
java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-23311

The New Java™
Technology Memory
Model

Jeremy Manson and William Pugh
http://www.cs.umd.edu/~pugh

| 2004 JavaOneSM Conference | Session TS-23312

• Assume you are familiar with basics
of Java™ technology-based threads
(“Java threads”)
- Creating, starting and joining threads
- Synchronization
- wait and notifyAll

| 2004 JavaOneSM Conference | Session TS-23313

• Revised as part of JSR-133

• Part of the new Java Language Spec
- and the Virtual Machine Spec

• Features talked about here today are in
JDK1.5
- Not all of these ideas are guaranteed to work in

previous versions
- Previous thread spec was broken

- forbid optimizations performed by many JVMs

| 2004 JavaOneSM Conference | Session TS-23314

• Many intuitive assumptions do not hold

• Some widely used idioms are not safe
- Original Double-checked locking idiom
- Checking non-volatile flag for thread termination

• Can’t use testing to check for errors
- Some anomalies will occur only on

some platforms
- e.g., multiprocessors

- Anomalies will occur rarely and non-repeatedly

| 2004 JavaOneSM Conference | Session TS-23315

• The Java Thread Specification has undergone
significant revision
- Mostly to correctly formalize existing behavior
- But a few changes in behavior

• Goals
- Clear and easy to understand
- Foster reliable multithreaded code
- Allow for high performance JVMs

• Has affected JVMs
- And badly written existing code

- Including parts of Sun’s JDK

| 2004 JavaOneSM Conference | Session TS-23316

• Describe building blocks of synchronization
and concurrent programming in Java
- Both language primitives and util.concurrent

abstractions

• Explain what it means for code to be correctly
synchronized

• Try to convince you that clever reasoning
about unsynchronized code is almost certainly
wrong
- Not needed for efficient and reliable programs

| 2004 JavaOneSM Conference | Session TS-23317

• We will be talking mostly about
- synchronized methods and blocks
- volatile fields

• Same principles work with JSR-166 locks and
atomic operations

• Will also talk about final fields and immutability.

| 2004 JavaOneSM Conference | Session TS-23318

• High level concurrency abstractions
- JSR-166 and java.util.concurrent

• Low level locking
- synchronized() blocks

• Low level primitives
- volatile variables, java.util.concurrent.atomic

classes
- allows for non-blocking synchronization

• Data races: deliberate undersynchronization
- Avoid!
- Not even Doug Lea can get it right

| 2004 JavaOneSM Conference | Session TS-23319

• Atomicity
- Locking to obtain mutual exclusion

• Visibility
- Ensuring that changes to object fields made in one

thread are seen in other threads

• Ordering
- Ensuring that you aren’t surprised by the order in

which statements are executed

| 2004 JavaOneSM Conference | Session TS-233110

• People worry about the cost of synchronization
- Try to devise schemes to communicate between

threads without using synchronization

- locks, volatiles, or other concurrency abstractions

• Nearly impossible to do correctly
- Inter-thread communication without synchronization

is not intuitive

| 2004 JavaOneSM Conference | Session TS-233111

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in i = 0 and j = 0?

start threads

| 2004 JavaOneSM Conference | Session TS-233112

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

How can i = 0 and j = 0?

start threads

| 2004 JavaOneSM Conference | Session TS-233113

• Compiler can reorder statements
- Or keep values in registers

• Processor can reorder them

• On multi-processor, values not synchronized in
global memory

• The memory model is designed to allow
aggressive optimization
- including optimizations no one has implemented yet

• Good for performance
- bad for your intuition about insufficiently

synchronized code

| 2004 JavaOneSM Conference | Session TS-233114

• Clever code that depends the order you think
the system must do things in is almost always
wrong in Java

• Dekker’s Algorithm (first correct lock
implementation) requires this ordering
- doesn’t work in Java, use supplied locks

• Must use synchronization to enforce visibility
and ordering
- As well as mutual exclusion
- If you use synchronization correctly, you will not be

able to see reorderings

| 2004 JavaOneSM Conference | Session TS-233115

// block until obtain lock

synchronized(anObject) {

// get main memory value of field1 and field2

int x = anObject.field1;
int y = anObject.field2;

anObject.field3 = x+y;

// commit value of field3 to main memory

}

// release lock

moreCode();

| 2004 JavaOneSM Conference | Session TS-233116

glo = ref1

unlock M

Thread 1

lock M

ref2 = glo

Thread 2

lock M

ref1.x = 1

unlock M

j = ref2.x

Everything before
an unlock (release)

Is visible to everything
after a later lock (acquire)
on the same Object

| 2004 JavaOneSM Conference | Session TS-233117

• All accesses before a release
- are ordered before and visible to
- any accesses after a matching acquire

• Unlocking a monitor/lock is a release
- that is acquired by any following lock of that

monitor/lock

| 2004 JavaOneSM Conference | Session TS-233118

• Roach motel ordering
- Compiler/processor can move accesses into

synchronized blocks
- Can only move them out under special

circumstances, generally not observable

• Some special cases:
- locks on thread local objects are a no-op
- reentrant locks are a no-op

| 2004 JavaOneSM Conference | Session TS-233119

• If a field could be simultaneously accessed by multiple
threads, and at least one of those accesses is a write
- make the field volatile

- documentation
- gives essential JVM guarantees

- Can be tricky to get right, but nearly impossible without volatile

• What does volatile do?
- reads and writes go directly to memory

- not cached in registers
- volatile longs and doubles are atomic

- not true for non-volatile longs and doubles
- compiler reordering of volatile accesses is restricted

| 2004 JavaOneSM Conference | Session TS-233120

• A volatile write is a release
- that is acquired by a later read of the same variable

