2 and 3 follow this model, although
Schnabel and Eskow [15, 16] originally formulated their algorithm in LLT form.

We may incorporate a diagonal pivoting strategy in our algorithms, sym-
metrically interchanging rows and columns at the kth step to ensure that |ak| ≥
|Ak(j, j)| (pivoting on the diagonal element of maximum magnitude) or ak ≥
Ak(j, j) (pivoting on the element of maximum value) for j = 1, . . . , n−k. The
resulting modified LDLT factorization is in the form

P (A+ E)P T = LDLT = L̄L̄T , (2)

where P is a permutation matrix.
Gill and Murray introduced a stable algorithm in 1974 [9]. It was subse-

quently refined by Gill, Murray, and Wright in 1981 [10, Chapter 4]; we call
it GMW81 hereafter. Schnabel and Eskow introduced another modified LDLT

algorithm in 1990 [15]. It was subsequently revised in 1999 [16]. We call these
algorithms SE90 and SE99, respectively.

2.1 The GMW81 Algorithm

GMW81 determines δk in (1) by setting

ak + δk = max{δ, |ak|,
‖ck‖2∞
β2

}

for k = 1, . . . , n, where β > 0 and the small tolerance δ > 0 are preset. We set
δ := εM (machine epsilon) as is common in the literature [5, 16].
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The rationale behind GMW81 is that β becomes a bound on the magnitude
of the off-diagonal elements in the lower triangular matrix L̄ of the Cholesky fac-
torization in (2). The challenge is to choose β such that ‖E‖2 is well-controlled
and Objective 1 is satisfied. The correction E is bounded by

‖E‖2 ≤ (
ξ

β
+ (n− 1)β)2 + 2(η + (n− 1)β2) + δ =: f(β), (3)

where η and ξ are the maximum magnitudes of the diagonal and off-diagonal
elements of A, respectively. Note that since E is diagonal, its 1-norm, 2-norm
and ∞-norm are the same.

The overall extra cost of GMW81 relative to the standard Cholesky factor-
ization is O(n2), so Objective 4 is satisfied. Now we consider Objective 2. The
minimum of (3) is

min
β

f(β) = 2ξ(
√

n2 − 1 + n− 1) + 2η + δ ≤ 4nξ + 2η + δ,

which is attained with β2 = ξ√
n2−1 for n > 1.

A diagonal pivoting strategy is used in GMW81. The pivot is chosen as the
maximum magnitude diagonal element2.

To satisfy Objective 1, we let β2 ≥ η, so that E = 0 if A is sufficiently
positive definite [9]. More precisely, E = 0 if β2 ≥ η and

λmin(A) ≥ δ. (4)

Therefore, β is chosen by

β2 := max{η, ξ√
n2 − 1

, εM} (5)

for n > 1. Substituting this into (3), we obtain ‖E‖2 = O(n2).

2.2 The SE90 Algorithm

SE90 was inspired by a lemma related to the Gerschgorin circle theorem [12,
page 344]. We define the i-th Gerschgorin radius and circle by

Ri(A) :=
n∑

j=1,j 6=i

|aij | and Ci(A) := {z : |z − aii| ≤ Ri(A)}

for 1 ≤ i ≤ n and recall that Gerschgorin showed that the eigenvalues of A are
contained in the union of the circles Ci(A). Therefore, we could perturb A to
be positive semidefinite by setting δk := max{0,−akk +Rk(A)} for k = 1, . . . , n
in (1). The modification δk can be reduced by the following lemma.

2Alternatively, we could pivot on the maximum diagonal element, but pivoting on the
maximum magnitude usually gives a smaller ‖E‖2 in our experiments.
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Lemma 2.1. Given a symmetric matrix A =

[
a cT

c Ā

]
∈ Rn×n, suppose we

add a perturbation δ ≥ {0,−a+ ‖c‖1} to a, so that a+ δ ≥ ‖c‖1. The resulting
Schur complement3 is Â := Ā− ccT

a+δ . Then Ci(Â) ⊆ Ci+1(A) for i = 1, . . . , n−1.

Proof. This proof is a condensed version of that in [15]. Let āij and âij denote

the (i, j) entries of Ā and Â respectively for 1 ≤ i, j < n. Also denote c =
[(c)1, (c)2, . . . , (c)n−1]T . For 1 ≤ i < n,

Ri+1(A)−Ri(Â) = (Ri+1(A)−Ri(Ā)) + (Ri(Ā)−Ri(Â)).

The difference between Ri+1(A) and Ri(Ā) is |(c)i|. In addition, the ith column

of Ā − Â is (c)ic
a+δ , whose 1-norm minus

(c)2i
a+δ is the upper bound for |(Ri(Ā) −

Ri(Â))|. Therefore,

Ri+1(A)−Ri(Â) ≥ |(c)i| −
|(c)i|(‖c‖1 − |(c)i|)

a+ δ

= |(c)i|(1−
‖c‖1
a+ δ

) +
(c)2i
a+ δ

≥ (c)2i
a+ δ

= āii − âii ≥ 0.

This means that the Gerschgorin circles contract, and the contraction of each
circle is no less than the perturbation of the circle center. Therefore, Ci(Â) ⊆
Ci+1(A) for i = 1, . . . , n−1. ¥

Following this result, we can make A + E positive semidefinite by setting
δk := max{0,−ak + ‖ck‖1} in (1) for k = 1, . . . , n. Note that ak − ‖ck‖1
is the lower endpoint of the Gerschgorin circle C1(Ak). Repeatedly applying
Lemma 2.1, we obtain δk ≤ max{0,−akk +Rk(A)} for k = 1, . . . , n. Taking the
maximum of these values and zero, we define

Ḡ := max{0,max{−akk +Rk(A) : k = 1, . . . , n}}.

Then ‖E‖2 ≤ Ḡ ≤ η+(n− 1)ξ, where η and ξ are the maximum magnitudes of
the diagonal and off-diagonal elements of A, respectively. However, this näıve
method may fail to satisfy Objective 1.

To satisfy Objective 1, SE90 consists of two phases. The 2-phase strategy
was also presented in [8]. Phase 1 performs steps of the standard Cholesky fac-
torization (i.e., without perturbation, δk := 0), as long as all diagonal elements
of the next Schur complement are sufficiently positive. The pseudo-code is given
in Algorithm 1.

SE90 uses the tolerance δ := τη, where η is the maximum magnitude of the
diagonal elements of A, and τ = 3

√
εM . Therefore, in Phase 1,

Diag(Ak) ≥ τηIn−k+1 (6)

3Note that the ith row/column of Ā corresponds to the (i+1)st row/column of A.
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Algorithm 1 Phase 1 of a 2-Phase Strategy.

{Given a symmetric A ∈ Rn×n and a small tolerance δ > 0.}
A1 := A, k := 1
Pivot on the maximum diagonal element of A1.

{Denote Ak =

[
ak cTk
ck Āk

]
, then Diag(Āk) ≤ akIn−k after pivoting.}

if a1 ≥ δ then

while Diag(Āk − ckc
T
k

ak
) ≥ δIn−k and k < n do

Ak+1 := Āk − ckc
T
k

ak
k := k + 1
Pivot on maximum diagonal of Ak.

end while
end if

for k = 1, . . . ,min{n,K+1}, where K is the number of steps in Phase 1. If
A is sufficiently positive definite, then K = n and the factorization completes
without using Phase 2. Otherwise, Phase 1 ends when setting δK+1 := 0 results
in AK+2 having a diagonal element less than δ. It is not hard to see that

η̂ ≤ η and ξ̂ ≤ ξ + η, (7)

where η̂ and ξ̂ (and η and ξ) are the maximum magnitudes of the diagonal and
off-diagonal elements of AK+1 (and A), respectively [15].

In Phase 2, δk is determined by

δk := max{δk−1,−ak +max{‖ck‖1, τη}} ≤ G+ τη, (8)

for k = K+1, . . . , n−2, where G is the maximum of zero and the negative of the
lowest Gerschgorin endpoint of AK+1. For the case K = 0, we set δ0 := 0. The
rationale for δk ≥ δk−1 is because increasing δk up to δk−1 does not increase
‖E‖2 at this point and may possibly reduce the subsequent δi for k < i ≤ n.
This nondecreasing strategy can be applied to virtually all modified Cholesky
algorithms with modifications confined to the diagonal.

