
Locating Matching Method Calls by Mining Revision History Data

Benjamin Livshits
Computer Science Department

Stanford University
Stanford, USA

livshits@cs.stanford.edu

Thomas Zimmermann
Computer Science Department

Saarland University
Saarbr̈ucken, Germany
zimmerth@cs.uni− sb.de

Abstract

Developing an appropriate fix for a software bug often requires a
detailed examination of the code as well as generation of appro-
priate test cases. However, certain categories of bugs are usually
easy to fix. In this paper we focus on bugs that can be cor-
rected with aone-line code change. As it turns out, one-line
source code changes very often represent bug fixes. Moreover,
a significant fraction of previously known bug categories can be
addressed with one-line fixes. Careless use of file manipulation
routines, failing to callfree to deallocate a data structure, fail-
ing to usestrncpy instead ofstrcpy for safer string manipu-
lation, and using tainted character arrays as the format argument
of fprintf calls are all well-known types of bugs that can typi-
cally be corrected with a one-line change of the program source.

This paper proposes an analysis of software revision histo-
ries to find highly correlated pairs of method calls that naturally
form application-specific useful coding patterns. Potential pat-
terns discovered through revision history mining are passed to a
runtime analysis tool that looks for pattern violations. We focus
our pattern discovery efforts onmatching method pairs. Match-
ing pairs such as〈fopen, fclose〉, 〈malloc, free〉, as well
as〈lock, unlock〉-function calls require exact matching: fail-
ing to call the second function in the pair or calling one of the
two functions twice in a row is an error. We usecommon bug
fixesas a heuristic that allows us to focus on patterns that caused
bugs in the past. The user is presented with a choice of patterns
to validate at runtime. Dynamically obtained information about
which patterns were violated and which ones held at runtime is
presented to the user. This combination of revision history min-
ing and dynamic analysis techniques proves effective for both
discovering new application-specific patternsand for finding er-
rors when applied to very large programs with many man-years
of development and debugging effort behind them.

To validate our approach, we analyzed Eclipse, a widely-
used, mature Java application consisting of more than 2,900,000
lines of code. By mining revision histories, we have discovered
a total of 32 previously unknown highly application-specific
matching method pairs. Out of these, 10 were dynamically con-
firmed as valid patterns and a total of 107 previously unknown
bugs were found as a result of pattern violations.

The first author was supported in part by the National Science Founda-
tion under Grant No. 0326227. The second author was supported by the
Graduiertenkolleg “Leistungsgarantien für Rechnersysteme”.

1 Introduction

Much attention has lately been given to addressing application-
specific software bugs such as errors in operating system
drivers [1, 4], security errors [5, 8], and errors in reliability-
critical embedded software in domains such as avionics [2, 3].
These represent critical errors in widely used software and tend
to get fixed relatively quickly when found. A variety of static
and dynamic analysis tools have been developed to address these
high-profile bugs. However, many other errors are specific to in-
dividual applications or sets of APIs.

Repeated violations of these application-specific coding
rules, referred to aserror patterns, are responsible for a mul-
titude of errors. Error patterns tend to be re-introduced into
the code over and over by multiple developers working on the
project and are a common source of software defects. While
each pattern may be only responsible for a few bugs, taken to-
gether, the detrimental effect of these error patterns is quite se-
rious and they can hardly be ignored in the long term.

In this paper we propose an automatic way to extract likely
error patterns by mining software revision histories. Moreover,
to ensure that all the errors we find are relatively easy to confirm
and fix, we limit our experiments to errors that can be corrected
with a one-line change. When reporting a bug to the develop-
ment team, having a bug that is easy to fix usually improves
the chances that it will actually be corrected. It is worth notic-
ing that many well-known error patterns such as memory leaks,
double-free’s, mismatched locks, operations on operating sys-
tem resources, buffer overruns, and format string errors can of-
ten be addressed with a one-line fix. Our approach uses revision
history information to infer likely error patterns. We then exper-
imentally evaluate the error patterns we extract by checking for
their violations dynamically.