• All accesses before the volatile write
- are ordered before and visible to all accesses after

the volatile read

| 2004 JavaOneSM Conference | Session TS-233121

class Animator implements Runnable {
private volatile boolean stop = false;
public void stop() { stop = true; }
public void run() {

while (!stop)
oneStep();

}
private void oneStep() { /*...*/ }

}

• stop must be declared volatile
- Otherwise, compiler could keep in register

| 2004 JavaOneSM Conference | Session TS-233122

class Future {
private volatile boolean ready;
private Object data;
public Object get() {

if (!ready)
return null;

return data;
}

• If a thread reads data, there is a
release/acquire on ready that guarantees
visibility and ordering

public synchronized
void setOnce(Object o) {
if (ready) throw … ;
data = o;
ready = true;
}

}

| 2004 JavaOneSM Conference | Session TS-233123

• Other actions form release/acquire pairs

• Starting a thread is a release
- acquired by the run method of the thread

• Termination of a thread is a release
- acquired by any thread that joins with the

terminated thread

| 2004 JavaOneSM Conference | Session TS-233124

• Attackers can pass instances of your object to
other threads via a data race

• Can cause weird things to be observed
- could be observed in some JVMs
- in older JVMs, String objects might be seen to

change
- change from /tmp to /usr

• If a class is security critical, must take steps

• Choices:
- use synchronization (even in constructor)
- make object immutable by making all fields final

| 2004 JavaOneSM Conference | Session TS-233125

• Make all critical fields final

• Don’t allow other threads to see object until it is
fully constructed

• JVM will be responsible for ensuring that object
is perceived as immutable
- even if malicious code uses data races to attack the

class

| 2004 JavaOneSM Conference | Session TS-233126

• New spec allows aggressive optimization of
final fields
- hoisting of reads of final fields across

synchronization and unknown method calls
- still maintains immutability

• Should allow for future JVMs to obtain
performance advantages

| 2004 JavaOneSM Conference | Session TS-233127

• Places where threads interact
- Need synchronization
- May need careful thought
- May need documentation
- Cost of required synchronization not significant

- For most applications
- No need to get tricky

| 2004 JavaOneSM Conference | Session TS-233128

• Some classes are synchronized
- Vector, Hashtable, Stack
- Most Input/Output Streams
- Overhead of unneeded synchronization can be

measurable

• Contrast with Collection classes
- By default, not synchronized
- Can request synchronized version
- Or can use java.util.concurrent versions (Queue,
ConcurrentMap implementations)

• Using synchronized classes
- Often doesn’t suffice for concurrent interaction

| 2004 JavaOneSM Conference | Session TS-233129

• Transactions (DO NOT USE)
- Violate atomicity…

ID getID(String name) {
ID x = h.get(name);
if (x == null) {

x = new ID();
h.put(name, x);

}
return x;

}

• Iterators
- Can’t modify collection while another

thread is iterating through it

| 2004 JavaOneSM Conference | Session TS-233130

• Often need entire transactions to be atomic
- Reading and updating a Map
- Writing a record to an OutputStream

• OutputStreams are synchronized
- Can have multiple threads trying to write to the

same OutputStream
- Output from each thread is nondeterministically

interleaved
- Essentially useless

| 2004 JavaOneSM Conference | Session TS-233131

• The stuff in java.util.concurrent is great, use it

• ConcurrentHashMap has some additional
features to get around problems with
transactions
- putIfAbsent
- concurrent iteration

• CopyOnWrite classes allow concurrent
iteration and non-blocking reads
- modification is expensive, should be rare

| 2004 JavaOneSM Conference | Session TS-233132

• Make it right before you make it fast

• Reduce synchronization costs
- Avoid sharing mutable objects across threads

- avoid old Collection classes (Vector, Hashtable)

- use bulk I/O (or, even better, java.nio classes)

• Use java.util.concurrent classes

- designed for speed, scalability and correctness

• Avoid lock contention
- Reduce lock scopes

- Reduce lock durations

| 2004 JavaOneSM Conference | Session TS-233133

• Thinking about memory barriers
- There is nothing that gives you the effect of a memory barrier

• Original Double-Check Idiom
- AKA multithreaded lazy initialization
- Any unsynchronized non-volatile reads/writes of refs

• Depending on sleep for visibility

• Clever reasoning about cause and effect with respect
to data races

| 2004 JavaOneSM Conference | Session TS-233134

• Synchronization on thread local objects
- (objects that are only accessed by a single thread)
- has no semantics or meaning
- compiler can remove it
- can also remove reentrant synchronization

- e.g., calling a synchronized method from another
synchronized method on same object

• This is an optimization people have talked
about for a while
- not sure if anyone is doing it yet

| 2004 JavaOneSM Conference | Session TS-233135

• Want to perform lazy initialization of something that will
be shared by many threads

• Don’t want to pay for synchronization after object is
initialized

• Standard double-checked locking doesn’t work
- making the checked field volatile fixes it

• If two threads might simultaneously access a field, and
one of them writes to it
- the field must be volatile

| 2004 JavaOneSM Conference | Session TS-233136

• Cost of synchronization operations can be significant
- But cost of needed synchronization rarely is

• Thread interaction needs careful thought
- But not too clever
- Don’t want to have to think to hard about reordering

- No data races in your program, no observable reordering

• Need for inter-thread communication...

| 2004 JavaOneSM Conference | Session TS-233137

• Communication between threads
- Requires both threads to interact via

synchronization

• JSR-133 & 166 provide new mechanisms for
communication
- High level concurrency framework
- volatile fields
- final fields

| 2004 JavaOneSM Conference | Session TS-23313838

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