In experiments, Schnabel and Eskow [15] obtained a smaller value of ‖E‖2
when using special treatment for the final 2×2 Schur complement An−1, setting

δn−1=δn := max{δn−2,−λ1(An−1)+max{τ(λ2(An−1)−λ1(An−1))

1−τ
, τη}} (9)

≤ G+
2τ

1− τ
(G+ η), (10)

where λ1(An−2) and λ2(An−2) are the smaller and larger eigenvalues of An−2,
respectively. The last inequality holds because

−λ1(An−1) ≤ G and λ2(An−1)− λ1(An−1) ≤ 2(G+ η).

7



In (9), δn−1 and δn are chosen to obtain the bound

κ2(An−1 + δnI2) ≤
1 + (τ/(1− τ))

τ/(1− τ)
=

1

τ
, (11)

where I2 =

[
1 0
0 1

]
. Finally, by (8) and (10),

‖E‖2 ≤ G+
2τ

1− τ
(G+ η). (12)

If K = 0, then G ≤ η + (n− 1)ξ. By (7), if K > 0, then

G ≤ (n−K − 1)(ξ + η). (13)

In either case, ‖E‖2 = O(n). Recall that with GMW81, ‖E‖2 = O(n2).
Diagonal pivoting is also used in SE90, as well as the later SE99 algorithm.

The analysis above does not rely on the pivoting, but pivoting reduces ‖E‖2
empirically. In Phase 1, the pivot is chosen as the largest diagonal entry as
shown in Algorithm 1.

In Phase 2, one may choose the pivot with the largest lower endpoint of the
Gerschgorin circle in the current Schur complement. This provides the least
modification at the current step. In other words, after diagonally interchanging
rows and columns, G1(Ak) ≥ Gi(Ak) for k = K+1, . . . , n−2 and i = 1, . . . , n−k+1,
where Gi(Ak) = aii−Ri(Ak) is the lower endpoint of the ith Gerschgorin circle

Ci(Ak). However, computing all Gi(Ak) in Phase 2 takes (n−K)3

3 additions and
fails to satisfy Objective 4. The proof of Lemma 2.1 shows

âii −Ri(Â) ≥ āii −Ri+1(A) + |(c)i|(1−
‖c‖1
a+ δ

)

for i = 1, . . . , n−1. Therefore,

Gi(Ak+1) ≥ Gi+1(Ak) + |(ck)i|(1−
‖ck‖1
ak + δk

)

for k = 1, . . . , n−1 and i = 1, . . . , n−k. Using this fact, we recursively compute
the lower bounds of these Gerschgorin intervals by

Ĝi(Ak+1) := Ĝi+1(Ak) + |(ck)i|(1−
‖ck‖1
ak + δk

)

for k = 1, . . . , n−1 and i = 1, . . . , n−k. The base cases are Ĝi(A1) := Gi(A) for
i = 1, . . . , n. Computing these estimated lower endpoints Ĝi(Ak+1) for pivoting
takes 2(n−K)2 additions and 1

2 (n−K)2 multiplications. Hence Objective 4 is
satisfied.
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2.3 The SE99 Algorithm

Although SE90 has a better a priori bound on ‖E‖2 than GMW81, there are
matrices for which SE90 gives an inordinately large ‖E‖2. These matrices are
generally close to being positive definite. The SE99 algorithm [16], was devel-
oped to remedy this. In SE99, condition (6) is relaxed into the following two
conditions that possibly increase the number of Phase 1 pivots:

Diag(Āk −
ckc

T
k

ak
) ≥ −µηIn−k

for some 0 < µ ≤ 1, and

Diag(Ak) ≥ −µakIn−k+1.

Schnabel and Eskow suggested µ = 0.1 for SE99 [16]. The pseudo-code of the
relaxed 2-phase strategy is given in Algorithm 2.

Algorithm 2 Relaxed Phase 1 of a 2-Phase Strategy.

{Given a symmetric A ∈ Rn×n, δ > 0 and 0 < µ ≤ 1.}
η := max1≤i≤n |Aii|
if Diag(A) ≥ −µηIn then

A1 := A, k := 1
Pivot on the maximum diagonal element of A1.

{Denote Ak =

[
ak cTk
ck Āk

]
, then Diag(Āk) ≤ akIn−k after pivoting.}

while ak ≥ δ and Diag(Ak) ≥ −µakIn−k+1 and Diag(Āk − ckc
T
k

ak
) ≥

−µηIn−k and k < n do

Ak+1 := Āk − ckc
T
k

ak
k := k + 1
Pivot on maximum diagonal of Ak.

end while
end if

In SE99, δ := τ̄ η, where τ̄ = 3
√

ε2M , is smaller than τ = 3
√
εM in SE90,

potentially keeping ‖E‖ smaller. In Phase 1, there is no perturbation, so δk = 0
for k = 1, 2, . . . ,K, with K the number of steps in Phase 1. The modification
in Phase 2 turns out to be

δk := max{δk−1,−ak +max{‖ck‖1, τ̄ η}} ≤ G+ τ̄ η, (14)

where G is the negative of the lowest Gerschgorin endpoint of AK+1. Recall
that we set δ0 := 0 and δk is nondecreasing, so that δk is nonnegative.

Since small negative numbers are allowed on the diagonal in Phase 1, two
changes have to be made. First, we need to check whether ak ≥ δ at each step,
as shown in Algorithm 2, whereas it is not required in Algorithm 1. Second, it
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is possible that SE99 moves into Phase 2 at the last step (i.e., the number of
steps in Phase 1 is K = n− 1). In such a case,

δn := max{0,−an +max{ −τ

1− τ
an, τ̄ η}} ≤ G+

τ

1− τ
G+ τ̄ η. (15)

Similar to (9) in SE90, the special treatment in SE99 for the final 2×2 Schur
complement in Phase 2 is

δn−1=δn := max{δn−2,−λ1(An−1)+max{τ(λ2(An−1)−λ1(An−1))

1−τ
, τ̄η}}

≤ G+
2τ

1− τ
(G+ η). (16)

By (14), (15) and (16), we obtain

‖E‖2 ≤ G+
2τ

1− τ
(G+ η). (17)

Although (17) for SE99 looks the same as (12) for SE90, the bound on G in

(17) is different for 0 < K < n. Due to relaxing, the bounds (7) on η̂ and ξ̂ are
replaced by

η̂ ≤ η and ξ̂ ≤ ξ + (1 + µ)η, (18)

where η̂ and ξ̂ (and η and ξ) are the maximum magnitudes of the diagonal and
off-diagonal elements of AK+1 (and A), respectively. Therefore, if 0 < K < n,

G ≤ (n−K − 1)(ξ + (1 + µ)η) + µη. (19)

Recall that K is the number of steps in Phase 1, and SE99 potentially has more
steps staying in Phase 1 than SE90.

The pivoting strategy used in SE99 is the same as that in SE90. Note that
the bound on ‖E‖2 in (17) for SE99 is independent of the pivoting strategy
applied, and so is (12) for SE90.

3 New Modified LDLT Algorithms

This section presents three variants of the LDLT algorithms, GMW-I, GMW-II
and SE-I, and illustrates their performance.

Experiments used a laptop with an Intel Celeron 2.8GHz CPU using IEEE
standard arithmetic with machine epsilon εM = 2−52 ≈ 2.22 × 10−16. We
measure the size of E by the ratios

r2 =
‖E‖2

|λmin(A)| and rF =
‖E‖F

(
∑

λi(A)<0
λi(A)2)1/2

. (20)

Note that assuming λmin(A) < 0, the denominators are the norms of the least
modification to make the matrix positive semidefinite.
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The random matrices in our experiments are of the form QΛQT , where
Q ∈ Rn×n is a random orthogonal matrix computed by the method of G. W.
Stewart [17], and Λ ∈ Rn×n is diagonal with uniformly distributed random
eigenvalues in [−1, 10000], [−1, 1] or [−10000,−1]. For the matrices with eigen-
values in [−1, 10000], we impose the condition that there is at least one negative
eigenvalue.

3.1 The GMW-I Algorithm

The GMW81 algorithm, a Type-I algorithm, satisfies ‖E‖2 = O(n2), whereas
SE90 and SE99 further guarantee ‖E‖2 = O(n), as shown in (12) and (17),
respectively. Schnabel and Eskow [15] pointed out that the 2-phase strategy
can drop the bound on ‖E‖2 of GMW81 to be O(n). In our experiments, we
note that incorporating the 2-phase strategy into GMW81 introduces difficulties
similar to those for SE90, and again relaxing provides the rescue.