We have performed our experiments on Eclipse, a very large,
widely-used open-source Java application with many man-years
of software development behind it. By mining CVS revision his-
tories of Eclipse, we have identified 32 high-probability patterns
in Eclipse APIs, all of which were previously unknown to us.
While the user of our system has a choice as to which patterns
to check at runtime, in our experiments we limited ourselves to
patterns that were frequently encountered in our revision history
data. Out of these, 10 were dynamically confirmed as valid pat-
terns and 107 bugs were found as a result of pattern violations.

1



1.1 Contributions
This paper makes the following contributions:

• We propose adata mining strategythat detects common
matching method pairs patterns in large software systems
by analyzing software revision histories. We also propose
an effective ranking technique for the patterns we discover
that uses one-line changes to favor previously fixed bugs.

• We propose adynamic analysis approachfor validating us-
age patterns and finding their violations. We currently uti-
lize an off-line approach that simplifies the matching ma-
chinery. Error checkers are implemented as simple pattern-
matchers on the resulting dynamic traces.

• We present anexperimental studyof our techniques as
applied to finding errors in Eclipse, a large, mature Java
application with many years of development behind it.
We identified 32 patterns in Eclipse sources and out of
these, 10 patterns were experimentally confirmed as valid.
We found more that 107 bugs representing violations of
these pattern with our dynamic analysis approach.

2 Revision History Mining
To motivate our approach to revision history mining, we start by
presenting a series of observations.

Observation 2.1 Given multiple software components that use
the same set of APIs, it should be possible to findcommon errors
specific to that API.

In fact, much of the research done on bug detection so far can
be thought of as focusing on specific classes of bugs pertain-
ing to particular APIs: studies of operating-system bugs provide
synthesized lists of API violations specific to operating system
drivers resulting in rules such as “do not call the interrupt dis-
abling functioncli() twice in a row” [4].

Observation 2.2 Method calls that are frequently added to
source code simultaneously often represent a usage pattern.

In order to locate common errors, we mine for frequent us-
age patterns in revision histories. Looking at incremental
changes between revisions as opposed to full snapshots of the
sources allows us to better focus our mining strategy. How-
ever, it is important to notice that not every patternmined

File Revision Added method calls

Foo.java 1.12 o1.addListener
o1.removeListener

Bar.java 1.47 o2.addListener
o2.removeListener
System.out.println

Baz.java 1.23 o3.addListener
o3.removeListener
list.iterator
iter.hasNext
iter.next

Qux.java 1.41 o4.addListener
1.42 o4.removeListener

Figure 1: Method calls added across different revisions.

SELECT l.Callee AS CalleeL, r.Callee AS CalleeR,
COUNT(∗) AS SupportCount

INTO pairs FROM items l, items r

WHERE l.FileId = r.FileId
AND l.RevisionId = r.RevisionId
AND l.InitialCallSequence = r.InitialCallSequence

GROUP BY l.Callee, r.Callee;

Figure 2: Find correlated pairs〈CalleeL, CalleeR〉 of methods shar-
ing the initial call sequence, calls to which are added in the same revision
of a file identified byFileId andRevisionId.

by considering revision histories is an actualusagepattern.
Figure 1 lists sample method calls that were added to revi-
sions of filesFoo.java, Bar.java, Baz.java, andQux.java.
All these files contain a usage pattern that says that meth-
ods {addListener, removeListener} must be precisely
matched. However, mining these revisions yields additional
patterns like{addListener, println} and {addListener,
iterator} that are definitelynot usage patterns.

2.1 Mining Approach
In order to speed-up the mining process, we pre-process the re-
vision history extracted from CVS and store this information in
a general-purpose database; our techniques are further described
in Zimmermann et al. [11]. This database contains method calls
that have been inserted in each revision. To determine the calls
inserted between two revisionsr1 andr2, we build abstract syn-
tax trees (ASTs) for bothr1 andr2 and compute the set of all
callsC1 andC2, respectively, by traversing the ASTs.C2 \ C1

is the set of calls inserted betweenr1 andr2.
After the revision history database is set-up, i.e., all calls that

were added are recorded in theitems table, mining is performed
using SQL queries. The query in Figure 2 producessupport
countsfor each method pair, which is the number of times the
two methods were added to revision history together. We per-
form filtering based on support counts to only consider method
pairs that have a sufficiently high support.

