
Locating defects is uncertain

Andreas Zeller
Department of Computer Science

Saarland University, Saarbrücken, Germany

zeller@acm.org

ABSTRACT
While numerous techniques for detecting thepresenceof defects
exist, it is hard to assign the defect to a particular location in the
code. In this position paper, I argue that this is necessarily so, and
that locating a defect is inseparable from designing a fix—in other
words, writing a correct program. This leads to an inherent impre-
cision, which can be dealt with by ranking locations according to
their defect probability.

1. ERRORS AND CAUSES
To explain how failures come to be, one needs two central terms:

errors andcauses.An error is a deviation from what is correct,
right, or true. If we see an error in the program outcome (thefail-
ure), we can trace back this failure to earlier errors in the program
state (faultsor infections), until we finally reach the defect—an er-
ror in the program code. This defect causes the initial infection,
which propagates until the infection becomes visible as a failure.

In this infection chain, acauseis an event without which a sub-
sequent event (theeffect) would not have occurred. Thus, if the
program code had been correct, it would not have caused the infec-
tion, which again would not have led to the failure. This causality
is normally proven by re-testing the program after the defect has
been fixed: If the failure no longer occurs, we have proven that the
original defect indeed has caused the failure.

While causality is easy to explain (and easy to verify), the term
error becomes less certain the further one goes back the chain of
events. The key issue is: to decide that something is erroneous,
one needs a specification of what is correct, right or true. Telling
whether a programoutcomeis a failure is the base of testing—and
quite straight-forward. Telling whether a programstateis infected
already requires appropriate conditions or representation invariants.
Telling whether some programcodeis incorrect, finally, becomes
more and more difficult as granularity increases.

2. DEFECTS AND GRANULARITY
Why does the location of a defect become less certain with in-

creasing granularity? If a computationP fails, we know it must
have some defect. Let us assume thatP can be separated into two
sub-computationsP = P1 ◦ P2, each at a different location. Then,
we can check the result ofP1, and determine whether it is correct
(which means thatP2 has a defect) or not (thenP1 has a defect).

Now assume we can decomposeP into n executed procedures,
or P = P1 ◦ · · · ◦Pn. By checking the outcome of eachPi, we can
assign the defect location to a single precisePj . Obviously, this
means specifying the postconditions of every singlePi, including
general obligations such as representation invariants.

Let us now assume we can decomposeP into m executed lines,

or P = P1 ◦ · · · ◦ Pm. To locate the defect, we now need a speci-
fication of the correct state at each executed line—for instance, the
correct program. Thus, to precisely locate the defect, we need a
specification that is precise enough to tell us where to correct it.

In practice, such a specification is constructedon demand:When
programmers search for a defect, they reason about whether this
location is the correct way to write the program—and if it does
not match, they fix it. Therefore, programmers do not “locate”
defects; theydesign fixesalong with the implicit specification of
whatshouldbe going on at this location—and the location that is
changed is defined as the defect in hindsight.

3. DEALING WITH IMPRECISION
As long as a full specification is missing (which we must reason-

ably assume), it is impossible to locate defects precisely, just as it
is impossible to foresee how a problem will be fixed—and whether
it will be fixed at all. Therefore, any defect location techniques will
always have to live with imprecision. This is not a big deal; we
can have our tools makeeducated guessesabout where the defect
might be located. And we will evaluate our tools by their power to
suggest fixes that are as close to some “official” defect as possible.

However, imprecision also must be considered whenevaluating
techniques. For instance, if a technique detects that a function call
does not match the function’s requirements, the technique cannot
decide whether it is better to fix the caller or the callee. Let us now
assume that we conduct an evaluation where we have injected a de-
fect in the callee. If the technique now flags the caller as defective,
the result is evaluated as being at the wrong location, or even as a
false. Nonetheless, the mismatch is helpful for the programmer.

There are entire classes of problems which cannot be located at
all. For instance, assume I inject a defect which eliminates the ini-
tialization of a variable. Although there are techniques which will
detect this situation, they will be unable to tell where the initial-
ization should have taken place. Again, the evaluation will show a
mismatch between predicted and expected defect location; nonethe-
less, the diagnosis will be helpful for the programmer.

How are we going to take this imprecision into account? I sug-
gest to have our tools not only suggest locations, but to actually
rank the locations by their probability to be related to the defect.
The model would be an ideal programmer, starting with the most
probable location, and going down the list until the “official” de-
fect is found; obviously, the sooner the “official” defect is found,
the better the tool. In a mismatch of caller and callee, both loca-
tions would end on top of the list; a missing initialization would
result with the function or module containing the declaration being
placed at the top. Suchcode rankingswould allow us to compare
individual defect-locating tools, and eventually establish standards
for evaluating them.


	Errors and Causes
	Defects and Granularity
	Dealing with Imprecision