We denote by GMW-I the algorithm that uses the Relaxed Phase 1 of SE99
with Phase 2 defined by GMW81. Denote the number of steps in Phase 1 by
K. Then δk = 0 for k = 1, 2, . . . ,K. Instead of (3), the bound on ‖E‖2 is

‖E‖2 ≤ (
ξ̂

β
+ (n−K − 1)β)2 + 2(η̂ + (n−K − 1)β2) + δ, (21)

where η̂ and ξ̂ are the maximum magnitudes of the diagonal and off-diagonal ele-
ments of AK+1, respectively. Now we do not need β2 ≥ η̂ to satisfy Objective 1,
so β is chosen as the minimizer of (21),

β2 = max{ ξ̂√
(n−K)2 − 1

, εM}

for n−K > 1. Substituting this into (21) and invoking (18), we obtain

‖E‖2 ≤ 4(n−K)ξ̂ + 2η̂ + δ ≤ 4(n−K)(ξ + (1 + µ)η) + 2η + δ = O(n), (22)

where we ignore the extreme case β2 = εM .
We still use δ := εM as in GMW81 and set µ = 0.75 in the relaxed 2-phase

strategy since it is an empirically good value for the GMW algorithms. (Recall
that µ = 0.1 for SE99.) Pivoting reduces ‖E‖2 in the original GMW81 algo-
rithm; we pivot on the maximum element instead of the maximum magnitude
element in Phase 2, because on average the resulting κ2(A + E) is smaller in
our experiments. We call our variant GMW-I.

Figure 1 shows our experimental result. The GMW-I algorithm performed
well, but for the random matrices with eigenvalues in [−10000,−1], the ‖E‖2
was a few times larger than in the original GMW81. Nevertheless, in practi-
cal optimization problems, negative definite Hessian matrices rarely occur, and
indefinite Hessian matrices are usually close to being positive definite. The non-
decreasing strategy was also tried. For the random matrices with eigenvalues
in [−1, 1] and [−10000,−1], the nondecreasing strategy substantially reduced
κ2(A + E) but roughly doubled ‖E‖F (though with ‖E‖2 comparable). Note
that the bound on ‖E‖2 in (3) is preserved with the nondecreasing strategy.
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Figure 1: Measures of rF and κ2(A + E) for the Type-I GMW algorithms for
30 random matrices with n = 100. Key: original GMW81 —, with 2-phase
strategy + , with relaxed 2-phase strategy (GMW-I) × , with relaxed 2-phase
and nondecreasing strategy 2 .
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3.2 The GMW-II Algorithm

In this subsection we introduce our GMW-II algorithm, a Type-II variant of the
(Type-I) GMW81 algorithm. We apply the nondecreasing strategy and choose
δk in (1) to be

ak + δk := max{δ, ak + δk−1,
‖ck‖2∞
β2

}

for k = 1, . . . , n, where β > 0 and small tolerance δ > 0 are preset, and δ0 := 0.
The magnitude of the off-diagonal elements in L̄ is still bounded by β, where
LDLT = L̄L̄T .

The bound on ‖E‖2 for GMW81 is given in (3). For the Type-II GMW
algorithm, it is

‖E‖2 ≤ (
ξ

β
+ (n− 1)β)2 + (η + (n− 1)β2) + δ =: f(β). (23)

Equality is attained with β2 = ξ√
n2−n

for n > 1. Recall that η and ξ are the

maximum magnitudes of the diagonal and off-diagonal elements of A, respec-
tively. The minimum of (23) is

min
β

f(β) = 2ξ(
√

n2 − n+ n− 1) + η + δ ≤ 4nξ + η + δ.

The minimum is attained with β2 = ξ√
n2−n

for n > 1. Therefore, β is chosen

by

β2 := max{η, ξ√
n2 − n

, εM}

for n > 1, where β2 ≥ η is for satisfying Objective 1 with pivoting. Substituting
this into (23), we obtain ‖E‖2 = O(n2).

The relaxed 2-phase strategy in Algorithm 2 is also incorporated into our
GMW-II algorithm. Therefore, the bound on ‖E‖2 is

‖E‖2 ≤ (
ξ̂

β
+ (n−K − 1)β)2 + (η̂ + (n−K − 1)β2) + δ, (24)

where K is the number of steps in Phase 1, and η̂ and ξ̂ are the maximum
magnitudes of the diagonal and off-diagonal elements of AK+1, respectively.
Since β2 ≥ η̂ is not required for satisfying Objective 1, β is determined by

β2 := max

{
ξ̂√

(n−K)2 − (n−K)
, εM

}

for n−K > 1. Substituting this into (24), we obtain

‖E‖2 ≤ 4(n−K)ξ̂ + η̂ + δ ≤ 4(n−K)(ξ + (1 + µ)η) + η + δ = O(n),

where we ignore the extreme case β2 = εM . The last inequality is derived using
(18).
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The diagonal pivoting strategy can be incorporated into the Type-II GMW
algorithms. We pivot on the maximum element for our GMW-II algorithm, as
in the GMW-I algorithm. Note that all the a priori bounds on ‖E‖2 given above
for all algorithms in the GMW class are independent of the pivoting strategy
applied, if any.
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Figure 2: Measures of rF and κ2(A+E) for the Type-II GMW algorithms for 30
random matrices with n = 100, nondecreasing strategy invoked. Key: original
Type-II GMW —, with 2-phase strategy 2 , with relaxed 2-phase strategy
(GMW-II) × .

Recall that GMW81 and GMW-I use δ := εM . For the Type-II GMW al-
gorithms, we use δ := 3

√
ε2Mη as in SE99. Our experimental results are shown

in Figure 2. Similar to SE90 and the Type-I GMW algorithms, incorporat-
ing the 2-phase strategy results in difficulties for the matrices with eigenvalues
[−1, 10000], and relaxing is the cure.
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For all algorithms in the GMW class, the worst-case condition number is

κ2(A+ E) = O(n3(
ξ + η

δ
)n). (25)

The proof uses Theorem 3.1, Lemma 3.3, the bounds [δ, η + (n − 1)β2] for the
diagonal elements in D, and the bound β for the magnitude of the off-diagonal
elements in L̄, where P (A+ E)P T = LDLT = L̄L̄T as denoted in (2).

Whether the 2-phase strategy or the relaxed 2-phase strategy is applied, the
bound on κ2(A+E) remains exponential using (7) and (18), respectively. The
bounds are not changed when the nondecreasing strategy is applied. All the
modified Cholesky algorithms in Sections 2 and 3 are numerically stable, since
they can be regarded as the Cholesky factorizations of the symmetric positive
definite matrix A+ E [5].

3.3 The SE-I Algorithm

Both SE90 and SE99 are Type-II algorithms. In this section we present the
Type-I variant corresponding to SE99, denoted by SE-I, by making three changes.
First, instead of (14), we determine δk by

δk := max{0,−2ak,−ak +max{‖ak‖1, τ̄ η}} ≤ max{2G,G+ τ̄ η} (26)

for k = K+1, . . . , n−2. Second, instead of (16), the special treatment of the
last 2×2 Schur complement in Phase 2 to keep ‖E‖2 small is

δn−1=δn := max{0,−2λ1(An−1),−λ1(An−1)+max{τ(λ2(An−1)−λ1(An−1))

1− τ
, τ̄η}}

≤ max{2G,G+
2τ

1− τ
(G+ η)}. (27)

Note that κ2(An−1 + δnI2) ≤ min{κ2(An−1),
1
τ }. The derivation is similar to

that of (10). Third, if the algorithm switches to Phase 2 at the last step, then
δn is determined by

δn = max{0,−2an,−an +max{ −τ

1− τ
an, τ̄ η}}

≤ max{2G,G+
τ

1− τ
(G+ η)} (28)

instead of (15).
By (26), (27) and (28), we obtain

‖E‖2 ≤ max{2G,G+
2τ

1− τ
(G+ η)}. (29)

Comparing (29) with (17), the bound on ‖E‖2 for SE-I is less than twice as that
for SE99.

Now we investigate the satisfaction of Objective 1 for the GMW and SE
algorithms. We begin with a theorem of Ostrowski [12, page 224].
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Theorem 3.1 (Ostrowski). Suppose we are given a symmetric M ∈ Cn×n

and a nonsingular S ∈ Cn×n. There exists θk > 0 such that

λk(SMS∗) = θkλk(M),

where λ1(SS∗) ≤ θk ≤ λn(SS∗).