2.2 Pattern Ranking
Filtering the patterns based on their support count is not enough
to eliminate unlikely patterns. To better target user efforts, a
ranking of our results is provided. In addition to sorting pat-
terns by their support count, a common ranking strategy in data
mining is to look at the pattern’sconfidence. The confidence de-
termines how strongly a particular pair of methods is correlated
and is computed as

conf (〈a, b〉) =
support(〈a, b〉)
support(〈a, a〉)

Both support count and confidence are standard ranking ap-
proaches used in data mining; however, using problem-specific

SELECT DISTINCT Callee

INTO fixes

FROM (SELECT MIN(Callee)
FROM items GROUP BY FileId, RevisionId

HAVING COUNT(∗) = 1) t;

Figure 3: Find “fixed” methods, calls to which were added in at least
oneone-callcheck-ins. A one-call check-in adds exactly one call, as
indicated byCOUNT(∗) = 1.

2



SELECT p.CalleeL, p.calleeR, SupportCount

FROM pairs p, fixes l, fixes r

WHERE p.calleeL = l.Callee
AND p.calleeR = r.Callee

Figure 4: Find pairs from the tablepairs, where both methods had
previously been fixed, i.e., are contained in the tablefixed.

knowledge yields a significantly better ranking of results. We
leverage the fact that in reality some patterns may be inserted
incompletely, e.g., by mistake or to fix a previous error. In Fig-
ure 1 this occurs in fileQux.java, whereaddListener and
removeListener were inserted independently in revisions 1.41
and 1.42. The observation below motivates a novel ranking strat-
egy we use.

Observation 2.3 Small changes to the repository such as one-
line additions are often bug fixes.

This observation is supported in part by anecdotal evidence and
also by recent research into the nature of software changes. A
recent study of the dynamic of small repository changes in large
software systems performed by Purushothaman et al. sheds a
new light on this subject [6]. Their paper points out that almost
50% of all repository changes were small, involving less than 10
lines of code. Moreover, among one-line changes, less than 4%
were likely to cause a later error. Furthermore, only less than
2.5% of all one-line changes wereperfectiveor adding function-
ality (rather thancorrective) changes, which implies that most
one-line check-ins are bug fixes.

We use this observation by marking method calls that are fre-
quently added in one-line fixes ascorrectiveand ranking pat-
terns by the number of corrective calls they contain. The SQL
query in Figure 3 creates tablefixes with all corrective meth-
ods, calls to which were added as one-line check-ins. Finally, as
shown in Figure 4, we find all method pairs wherebothmethods
are corrective. We favor these patterns by ranking them higher
than other patterns.

3 Dynamic Analysis
Similarly to previous efforts that looked at detecting usage
rules [9, 10], we use revision history mining to find common
coding patterns. However, we combine revision history mining
with a bug-detection approach. Moreover, our technique looks
for pattern violations at runtime, as opposed to using a static
analysis technique. This choice is justified by several consider-
ations outlined below.

Scalability. Our original motivation was to be able to analyze
Eclipse, which is one of the largest Java applications ever cre-
ated. The code base of Eclipse contains of more than 2,900,000
lines of code and 31,500 classes. Most of the patterns we are in-
terested in are spread across multiple methods and need a precise
interprocedural approach to analyze. Given the substantial size
of the application, precise whole-program flow-sensitive static
analysis can be prohibitively expensive.

Validating discovered patterns. A benefit of using dynamic
analysis is that we are able to “validate” the patterns we discover
through CVS history mining as real usage patterns by observing
how many times they occur at runtime. While dynamic analysis
is unable to prove properties that hold in all executions, patterns

that are matched many times with only a few violations represent
likely patterns. With static analysis, validating patterns would
not generally be possible unless flow-sensitivemustinformation
is available.

False positives. Runtime analysis does not suffer from false
positives because all pattern violations detected with our system
actually do occur. This significantly simplifies the process of
error reporting and addresses the issue of false positives.

Automatic error repair. Finally, only dynamic analysis pro-
vides the opportunity to fix the problem on the fly without any
user intervention. This is especially appropriate in the case of
matching method pair when the second method call is missing.
While we have not implemented automatic “pattern repair”, we
believe it to be a fruitful future research direction.

