Evaluating a Lightweight
Defect Localization Tool

Valentin Dallmeier Christian Lindig Andreas Zeller
Saarland University - Germany

JUnit Tests in Eclipse

| C3- [%-0-Q- @ # G- |® 4]]

"-F'a::kage Explorer "-Tu JUnit II =0 |1| This)oinl
Finished after 5.129 seconds

Runs: 2/2Z B Errors: 1 B Failures: 0

Passing Run
(1+)

™ E| BytecodeOptimizeTest
ﬂtEst;]crinFcrintDptirﬂizEF‘aﬂ5
£ testJoinPointOptimizeFail

Failing Run
(1)

Ample Plugin

Aspectd Bu
#30168

pr

vole | Pri

Faulfs correlate with —
differences in traces between E&

Suspect | © correct and a faulty run.

Y O IO W

(& Compiler

B ug ‘ﬁ Xe d h ere (2 ThisJoinPointVisitor

(2 MethodDeclaration

2,929 classes

Tracing Objects

InStream.read
: >

' Logger.getName

‘OutStream.write:

Logger.log

OutStream flusht

InStream.read Logger.getName OutStream.write Logger.log OutStream.flush

Call-Sequence Sets

—

ccaacbbabc
ba bb CCCb
Clb bC

Call-Sequence Set - sequences of length k
Benefits: simple, compact, set semantics

Aggregating Traces

® 09 ¢ O
Sequence Set
class Q‘“) 9

X
object 6 :‘D Sequence Set

object o 00000 Trace

Comparing Program Runs

class-by-class

passing run failing run

common Ssequence

- (__b (weight 0)
o oo

new sequence
(weight 1)

missing Ssequence

(weight 1) .
=P average sequence weight

for ranking classes

Search Length

Class

@ search lengfh: classes (9 MethodMameAndTypeCac

in front of faulty ® Beelvar

class in ranking (2 LocalVariableInstruction
(2 LocalvariableTag

(3 LocalVariableGen

® smaller is better
(2 BcelShadow

(2 Range
@ evaluated for (& shadow
programs with one ® Compiler
known bug (2 ThisjoinPointVisitor

(2 MethodDeclaration

search length: 9

Evaluation Subjects

® NanoXML - Java XML Parser (Do et al.)
@ 4 Versions, 16-23 classes, 4.3-7.6 kKLOC
@ 33 known bugs, 214 fest cases

@ 386 rankings, each for:
1 bug, 1 failing run, 1+ passing runs

@ AspectJ - Java Compiler (v1.1.1)

@ 979 classes, 112 kKLOC

@ 5 rankings for real bugs from bug db

Results

search length

Subject Rand window size

Guess 1 2 4 5 8 (0]

NanoXML 478 2.53 2.31 2.17 2.04 2.12 2.14

Aspectd 209 32.4 31.8 10.2 8.6 23.8 24.0

Sewplenbeatp erdodombghibssit dmoceveprise)

Search Length

failures
100% - O k=7
75% k=2
50% Subject:
NanoXML

25% -

o)

o) | 2 3 4 5 6 7 8 9

Inspecting the 3 top-ranked classes, a programmer finds
over 50% of all bugs in NanoXML.

Conclusions

@ Ample works (NanoXML) and scales (AspectT)

@ Sequence sets facilitate aggregation and
comparison of runs

@ Ample is first approach to leverage objects
@ Search length is measure for performance

@ Sequences outperform coverage analysis

Dallmeier, Lindig, Zeller: Lightweight Defect Localization for
Java, ECOOP 2005.

 Failing, 3 Passing Runs

passing runs

1/3

failing run

Runtime Overhead

® Measured for SPEC JVM 98 Benchmarks

@ Memory: factor 1.1 - 22.7 (typical: < 2)

@ Time: factor 1.2 - > 100 (varies widely)

@ comparable to coverage analysis (JCoverage)

@ found low overhead for AspectJ