Consider the 2-phase strategy presented in Algorithm 1 and the relaxed 2-
phase strategy presented in Algorithm 2 with pivoting on the maximum diagonal
element. Clearly E = 0 if the factorization is done in Phase 1. The derivation of
the condition under which the algorithm runs to completion without switching
to Phase 2 is by finite induction. We denote the incomplete LDLT factorization
of a symmetric matrix A ∈ Rn×n after step k by LkDkL

T
k , where

Dk =
k n−k

k
n−k

[
D̄k 0
0 Sk

]
,

with D̄k diagonal and Sk the Schur complement. We claim that the following
condition guarantees E = 0:

λmin(A) ≥ δ‖LkL
T
k ‖2 (30)

for k = 1, . . . , n−1. At the beginning of step k, we assume that the diagonal ele-
ments of the Schur complement are all larger than or equal to δ, and investigate
whether this condition holds in the next Schur complement4. By Theorem 3.1
and (30),

λmin(Dk)λmax(LkL
T
k ) ≥ λmin(A) ≥ δ‖LkL

T
k ‖2 = δλmax(LkL

T
k ),

and therefore λmin(Dk) ≥ δ, so

λmin(Sk) ≥ λmin(Dk) ≥ δ,

which implies Diag(Sk) ≥ δIn−k. By induction, we stay in Phase 1 during the
whole factorization. We conclude that if (30) holds, then E = 0.

In the next two lemmas we develop bounds on ‖LLT ‖2 and on λmin(LLT ),
in order to bound the condition number of A + E for algorithms in Sections 4
and 5.

Lemma 3.2. If the positive semidefinite Hermitian matrix M ∈ Cn×n has a
diagonal element equal to 1, (i.e., mkk = 1 for some 1 ≤ k ≤ n), then

λmin(M) ≤ 1 ≤ λmax(M).

4For the base case, we have λmin(A) ≥ δ from (30), so A − δI is positive definite and
therefore diag(A) ≥ δI.
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Proof. Let M = UΛU∗ denote the spectral decomposition of M , and a :=
U∗ek. Since mkk = 1,

1 = eTk Mek = a∗U∗(UΛU∗)Ua = a∗Λa.

Note that a∗a = 1. We conclude that the weighted average of the eigenvalues
of M is 1. Therefore, λmin(M) ≤ 1 ≤ λmax(M). ¥

Lemma 3.3. 5 For any lower unit triangular matrix L ∈ Rn×n with |(L)ij | ≤ γ
for 1 ≤ j < i ≤ n,

1 ≤ λmax(LLT ) ≤ n+
1

2
n(n− 1)γ2,

and
(1 + γ)2−2n ≤ λmin(LLT ) ≤ 1.

Proof. By Lemma 3.2, λmin(LLT ) ≤ 1 ≤ λmax(LLT ). Next, an upper bound
on λmax(LLT ) is λmax(LLT ) ≤ trace(LLT ) ≤ n+ 1

2n(n− 1)γ2. Computing the
inverse of a lower triangular matrix, we obtain (L−1)ii = 1 for i = 1, . . . , n and

the bounds |(L−1)ij | ≤ γ
∑i

k=j+1 |(L−1)ik| for 1 ≤ j < i ≤ n. The solution to
this recursion is

|(L−1)ij | ≤ γ(1 + γ)i−j−1

for 1 ≤ j < i ≤ n. Therefore,

λmin(LLT )−1 = ‖(LLT )−1‖2 ≤ ‖L−1‖22 ≤ ‖L−1‖1‖L−1‖∞ ≤ (1 + γ)2n−2.

¥

Now we can bound ‖LkL
T
k ‖2 in (30). Pivoting on the maximum diagonal

element of each Schur complement, the magnitude of the elements in Lk are
bounded by 1 for all k. By Lemma 3.3,

‖LkL
T
k ‖2 ≤

1

2
n(n+ 1). (31)

Substituting this into (30), we obtain the following result. For algorithms GMW-
I, GMW-II, SE90, SE99, and SE-I that use the 2-phase strategy or the relaxed
2-phase strategy, if

λmin(A) ≥ 1

2
n(n+ 1)δ, (32)

then by (30) and (31) we conclude that E = 0.
Our experimental results are shown in Figure 3. For the random matrices

with eigenvalues in [−1, 10000], SE-I resulted in larger ‖E‖2 and ‖E‖F but
substantially smaller κ2(A + E) than those of SE99. For the random matrices
with eigenvalues in [−1, 1] and [−10000,−1], SE-I had comparable ‖E‖2, smaller
‖E‖F , but larger κ2(A+ E) than SE99.

5Cheng and Higham [5] presented this lemma with γ = 7+
√

17
4

≈ 2.781.
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Figure 3: Measures of rF and κ2(A + E) for the SE algorithms for 30 random
matrices with n = 100. Key: original SE99 —, Type-I SE99 (SE-I) 2 , Type-I
SE99 with nondecreasing strategy × .
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The nondecreasing strategy can be incorporated into the Type-I SE algo-
rithm. The resulting ‖E‖2, ‖E‖F and κ2(A + E) were comparable to those
of SE-I for the random matrices with eigenvalues in [−1, 10000], and compara-
ble to those of SE99 for the random matrices with eigenvalues in [−1, 1] and
[−10000,−1]. Incorporating the non-relaxed 2-phase strategy into the Type-I
SE algorithms is possible, but it would result in difficulties similar to those of
SE90.

For all the algorithms in the SE class, the worst-case condition number is

κ2(A+ E) = O(
(ξ + η)n34n

δ
). (33)

The sketch of the proof is similar to that for the GMW algorithms. In practice,
the condition number is bounded by about 1/τ and 1/τ̄ respectively for SE90
and SE99 [15], and is comparable to κ2(A) for SE-I.

4 Modified LBLT Algorithms

Any symmetric matrix A ∈ Rn×n has an LBLT factorization, where B is block
diagonal with block order 1 or 2 [2, 3, 4]. A modified LBLT algorithm first
computes the LBLT factorization, and then perturbs B̂ = B+∆B to be positive
definite, so that P (A + E)P T = LB̂LT is positive definite as well, where P is
the permutation matrix for pivoting.

Moré and Sorensen suggested a modified LBLT algorithm [13] which we call

MS79. Each 1×1 block in B, denoted by d, is modified to be d̂ := max{δ, |d|},
with δ > 0 the preset small tolerance. For each 2×2 block D, its spectral

decomposition D = U

[
λ1

λ2

]
UT is modified to be D̂ := U

[
λ̂1

λ̂2

]
UT ,

where λ̂i := max{δ, |λi|} for i = 1, 2.
Cheng and Higham proposed another modified LBLT algorithm [5] which

we call CH98. Each 1×1 block d is modified to be d̂ := max{δ, d}, with δ > 0
the preset small tolerance. Each 2×2 block D, with its spectral decomposition

denoted by D = U

[
λ1

λ2

]
UT , is modified to be D̂ := U

[
λ̂1

λ̂2

]
UT ,

where λ̂i = max{δ, λi} for i = 1, 2.
The key distinction is that MS79 is a Type-I algorithm, whereas CH98 is

of Type II. The MS79 algorithm was developed before the fast Bunch-Parlett
and bounded Bunch-Kaufman pivoting strategies (rook pivoting) for the LBLT

factorization [2], but rook pivoting is also applicable to MS79. For MS79, we
set δ := εM . Cheng and Higham [5] suggested δ :=

√
u‖A‖∞ for CH98, where

u = εM/2 is the unit roundoff.
MS79 predated the four objectives. Cheng and Higham investigated the

objectives for CH98 [5], and our analysis for MS79 is similar.
For both MS79 and CH98, if λmin(B) ≥ δ, then E = 0. By Theorem 3.1,

if A is positive definite, λmin(B) ≥ λmin(A)
λmax(LLT )

. Therefore, E = 0 is guaranteed
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when
λmin(A) ≥ δ‖LLT ‖2. (34)

Consider ‖E‖2 for MS79. By Theorem 3.1,

‖E‖2 = λmax(E) = λmax(L∆BLT ) ≤ λmax(LLT )λmax(∆B)

= λmax(LLT )max{δ − λmin(B),−2λmin(B), 0}.

By Theorem 3.1 again, −λmin(B) ≤ − λmin(A)
λmin(LLT )

and −λmin(B) ≥ − λmin(A)
λmax(LLT )

for λmin(A) < 0. Therefore,

‖E‖2 ≤ −2λmin(A)κ2(LLT ) for λmin(A) ≤ −δ‖LLT ‖2. (35)

Similarly, the bound on ‖E‖2 for CH98 is

‖E‖2 ≤ δ‖LLT ‖2 − λmin(A)κ2(LLT ) for λmin(A) ≤ 0. (36)

Now we assess how well Objective 3 is satisfied for MS79. By Theorem 3.1,

λmin(A+ E) ≥ λmin(LLT )λmin(B̂)

= λmin(LLT )max{δ, min
1≤i≤n

|λi(B)|} (37)

≥ λmin(LLT )max{δ, min1≤i≤n |λi(A)|
λmax(LLT )

}, (38)

and

λmax(A+ E) ≤ λmax(LLT )λmax(B̂)

= λmax(LLT )max{δ,−λmin(B), λmax(B)} (39)

≤ λmax(LLT )max{δ, −λmin(A)

λmin(LLT )
,

λmax(A)

λmin(LLT )
}. (40)

By (37) and (39),
κ2(A+ E) ≤ κ2(LLT )κ2(B).