While we believe that dynamic analysis is more appropriate
than static analysis for the problem at hand, dynamic analysis
has a few well-known problems of its own. A serious shortcom-
ing of dynamic analysis is its lack of coverage. In our dynamic
experiments, we managed to find runtime use cases for some,
but not all patterns discovered through revision history mining.
Furthermore, the fact that a certain pattern appears to be a strong
usage pattern based on dynamic data should be treated as a a
suggestion, but not a proof.

We use an offline dynamic analysis approach that instruments
all calls to methods that may be included in the method pairs of
interest. We then post-process the resulting dynamic trace to
find properly matched or mismatched method pairs.

4 Preliminary Experience
In this section we discuss our practical experience of apply-
ing our system to Eclipse. Figure 5 lists matching pairs of
methods discovered with our mining technique.1 A quick
glance at the table reveals that many pairs follow a specific
naming strategy such aspre–post, add–remove, andbegin–
end. These pairs could have been discovered by simply pat-
tern matching on the method names. However, a large num-
ber of pairs have less than obvious names to look for, includ-
ing 〈HLock, HUnlock〉, 〈progressStart, progressEnd〉, and
〈blockSignal, unblockSignal〉. Finally, some pairs are very
difficult to recognize as matching method pairs and require a
detailed study of the API to confirm, such as〈stopMeasuring,
commitMeasurements〉, 〈suspend, resume〉, etc. Many more
potentially interesting matching pair patterns become available
if we consider lower support counts; for the experiments we
have only considered patterns with a support of five or more.

We also found some unexpected matching method pairs con-
sisting of a constructor call followed by a method call that at first
we thought ware caused by noise in the data. One such pair is
〈OpenEvent, fireOpen〉. This pattern indicates that all objects
of typeOpenEvent should be “consumed” by passing them into
methodfireOpen. Violations of this pattern may lead to re-
source and memory leaks, a serious problem in long-running
Java program such as Eclipse, which may be open at a devel-
oper’s desktop for days at a time [7].

1The methods in a pair are listed in the order they are supposed to be
executed. For brevity, we only list unqualified method names.

3



METHOD PAIR 〈a, b〉 CONFIDENCE SUPPORT

Method a Method b conf ab × conf ba conf ab conf ba count

CORRECTIVERANKING
NewRgn DisposeRgn 0.75 0.92 0.22 49
kEventControlActivate kEventControlDeactivate 0.68 0.83 0.83 5
addDebugEventListener removeDebugEventListener 0.61 0.85 0.72 23
beginTask done 0.59 0.74 0.81 493
beginRule endRule 0.59 0.80 0.74 32
suspend resume 0.58 0.83 0.71 5
NewPtr DisposePtr 0.57 0.82 0.70 23
addListener removeListener 0.56 0.68 0.83 90
register deregister 0.53 0.69 0.78 40
malloc free 0.46 0.68 0.68 28
addElementChangedListener removeElementChangedListener 0.41 0.73 0.57 8
addResourceChangeListener removeResourceChangeListener 0.41 0.90 0.46 26
addPropertyChangeListener removePropertyChangeListener 0.39 0.54 0.73 140
start stop 0.38 0.59 0.65 32
addDocumentListener removeDocumentListener 0.35 0.64 0.56 29
addSyncSetChangedListener removeSyncSetChangedListener 0.34 0.62 0.56 24

REGULAR RANKING
createPropertyList reapPropertyList 1.00 1.00 1.00 174
preReplaceChild postReplaceChild 1.00 1.00 1.00 133
preLazyInit postLazyInit 1.00 1.00 1.00 112
preValueChange postValueChange 1.00 1.00 1.00 46
addWidget removeWidget 1.00 1.00 1.00 35
stopMeasuring commitMeasurements 1.00 1.00 1.00 15
blockSignal unblockSignal 1.00 1.00 1.00 13
HLock HUnlock 1.00 1.00 1.00 9
addInputChangedListener removeInputChangedListener 1.00 1.00 1.00 9
preAddChildEvent postRemoveChildEvent 1.00 1.00 1.00 8
preRemoveChildEvent postAddChildEvent 1.00 1.00 1.00 8
progressStart progressEnd 1.00 1.00 1.00 8
CGContextSaveGState CGContextRestoreGState 1.00 1.00 1.00 7
annotationAdded annotationRemoved 1.00 1.00 1.00 7
OpenEvent fireOpen 1.00 1.00 1.00 7
addInsert addDelete 1.00 1.00 1.00 7

