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JUnit Tests in Eclipse
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Ample Plugin
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Tracing Objects
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Call-Sequence Sets
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Call-Sequence Set - sequences of length k
Benefits: simple, compact, set semantics



Aggregating Traces
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Comparing Program Runs
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Search Length
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Evaluation Subjects

® NanoXML - Java XML Parser (Do et al.)
@ 4 Versions, 16-23 classes, 4.3-7.6 kKLOC
@ 33 known bugs, 214 fest cases

@ 386 rankings, each for:
1 bug, 1 failing run, 1+ passing runs

@ AspectJ - Java Compiler (v1.1.1)

@ 979 classes, 112 kKLOC

@ 5 rankings for real bugs from bug db



Results

search length

Subject Rand window size

Guess 1 2 4 5 8 (0]

NanoXML 478 2.53 2.31 2.17 2.04 2.12 2.14

Aspectd 209 32.4 31.8 10.2 8.6 23.8 24.0
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Search Length
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Inspecting the 3 top-ranked classes, a programmer finds
over 50% of all bugs in NanoXML.



Conclusions

@ Ample works (NanoXML) and scales (AspectT)

@ Sequence sets facilitate aggregation and
comparison of runs

@ Ample is first approach to leverage objects
@ Search length is measure for performance

@ Sequences outperform coverage analysis

Dallmeier, Lindig, Zeller: Lightweight Defect Localization for
Java, ECOOP 2005.
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Runtime Overhead

® Measured for SPEC JVM 98 Benchmarks

@ Memory: factor 1.1 - 22.7 (typical: < 2)

@ Time: factor 1.2 - > 100 (varies widely)

@ comparable to coverage analysis (JCoverage)

@ found low overhead for AspectJ