By (38) and (40),
κ2(A+ E) ≤ κ2(LLT )2κ2(A). (41)

The bound on κ2(A+ E) for CH98 [5] is

κ2(A+ E) ≤ κ2(LLT )max{1, λmax(A)

λmin(LLT )δ
}. (42)

There are four pivoting algorithms for the LBLT factorization: Bunch-
Parlett (complete pivoting) [4], Bunch-Kaufman (partial pivoting) [3], fast Bunch-
Parlett and bounded Bunch-Kaufman (rook pivoting) [2], denoted by BP, BK,
FBP and BBK, respectively. All these algorithms have a preset argument
0 < α < 1. The BK algorithm takes O(n2) time for pivoting, but the ele-
ments in L are unbounded. It is discouraged for the modified LBLT algorithms
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because Objectives 1–3 may not be satisfied. For example, the following LBLT

factorization [11] is produced with the BK pivoting strategy for ε 6= 0,

A =




0 ε 0
ε 0 1
0 1 1


 =




1
0 1
1/ε 0 1






0 ε
ε 0

1






1 0 1/ε
1 0

1


 = LBLT .

Applying MS79 or CH98 and assuming 0 < ε ≤ δ, we obtain

E =




1
0 1
1/ε 0 1






δ −ε
−ε δ

1






1 0 1/ε
1 0

1


 =




δ −ε δ/ε
−ε δ −1
δ/ε −1 1+δ


 .

When ε→ 0+, ‖E‖ → ∞, so Objective 2 is not satisfied.
From (34)–(42), it is clear that λmin(LLT ), λmax(LLT ) and κ2(LLT ) play an

important role for the satisfaction of Objectives 1–3 for both MS79 and CH98.
The BP, BBK and FBP algorithms all produce a bound on the elements in

L in terms of the pivoting argument α, suggested to be α = 1+
√
17

8 ≈ 0.640
to minimize the bound on the element growth of the Schur complements [2, 3,
4]. The corresponding element bound of the unit lower triangular matrix L is

γ = 7+
√
17

4 ≈ 2.781. Alternatively, we could choose α = 0.5 to minimize the
element bound of L [6, Table 3.1], which is γ = 2, leading to sharper bounds
on λmin(LLT ), λmax(LLT ) and κ2(LLT ). The bounds in Table 3 are obtained
using Lemma 3.3.

Table 3: Bounds for the LBLT factorization with the BP, BBK or FBP pivoting
algorithm.

α γ λmin(LLT ) λmax(LLT ) κ2(LLT )
1+
√
17

8
7+
√
17

4 ≥ 3.7812−2n ≤ 4n2 − 3n ≤ (4n2 − 3n)3.7812n−2

0.5 2 ≥ 32−2n ≤ 2n2 − n ≤ (2n2 − n)32n−2

Although α = 1
2 results in smaller bounds, α = 1+

√
17

8 ≈ 0.640 is a better
choice in practice, as shown in Figure 4.

The BP pivoting strategy takes 1
6n
3 + O(n2) comparisons and does not

meet Objective 4. The number of comparisons for the BBK and FBP pivoting
strategies are between those of the BK and BP algorithms (i.e., between O(n2)
and O(n3)). There are matrices that require traversing the whole matrix of
each Schur complement with either the BBK or the FBP pivoting strategy [2].
Hence they take Θ(n3) comparisons for pivoting in worst cases and fail to meet
Objective 4.

Here and throughout the remainder of this paper, we assume the pivoting
strategy applied to the MS79 and CH98 is BBK, unless otherwise noted.

Three remarks are in order. First, both MS79 and CH98 satisfy Objectives 1–
3. Second, the bound on ‖E‖2 for MS79 is about twice that for CH98, whereas
A + E is generally better conditioned for MS79 than for CH98. Third, both
algorithms fail to satisfy Objective 4 in the worst case.
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Figure 4: Measures of r2 and κ2(A + E) for MS79 and CH98 for 30 random
matrices with n = 100. Key: MS79 α = 0.640 —, MS79 α = 0.5 + , CH98
α = 0.640 × , CH98 α = 0.5 2 .
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5 A New Approach via Modified LTLT Factor-

ization

Aasen [1], Parlett and Reid [14] introduced the LTLT factorization and its
application to solving symmetric linear systems. We denote the factorization
by PAP T = LTLT , where T is symmetric tridiagonal, and L is unit lower
triangular with the magnitude of its elements bounded by 1 and the off-diagonal
elements in the first column all zero.

The work in computing Aasen’s LTLT factorization is about the same as
that of the Cholesky factorization, whereas the formulation by Parlett and Reid
doubles the cost. In both formulations the storage is the same as that required
by the Cholesky factorization, and the numerical stability of its use in solving
linear systems is empirically comparable to that of the LBLT factorization [2].

Our new approach arises from the fact that A is positive definite if and only if
T is positive definite. A modified LTLT algorithm makes T̂ = T+∆T symmetric
positive definite, and the resulting factorization Â = P (A + E)P T = LT̂LT is
also symmetric positive definite.

We can apply the modified LDLT algorithms in Sections 2 and 3 and the
modified LBLT algorithms in Section 4 to the matrix T . The resulting mod-
ified LTLT factorization roughly satisfies Objective 1, assuming the modified
Cholesky algorithm applied to T satisfies Objective 1. Our method was inspired
by the merits of triadic structure (no more than two off-diagonal elements in
every column of a matrix) discussed in [6].

The triadic structure of a symmetric matrix is preserved in the LDLT or
LBLT factorizations [6, Theorem 2.5]. This implies that the modified LDLT

or LBLT algorithms in Sections 2–4 applied to a symmetric triadic matrix are
very efficient. Recall that both MS79 and CH98 have difficulties in satisfying
Objective 4. The potential excessive cost can be reduced to be O(n2) by instead
applying MS79 or CH98 to the symmetric tridiagonal matrix T of the LTLT

factorization. We call the resulting algorithms LTLT -MS79 and LTLT -CH98,
respectively. For LTLT -MS79, we use δ := εM . For LTLT -CH98, we use
δ := 3

√
ε2Mη, as used in SE99.

Table 4 compares the costs of these LBLT pivoting strategies for symmetric
and symmetric tridiagonal matrices. We use the BBK pivoting strategy for both
MS79 and CH98, because it is the cheapest pivoting strategy that guarantees a
bounded L. Even so, Objective 4 is not satisfied in worst cases. We use the BP
pivoting strategy for both LTLT -CH98 and LTLT -MS79. Then Objective 4 is
satisfied [6], even though BP is the most expensive pivoting strategy.

Given a symmetric matrix A ∈ Rn×n, we denote its LTLT factorization
by PAP T = LTLT , and the LBLT factorization of T by P̃ T P̃T = L̃B̃L̃T .
The resulting sandwiched factorization is PAP T = LP̃T L̃B̃L̃T P̃LT . Adding a
perturbation ∆B̃ to B̃ to make it positive definite, the modified factorization
of T is P̃ (T +∆T )P̃T = L̃(B̃ +∆B̃)L̃T . The modified LTLT factorization is

P (A+ E)P T = LP̃T L̃(B̃ +∆B̃)L̃T P̃LT . (43)
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Table 4: Comparison costs of various pivoting strategies for the LBLT factor-
ization.

Symmetric Matrix General Tridiagonal
case worst best worst best
BP O(n3) O(n2)
FBP O(n3) O(n2) O(n2) O(n)
BBK O(n3) O(n2) O(n2) O(n)

The matrix L is unit lower triangular with the magnitude of all elements bounded
by 1 and all the off-diagonal elements in the first column zero. By Lemma 3.3,
the LTLT factorization satisfies

λmax(LLT ) ≤ 1
2n(n− 1)

λmin(LLT ) ≥ 24−2n
(44)

for n > 1. Lemma 5.1 gives the bounds on λmax(L̃L̃T ) and λmin(L̃L̃T ), where

L̃ is triadic and unit lower triangular.

Lemma 5.1. Let Fγ(k) =
∑dk/2e

i=1

(
k−i
i−1

)
γk−i and Φγ =

1+
√
1+4/γ

2 γ for k ∈ N

and γ > 0. For any triadic and unit lower triangular L̃ ∈ Rn×n with the
magnitude of the off-diagonal elements bounded by γ,

1. 1
1+(1/γ)Φ

k−1
γ ≤ Fγ(k) ≤ Φk−1

γ for k ∈ N .