Figure 5: Matching method pairs discovered through CVS history mining. The support count iscount , the confidence for{a} ⇒ {b} is conf ab ,
for {b} ⇒ {a} it is conf ba . The pairs are ordered byconf ab × conf ba .

4.1 Experimental Setup
In this section we describe our revision history mining and dy-
namic analysis setup. When we performed the pre-processing
on Eclipse, it took about four days to fetch all revisions over
the Internet because the complete revision data is about 6GB in
size and the CVS protocol is not well-suited for retrieving large
volumes of history. Computing inserted methods by analyzing
the ASTs and storing this information in a database took about
a day.

Figure 6 summarizes our dynamic results. Because the in-
cremental cost of checking for additional patterns at runtime is
generally low, when reviewing the patterns for inclusion in our
dynamic experiments, we were fairly liberal in our selection.
We usually either looked at the method names involved in the
pattern or briefly examined a few usage cases. We believe our
setup to be quite realistic, as we cannot expect the user to spend
hours poring over the patterns. Overall, 50% of all patterns we
chose turned out to be either usage or error patterns; had we been
more selective, a higher percentage of patterns would have been
confirmed dynamically. To obtain dynamic results, we ran each
application for a few minutes, which typically resulted in a few
hundred or thousand dynamic events being generated.

After we obtained the dynamic results, the issue of how to
count errors arose. A single pattern violation at runtime involves
one or more objects. We can obtain adynamic countby counting
how many different objects participated in a particular pattern
violation during program execution. The dynamic error count

is highly dependent on how we use the program at runtime and
can be easily influenced by, for example, rebuilding a project in
Eclipse multiple times. However, dynamic counts are not rep-
resentative of the work a developer has to do to fix an error, as
many dynamic violations can be caused by the same error in the
code. To provide a better metric on the number of errors found
in the application code, we also compute astatic count. This
is done by mapping each method participating in a pattern to a
static call site and counting the number of unique call site com-
binations that are seen at runtime. Static counts are obtained for
both validated and violated dynamic patterns.

Dynamic and static counts are shown in parts 2 and 3 of the
table, respectively. The rightmost section of the table shows a
classification of the patterns. We use information about how
many times each pattern is validated and how many times it is
violated to classify the patterns. Letv be the number of validated
instances of a pattern ande be the number of its violations. We
define an error thresholdα = min(v/10, 100). Based on the
validation and violation countsv ande, patterns can be loosely
classified into the following categories:

• Likely usage patterns: patterns with a sufficiently high
support that are mostly validated with relatively few errors
(e < α ∧ v > 5).

• Likely error patterns : patterns that have a significant
number of validated cases as well as a large number of
violations (α ≤ e ≤ 2v).

• Unlikely patterns: patterns that do not have many vali-

4



METHOD PAIR 〈a, b〉 DYNAMIC EVENTS STATIC EVENTS PATTERN TYPE

Method a Method b Validated Errors Validated Errors Usage Error Unlikely

CORRECTIVERANKING

addDebugEventListener removeDebugEventListener 4 1 4 1 X
beginTask done 334 642 42 21 X
beginRule endRule 7 0 4 0 X
addListener removeListener 118 106 35 26 X
register deregister 1,279 313 6 7 X
addResourceChangeListener removeResourceChangeListener 25 4 19 4 X
addPropertyChangeListener removePropertyChangeListener 1,789 478 55 25 X
start stop 40 36 9 12 X
addDocumentListener removeDocumentListener 39 1 14 1 X

Result subtotals for the corrective ranking scheme: 3,635 1,581 188 97 2 5 2

REGULAR RANKING

preReplaceChild postReplaceChild 40 0 26 0 X
preValueChange postValueChange 63 2 11 2 X
addWidget removeWidget 1,264 16 5 2 X
preRemoveChildEvent postAddChildEvent 0 172 0 3 X
annotationAdded annotationRemoved 0 8 0 2 X
OpenEvent fireOpen 0 3 0 1 X

Result subtotals for the regular ranking scheme: 1,367 201 42 10 3 0 3

OVERALL TOTALS : 5,002 1,782 230 107 5 5 5

Figure 6: Result summary for the validated usage and error patterns in Eclipse.

dated cases or cause too many errors to be usage patterns
(e > 2v ∨ v ≤ 5).

