
Using Historical Information to Improve Bug Finding Techniques

Chadd C. Williams
Department of Computer Science

University of Maryland
chadd@cs.umd.edu

Jeffrey K. Hollingsworth
Department of Computer Science

University of Maryland
hollings@cs.umd.edu

Abstract

Tools used to identify bugs in source code often
return large numbers of false positive warnings to the
user. These false positive warnings can frustrate the user
and require a good deal of effort to identify. Various
attempts have been made to automatically identify false
positive warnings. We take the position that historical
data mined from the source code revision history is useful
in refining the output of a bug detector by relating code
flagged by the tool to code changed in the past.

1 Introduction

Tools used to identify bugs in source code often
return large numbers of false positive warnings to the
user. True positive warnings are often buried among a
large number of distracting false positives. By making
the true positives hard to find, a high false positive rate
can frustrate users and discourage them from using an
otherwise helpful tool.

Prior research has focused on inspecting the code
surrounding the warning producing code with the
assumption that a tool may produce a large number of
false positive warnings very close together in the code [2].

More recent work has added user driven feedback to
refine the ranking of warnings [1]. As the user inspects a
warning and classifies it as either a bug or false positive,
the remaining warnings are re-ranked. The intuition is
that warnings that are part of some grouping are likely to
all be either bugs or false positives. This approach has the
advantage of giving the user a preliminary ranking of the
warnings and then refining that ranking with as close to
true fact as one can get: the opinion of the user.

2 Repository Mining as a Solution

We believe we can use data mined from the source
code repository to help determine the likelihood of a
warning being a true bug or a false positive by relating
code flagged by warnings to code that was changed in the
past. With the source code repository we have a record of
each source code change. We can determine when a
piece of code is added and, more importantly, when code
is changed. The code changes may be used to highlight
bug fixes through the life of the project.

Examining the code changes and the state of the code
before and after the change may allow us to match
previous code changes to warnings produced by a bug
finding tool. Warnings could be matched to code changes

in a number of ways. The functions invoked, the location
in the code (module/API/function) or the control or data
flow may be used to link the flagged code to the code
from the repository. Warnings that flag code similar to
code snippets that have been changed in the past may be
more likely to be true positives.

In [3] we show how historical data can be used to
rank warnings produced by a static analysis tool with a
particularly high false positive rate. We mined the source
code repository to determine which functions in a
software project had a particular type of bug fix applied to
their invocation. We produced a ranking of the warnings
where warnings involving functions flagged with a bug
fix were pushed to the top of the list. Our approach
produced a ranking with a higher density of likely bugs
near the top as compared to a more naïve ranking scheme.

We investigate function usage patterns mined from
the software repository in [4]. Here we are trying to
identify from the repository how functions should be
invoked in the source code with respect to each other. We
believe that discrepancies between how we expect
functions to be called and how they are invoked in the
current version of the software could be used to highlight
code that may be incorrect. These discrepancies may
indicate confusion on the part of the programmer.
Warnings produced for these snippets of code may be
more likely to be true bugs.

A ranking based on the past history is similar to the
idea of ranking based on user feedback. However, when
using past history the feedback is automatically generated
(and could be augmented by interactive user feedback).
The initial ranking the user is given will have the benefit
of past code changes.

3 References

[1] Kremeneck, T., Ashcraft, K., Yang, J., Engler, D., Correlation
Exploitation in Error Ranking, In Proceedings of Twelfth ACM
SIGSOFT Symposium on Foundations of Software Engineering
(SIGSOFT’04) Newport Beach, CA, USA, Nov. 2004.

[2] Kremeneck, T., Engler, D., Z-Ranking: Using Statistical Analysis
to Counter the Impact of Static Analysis Approximations, In
Proceedings of 10th Annual International Static Analysis
Symposium, (SAS ’03) San Diego, CA, USA, June 2003.

[3] Williams, C. C., Hollingsworth, J. K., Bug Driven Bug Finders, In
Proceedings of International Workshop on Mining Software
Repositories (MSR ’04), Edinburgh, Scotland, UK, May 2004.

[4] Williams, C. C., Hollingsworth, J. K., Recovering System Specific
Rules from Software Repositories, In Proceedings of International
Workshop on Mining Software Repositories (MSR ’05), St. Louis,
MO, USA, May 2005.