2. (L̃−1)ij ≤ Fγ(i−j+1) for 1 ≤ j ≤ i ≤ n.

3. λmax(L̃L̃T ) ≤ n+ (2n− 3)γ2 for n > 1.

4. λmin(L̃L̃T ) ≥ (
Φγ−1
Φnγ−1

)2.

Proof. Part one of this lemma is [6, Lemma 5.4]. Part two is from the proof of
[6, Lemma 5.6]. For part three,

λmax(L̃L̃T ) ≤ trace(L̃L̃T ) = ‖L̃‖2F ≤ n+ (2n− 3)γ2,

for n > 1. Finally, by parts one and two,

λmin(L̃L̃T )−1 = ‖(L̃L̃T )−1‖2 = ‖L̃−1‖22 ≤ ‖L̃−1‖1‖L̃−1‖∞

≤ (
n∑

k=1

Fγ(k))
2 ≤ (

n∑

k=1

Φk−1
γ )2 = (

Φn
γ − 1

Φγ − 1
)2.

¥

Now we can assess the satisfaction of Objectives 1–3 for our LTLT -MS79
and LTLT -CH98 algorithms. To ensure a bounded L of the LBLT factorization,
we can use BP, FBP or BBK, but not BK. By (34), λmin(T ) ≥ δ‖L̃L̃T ‖2 implies
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E = 0. By Theorem 3.1, if A is positive definite, λmin(A) ≥ λmin(T )λmin(LLT ).
We conclude that E = 0 if

λmin(A) ≥ δ‖L̃L̃T ‖2λmin(LLT ). (45)

For LTLT -MS79, by Theorem 3.1 and (35),

‖E‖2 = λmax(E) = λmax(L∆TLT )

≤ λmax(LLT )λmax(∆T ) = ‖LLT ‖2‖∆T‖2
≤ −2λmin(A)κ2(LLT )κ2(L̃L̃T ) (46)

for λmin(A) ≤ −δ‖LLT ‖2‖L̃L̃T ‖2. For LTLT -CH98, by Theorem 3.1 and (36),

‖E‖2 ≤ δ‖LLT ‖2‖L̃L̃T ‖2 − λmin(A)κ2(LLT )κ2(L̃L̃T ) (47)

for λmin(A) ≤ 0. For LTLT -MS79, by Theorem 3.1 and (41),

κ2(A+ E) ≤ κ2(LLT )κ2(T +∆T )

≤ κ2(LLT )κ2(L̃L̃T )2κ2(T )

≤ κ2(LLT )2κ2(L̃L̃T )2κ2(A). (48)

For LTLT -CH98, by Theorem 3.1 and (42),

κ2(A+ E) ≤ κ2(LLT )κ2(L̃L̃T )max{1, λmax(T )

λmin(L̃L̃T )δ
}

≤ κ2(LLT )κ2(L̃L̃T )max{1, λmax(A)

λmin(LLT )λmin(L̃L̃T )δ
}. (49)

Note that the pivoting argument used in P̃ T P̃T = L̃B̃L̃T is α =
√
5−1
2 ≈

0.618 for symmetric triadic matrices [6, Theorem 4.1]. The corresponding ele-

ment bound of L is γ =
√
5+3
2 ≈ 2.618. One may choose α = 0.5 to obtain the

minimum element bound of L [6, Table 3.1], which is γ = 2, but it could result
in an excessive ‖E‖2 for random matrices with eigenvalues [−1, 10000] as shown
in Figure 5.

The bounds on ‖LLT ‖2 and λmin(LLT ) are given in (44). The bounds on

‖L̃L̃T ‖2 and λmin(L̃L̃T ) are in Lemma 5.1 with γ =
√
5+3
2 ≈ 2.618. We conclude

that
‖LLT ‖2‖L̃L̃T ‖2 ≤ 7.5n3 − 17.5n2 + 10.5n

λmin(LLT )λmin(L̃L̃T ) ≥ 91
4n(3.4n−1)2

(50)

for n > 1.
Comparing (50) with Table 3 with α = 1+

√
17

8 , ‖LLT ‖2 and λmin(LLT ) for

MS79 and CH98 have sharper bounds than ‖LLT ‖2‖L̃L̃T ‖2 and λmin(LLT )λmin(L̃L̃T )
for LTLT -MS79 and LTLT -CH98, respectively. Comparing (35) and (36) with
(46) and (47), MS79 and CH98 have sharper bounds on ‖E‖2 than LTLT -MS79

25



 1

 10

 100

 1000

 10000

 100000

 0  5  10  15  20  25  30

r 2

matrix

(a) n=100, eig. range [-1,10000]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0  5  10  15  20  25  30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 0  5  10  15  20  25  30

r 2

matrix

(c) n=100, eig. range [-1,1]

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0  5  10  15  20  25  30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25  30

r 2

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0  5  10  15  20  25  30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 5: Measures of r2 and κ2(A+E) for LTLT -MS79 and LTLT -CH98 for 30
random matrices with n = 100. Key: LTLT -MS79 α = 0.618 —, LTLT -MS79
α = 0.5 + , LTLT -CH98 α = 0.618 × , LTLT -CH98 α = 0.5 2 .

and LTLT -CH98, respectively. Comparing (41) and (42) with (48) and (49),
MS79 and CH98 have sharper bounds on κ2(A + E) than LTLT -MS79 and
LTLT -CH98, respectively. In our experiments, however, our LTLT -MS79 and
LTLT -CH98 algorithms usually performed as well as (and sometimes better
than) MS79 and CH98, respectively.

In our experiments on the random matrices with eigenvalues in [−1, 1] and
[−10000,−1], ‖E‖2 produced by LTLT -MS79 and LTLT -CH98 were compa-
rable to those from MS79 and CH98, respectively. For the random matrices
with eigenvalues in [−1, 10000], our LTLT -MS79 and LTLT -CH98 algorithms
slightly outperformed MS79 and CH98 by keeping ‖E‖2 smaller on average, re-
spectively. Figures 6 and 7 show the result of MS79 and LTLT -MS79 and that
of CH98 and LTLT -CH98, respectively.

The 2-phase strategy can also be incorporated into LTLT -MS79 and LTLT -

26



 1

 10

 100

 1000

 10000

 100000

 0  5  10  15  20  25  30

r 2

matrix

(a) n=100, eig. range [-1,1]

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

 0  5  10  15  20  25  30

κ 2
(A

+
E

)

matrix

(b) n=100, eig. range [-1,10000]

 1

 10

 100

 0  5  10  15  20  25  30

r 2

matrix

(c) n=100, eig. range [-1,1]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0  5  10  15  20  25  30

κ 2
(A

+
E

)

matrix

(d) n=100, eig. range [-1,1]

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25  30

r 2

matrix

(e) n=100, eig. range [-10000,-1]

 1

 10

 100

 1000

 10000

 0  5  10  15  20  25  30

κ 2
(A

+
E

)

matrix

(f) n=100, eig. range [-10000,-1]

Figure 6: Measures of r2 and κ2(A+E) for MS79, LTLT -MS79, 2-phase LTLT -
MS79, and relaxed 2-phase LTLT -MS79 for 30 random matrices with n = 100.
Key: MS79 —, LTLT -MS79 + , 2-phase LTLT -MS79 × , relaxed 2-phase
LTLT -MS79 2 .
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Figure 7: Measures of r2 and κ2(A+E) for CH98, LTLT -CH98, 2-phase LTLT -
CH98, and relaxed 2-phase LTLT -CH98 for 30 random matrices with n = 100.
Key: CH98 —, LTLT -CH98 + , 2-phase LTLT -CH98 × , relaxed 2-phase
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CH98. However, this results in the potential problem of large ‖E‖, similar to
that of SE90. The problem was roughly resolved by relaxing in our experiments,
as shown in Figures 6 and 7. Unfortunately, the problem was not extinguished
with the relaxed 2-phase strategy. See the discussion in Section 6.2. Therefore,
we do not advise incorporating the 2-phase or the relaxed 2-phase strategy into
LTLT -MS79 or LTLT -CH98.

6 Additional Numerical Experiments

Our previous experiments provided good values for the parameters in our meth-
ods. Now we present more extensive comparisons among the methods.

We ran three tests in our experiments. The first test concerns random matri-
ces similar to those in [5, 15, 16]. The second test was on the first matrix in [15]
for which SE90 had difficulties. The third test was on the 33 matrices used in
[16]. Our experiments were on a laptop with a Intel Celeron 2.8GHz CPU using
IEEE standard arithmetic with machine epsilon εM = 2−52 ≈ 2.22× 10−16.