About a half of all method pair patterns that we selected from
the filtered mined results were confirmed as likely patterns, out
of those 5 were usage patterns and 5 were error patterns.

Overall, corrective ranking was significantly more effective
than regular ranking schemes that are based on the product of
confidence values. The top half of the table that addresses
patterns obtained with corrective ranking contains 16 matching
method pairs; so does the second half that deals with the pat-
terns obtained with regular ranking. Looking at the subtotals for
each ranking scheme reveals 188 static validating instances with
corrective ranking vs only 42 for regular ranking; 97 static error
instances are found vs only 10 for regular ranking. Finally, 7 pat-
terns found with corrective ranking were dynamically confirmed
as either error or usage patterns vs 3 for regular ranking. This
confirms our belief that corrective ranking is more effective.

5 Conclusions
In this paper we presented an approach for discovering matching
method pair patterns in large software systems and finding their
violations at runtime. Our framework uses information obtained
by mining software revision repositories in order to find good
patterns to check. User input may be used to further restrict the
number of checked patterns. Checking of patterns occurs during
program execution, with the help of dynamic instrumentation.

We experimentally evaluated our system on Eclipse, a very
large Java application totalling more than 2,900,000 lines of
code shows that our approach is highly effective at finding a
variety of previously unknown patterns. Overall, we discovered
a total of 32 matching method pairs in our benchmarks. Out
of these, 5 turned out to be dynamically confirmed usage pat-
terns and 5 were frequently misused error patterns responsible
for many of the bugs. Our ranking approach that favors correc-
tive ranking overperformed the traditional data mining ranking

strategies at identifying good patterns. In our experiments, 1,782
dynamic pattern violations were responsible for a total of 107
dynamically confirmed errors in the source code.

References
[1] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and static driver

verifier: Technology transfer of formal methods inside Microsoft. Technical
Report MSR-TR-2004-08, Microsoft, 2004.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-
niaux, and X. Rival. A static analyzer for large safety-critical software. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation (PLDI’03), pages 196–207, June 7–14
2003.

[3] G. Brat and A. Venet. Precise and scalable static program analysis of NASA
flight software. InProceedings of the 2005 IEEE Aerospace Conference,
2005.

[4] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. InProceedings
of the Fourth Symposium on Operating Systems Design and Implentation,
pages 1–16, 2000.

[5] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Se-
curing Web application code by static analysis and runtime protection. In
Proceedings of the 13th conference on World Wide Web, pages 40–52, May
2004.

[6] R. Purushothaman and D. E. Perry. Towards understanding the rhetoric of
small changes. InProc. International Workshop on Mining Software Repos-
itories (MSR 2004), pages 90–94, May 2004.

[7] B. A. Tate. Bitter Java. Manning Publications Co., 2002.

[8] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards auto-
mated detection of buffer overrun vulnerabilities. InProceedings of Network
and Distributed Systems Security Symposium, pages 3–17, San Diego, Cali-
fornia, Feb. 2000.

[9] C. Williams and J. K. Hollingsworth. Bug driven bug finders. InProceedings
of the International Workshop on Mining Software Repositories, pages 70–
74, May 2004.

[10] C. Williams and J. K. Hollingsworth. Recovering system specific rules from
software repositories. InProceedings of the International Workshop on Min-
ing Software Repositories, pages 7–11, May 2005.

[11] T. Zimmermann and P. Weißgerber. Preprocessing CVS data for fine-grained
analysis. InProc. International Workshop on Mining Software Repositories
(MSR 2004), pages 2–6, May 2004.

5