6.1 Random Matrices

To investigate the behaviors of the factorization algorithms, we experimented on
the random matrices with eigenvalues in [−1, 10000], [−1, 1], and [−10000,−1]
for dimensions n = 25, 50, 100. The random matrices were generated as de-
scribed in Section 3. We compare the performance of the four Type-I algorithms,
GMW-I, SE-I, MS79 and LTLT -MS79, and the four Type-II algorithms, GMW-
II, SE99, CH98 and LTLT -CH98.

Figures 8–10 show the results of the Type-I algorithms, whereas Figures 11–

13 show results of the Type-II algorithms. We measure ‖E‖2 by r2 =
‖E‖2

|λmin(A)|
as defined in (20).

Consider the Type-I algorithms. MS79 and LTLT -MS79 generally produced
comparable ‖E‖2 and condition numbers, but for matrices with eigenvalues in
[−1, 10000], LTLT -MS79 achieved a smaller ‖E‖2 than MS79 in several cases.
For matrices with eigenvalues in [−1, 1], SE-I outperformed the other Type-I
algorithms by not only producing smaller ‖E‖2 but also smaller κ2(A+E). For
matrices with eigenvalues in [−10000,−1], the GMW-II produced larger ‖E‖2
than the others.

Now compare the Type-II algorithms. In experiments on matrices with
eigenvalues in [−1, 10000], GMW-II and SE99 produced ‖E‖2 smaller than the
others on average. The LTLT -CH98 algorithm outperformed CH98 by usu-
ally achieving a smaller ‖E‖2. For the random matrices with eigenvalues in
[−1, 1], SE99 remains the best. For the random matrices with eigenvalues in
[−10000,−1], CH98 and LTLT -CH98 achieved the minimal ‖E‖2.
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Figure 8: Measures of r2 and κ2(A + E) for GMW-I, SE-I, MS79, and LTLT -
MS79 for 30 random matrices with n = 25. Key: GMW-I —, SE-I + , CH98
× , LTLT -CH98 2 .
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Figure 9: Measures of r2 and κ2(A + E) for GMW-I, SE-I, MS79, and LTLT -
MS79 for 30 random matrices with n = 50. Key: GMW-I —, SE-I + , CH98
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Figure 10: Measures of r2 and κ2(A+E) for GMW-I, SE-I, MS79, and LTLT -
MS79 for 30 random matrices with n = 100. Key: GMW-I —, SE-I + , CH98
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Figure 11: Measures of r2 and κ2(A+E) for GMW-II, SE99, CH98, and LTLT -
CH98 for 30 random matrices with n = 25. Key: GMW-II —, SE99 + , CH98
× , LTLT -CH98 2 .
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Figure 12: Measures of r2 and κ2(A+E) for GMW-II, SE99, CH98, and LTLT -
CH98 for 30 random matrices with n = 50. Key: GMW-II —, SE99 + , CH98
× , LTLT -CH98 2 .
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Figure 13: Measures of r2 and κ2(A+E) for GMW-II, SE99, CH98, and LTLT -
CH98 for 30 random matrices with n = 100. Key: GMW-II —, SE99 + , CH98
× , LTLT -CH98 2 .
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6.2 The Benchmark Matrix

Schnabel and Eskow [15] identified a matrix that gives SE90 difficulties:

A =




1890.3 −1705.6 −315.8 3000.3
−1705.6 1538.3 284.9 −2706.6
−315.8 284.9 52.5 −501.2
3000.3 −2706.6 −501.2 4760.8


 . (51)

It became one of the benchmark matrices for the modified Cholesky algorithms
[5, 16]. This matrix has eigenvalues {−0.378,−0.343,−0.248, 8.24 × 103}.

Table 5: Measures of ‖E‖ and κ2(A+ E) for the benchmark matrix (51).

Algorithm r2 rF κ2(A+ E)

GMW81 2.733 2.674 4.50× 104

GMW-I 3.014 2.739 4.51× 104

GMW-II 2.564 2.489 1.64× 105

SE90 2.78× 103 3.70× 103 8.858
SE99 1.759 1.779 1.04× 1010

SE-I 3.346 3.289 3.61× 104

MS79 3.317 2.689 3.33× 104

CH98 1.659 1.345 9.88× 107

LTLT -MS79 3.317 2.689 3.33× 104

LTLT -CH98 1.658 1.344 6.74× 1010

LTLT -MS79, 2-phase 3.317 2.689 3.33× 104

LTLT -CH98, 2-phase 1.658 1.344 8.59× 1010

LTLT -MS79, relaxed 2-phase 2.15× 104 2.03× 104 3.68× 104

LTLT -CH98, relaxed 2-phase 2.15× 104 2.03× 104 7.47× 1010

The measures of ‖E‖2 and ‖E‖F in terms of r2 and rF , and the condition
numbers κ2(A + E) are listed in Table 5 for various modified Cholesky algo-
rithms, where the new methods are in boldface. This illustrates the instability of
incorporating the relaxed 2-phase strategy into LTLT -CH98 and LTLT -MS79,
where the relaxation factor was µ = 0.1. In this case the instability can be
resolved by dropping the relaxation factor down to µ = 10−4. However, the
instability was not extinguished for the matrices A15 1, A15 2, and A15 3 in
Section 6.3, after trying several different relaxation factors.

6.3 The 33 Matrices

33 matrices, generated by Gay, Overton, andWright from optimization problems
where GMW81 outperformed SE90, were used by Schnabel and Eskow [16] to
evaluate modified Cholesky algorithms.

Table 6 summarizes r2 = ‖E‖2
|λmin(A)| and ζ = blog10(κ2(A + E))c for the

existing algorithms in the literature, whereas Tables 7 gives the result of the new
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algorithms. Matrix B13 1 is positive definite but extremely ill-conditioned, so
that we measure E by ‖E‖2 instead of r2. We see that SE90 did not perform well
on several matrices, and the r2 for CH98 is somewhat large on a few matrices
(e.g., A6 7). The other methods produced a reasonable E in all cases. For
these 33 matrices, Type-I algorithms generally resulted in better conditioning
of A + E, whereas Type-II algorithms generally produced smaller ‖E‖, except
for SE90 and CH98.

Incorporating the special treatments from SE99 for the last 1×1 and 2×2 Schur
complements (see (15) and (16)) into GMW-II can often produce slightly smaller
‖E‖2 for matrices close to positive definite. Similarly, the special treatments for
SE-I in (27) and (28) can help GMW-I reduce ‖E‖2. The detailed discussion is
omitted for simplicity.

7 Concluding Remarks

The modified Cholesky algorithms in this paper are categorized in Table 8,
where the new methods are in boldface. Our conclusions are listed below.

1. The rationale for the algorithms in the GMW class is to bound the off-
diagonal elements in L̄. The rationale for the algorithms in the SE class
is to control the Gerschgorin circles in the Schur complements.

2. The nondecreasing strategy can be incorporated into virtually all algo-
rithms which confine the modification to the diagonal. The rationale is
that it does not increase ‖E‖2 at each stage, and it may keep the subse-
quent modifications smaller. It is especially favored by the Type-II algo-
rithms, since it can also empirically improve the conditioning of A+ E.

3. The 2-phase and relaxed 2-phase strategies are incorporated into SE90
and SE99 respectively for satisfying Objective 1, whereas they are not
required for GMW81.

4. GMW81 and its Type-II variant have ‖E‖ = O(n2). The 2-phase strategy
can drop the bound to be ‖E‖ = O(n). However, it may result in excessive
‖E‖2 for matrices close to being positive definite. The problem can be
solved by relaxing. The situation is similar to that of SE90 and SE99. The
relaxed 2-phase strategy usually improves the modified LDLT algorithms.

5. For algorithms in the GMW class and in the SE class, the theoretical
bounds on ‖E‖2 and κ2(A + E) do not rely on pivoting. In practice,
pivoting reduces ‖E‖2.

6. Our GMW-II algorithm outperforms GMW81 and GMW-I by generally
keeping ‖E‖2 smaller for the randommatrices with eigenvalues in [−1, 10000],
whereas GMW81 outperforms our GMW-I and GMW-II for the random
matrices with eigenvalues in [−10000,−1].
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Table 6: r2 =
‖E‖2

|λmin(A)| and ζ = blog10(κ2(A+ E))c of the existing methods.

Method GMW81 SE90 SE99 MS79 CH98

r2 ζ r2 ζ r2 ζ r2 ζ r2 ζ

A6 1 1.365 5 3.6e+2 1 1.079 9 2.188 5 1.094 8
A6 2 4.844 3 1.175 5 1.180 7 2.304 3 1.152 7
A6 3 4.847 4 1.200 5 1.208 6 2.328 3 1.164 7
A6 4 2.501 5 1.275 5 1.270 8 2.541 4 1.271 8
A6 5 2.347 5 6.503 3 1.448 9 4.512 5 2.257 8
A6 6 1.693 8 2.947 5 1.201 10 2.757 8 1.384 8
A6 7 1.953 12 4.6e+4 5 1.334 10 2.033 12 3.6e+2 8
A6 8 1.953 8 6.611 5 1.138 10 2.033 8 1.030 8
A6 9 1.958 8 47.221 5 1.125 10 2.031 9 1.131 8
A6 10 5.887 8 5.4e+6 0 1.076 11 6.636 8 3.675 8
A6 11 2.334 8 7.3e+6 0 1.648 7 6.049 8 3.570 8
A6 12 4.847 4 1.200 5 1.208 6 2.328 3 1.164 7
A6 13 2.180 2 1.322 5 1.322 6 3.115 2 1.558 8
A6 14 4.847 4 1.200 5 1.208 6 2.328 3 1.164 7
A6 15 5.188 1 1.090 5 1.090 5 2.146 1 1.073 7
A6 16 2.180 2 1.322 5 1.322 6 3.115 2 1.558 8
A6 17 1.527 2 1.246 5 1.246 6 2.752 2 1.376 8
A13 1 2.253 10 8.9e+3 5 1.183 10 3.847 9 57.944 8
A13 2 2.599 8 1.5e+4 5 1.317 10 2.805 8 4.716 8
A15 1 2.421 9 2.5e+7 5 1.895 11 4.165 10 5.954 8
A15 2 2.375 9 3.9e+5 3 1.449 10 2.834 10 9.948 8
A15 3 1.957 6 2.183 5 1.503 10 3.991 7 2.021 8
B6 1 4.901 3 52.418 0 1.773 8 3.024 2 1.512 8
B6 2 4.495 2 45.866 0 2.315 7 4.200 3 2.100 8
B7 1 1.666 2 3.450 2 1.067 2 2.263 2 1.131 8
B7 2 1.932 2 11.005 0 1.309 7 3.320 2 1.660 7
B7 3 1.967 2 6.998 0 1.227 6 2.669 2 1.334 7
B7 4 1.929 2 5.325 1 1.189 6 2.619 2 1.310 7
B8 1 4.164 12 8.7e+2 5 1.279 10 4.164 12 9.705 8

B13 1 (abs.) 0 9 27.15 5 0 9 0 9 0.215 7
B13 2 1.762 7 7.846 5 1.291 10 3.887 7 1.949 8
B26 1 9.833 1 2.234 3 2.364 7 28.293 2 14.146 8
B55 1 3.504 1 1.714 5 1.714 6 95.603 3 47.802 9
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Table 7: r2 =
‖E‖2

|λmin(A)| and ζ = blog10(κ2(A+ E))c of the new methods.

Method GMW-I GMW-II SE-I LTLT−MS79 LTLT−CH98

r2 ζ r2 ζ r2 ζ r2 ζ r2 ζ

A6 1 1.989 4 2.111 5 2.181 4 2.153 5 1.077 11
A6 2 4.265 3 3.881 2 2.360 3 2.306 3 1.153 10
A6 3 5.160 2 2.528 11 2.416 2 2.323 3 1.162 10
A6 4 2.574 3 1.290 10 2.541 3 2.756 4 1.378 10
A6 5 3.120 4 1.647 10 2.895 4 3.111 4 1.556 10
A6 6 2.363 7 1.418 5 2.403 6 2.754 8 1.377 10
A6 7 2.189 11 1.331 10 2.109 10 2.032 11 1.352 10
A6 8 2.189 7 1.051 10 2.277 7 2.032 8 1.016 10
A6 9 2.179 8 1.064 10 2.249 8 2.031 9 1.016 10
A6 10 4.883 7 4.399 6 2.031 7 2.438 8 1.219 11
A6 11 2.550 7 2.311 7 1.737 7 3.604 8 1.802 11
A6 12 5.160 2 2.528 11 2.416 2 2.323 3 1.162 10
A6 13 3.289 1 2.971 1 2.643 1 2.911 2 1.455 11
A6 14 5.160 2 2.528 11 2.416 2 2.323 3 1.162 10
A6 15 5.338 1 2.666 11 2.181 1 3.195 1 1.597 10
A6 16 3.289 1 2.971 1 2.643 1 2.911 2 1.455 11
A6 17 2.713 1 2.461 1 2.492 1 2.519 2 1.259 11
A13 1 2.288 10 1.198 10 2.257 9 2.258 9 1.184 10
A13 2 2.767 8 1.406 10 2.627 8 2.642 8 1.324 10
A15 1 5.718 9 5.372 8 3.815 8 4.886 10 2.444 11
A15 2 2.925 8 2.728 8 2.887 8 2.834 10 1.432 10
A15 3 3.953 6 3.789 6 3.006 6 2.689 7 1.344 11
B6 1 2.817 2 2.512 2 3.545 2 2.224 2 1.112 11
B6 2 3.367 2 3.061 2 4.630 2 2.398 2 1.199 11
B7 1 2.062 2 1.663 2 2.005 2 2.019 2 1.010 11
B7 2 2.721 2 1.449 11 2.618 1 7.217 2 3.609 11
B7 3 2.610 2 1.377 11 2.453 1 6.795 2 3.397 11
B7 4 2.538 2 1.337 11 2.378 1 2.683 2 1.342 10
B8 1 4.164 12 2.087 11 2.548 10 4.022 12 2.017 11
B13 1 0 9 0 9 0 9 0 9 0 9
B13 2 5.273 7 4.859 5 2.581 6 2.405 7 1.203 10
B26 1 6.639 1 3.721 2 5.827 1 17.386 2 8.693 11
B55 1 3.504 1 1.752 10 3.428 1 11.289 1 5.645 10
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Table 8: Categories of various modified Cholesky algorithms.

Category Type I Type II

LDLT GMW81, GMW-I, SE-I GMW-II, SE90, SE99
LBLT MS79 CH98
LTLT LTLT -MS79 LTLT -CH98

7. In our experiments, SE99 and GMW-II are the best modified LDLT al-
gorithms with respect to ‖E‖ for matrices with eigenvalues in [−1, 10000],
whereas SE-I generally produces ‖E‖ smaller than those for SE90 and
SE99 for matrices with eigenvalues in [−10000,−1] and [−1, 1].

8. In experiments on distance matrix completion problems we noted that
increasing the relaxation factor µ from 0.75 to 1.0 can significantly improve
the performance of GMW-II not only for random problems with 65% or
more unspecified entries but also for protein problems [7]. With these
changes, however, Objective 2 was not satisfied as well for the 33 matrices
in Section 6.3.

For the modified LBLT factorizations and our new approach via the LTLT

factorization, the concluding remarks are as follows.

1. In worst cases, MS79 and CH98 take Θ(n3) time more than the standard
Cholesky factorization and therefore do not satisfy Objective 4, whereas
our LTLT -MS79 and LTLT -CH98 algorithms guarantee O(n2) modifica-
tion expense.

2. In experiments on random matrices with eigenvalues [−1, 10000], LTLT -
MS79 and LTLT -CH98 usually produce an ‖E‖2 smaller than MS79 and
CH98, respectively. Our new approach outperforms the modified LBLT

algorithms in the literature, not only by guaranteeing the O(n2) modifica-
tion cost, but also by usually producing a smaller ‖E‖2 for matrices close
to being positive definite.

3. It is possible to incorporate the 2-phase strategy or the relaxed 2-phase
strategy into LTLT -MS79 and LTLT -CH98, but the resulting algorithms
may produce unreasonably large ‖E‖, as shown in Figure 7 and discussed
in Section 6.2, respectively.

4. The modification arguments δ listed in Table 1 aimed at the satisfaction
the four objectives. In practice, especially for Type-II algorithms, they
could be too small and affect the conditioning, from which difficulty may
arise. In our experiments on random distance matrix completion problems
[7], difficulty was apparent for CH98 and LTLT -CH98. To amend the
problem, we increased the modification tolerance parameter δ to τη (used
by SE90) for both CH98 and LTLT -CH98.
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The best algorithm, modification tolerance δ, and relaxation factor µ for
the relaxed 2-phase strategy depend on the optimization problem. Experiments
may be required to tune δ and µ for each application.
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