
Chapter 1

Threads and Locks

1.1 Introduction

Java virtual machines support multiple threads of execution. Threads are
represented in Java by the Thread class. The only way for a user to create a
thread is to create an object of this class; each Java thread is associated with
such an object. A thread will start when the start() method is invoked on
the corresponding Thread object.

The behavior of threads, particularly when not correctly synchronized,
can be confusing and counterintuitive. This specification describes the se-
mantics of multithreaded Java programs; it includes rules for which values
may be seen by a read of shared memory that is updated by multiple threads.
As the specification is similar to the memory models for different hardware
architectures, these semantics are referred to as the Java memory model.

These semantics do not describe how a multithreaded program should be
executed. Rather, they describe the behaviors that multithreaded programs
are allowed to exhibit. Any execution strategy that generates only allowed
behaviors is an acceptable execution strategy.

1.1.1 Locks

Java provides multiple mechanisms for communicating between threads. The
most basic of these methods is synchronization, which is implemented using
monitors. Each object in Java is associated with a monitor, which a thread
can lock or unlock. Only one thread at a time may hold a lock on a monitor.
Any other threads attempting to lock that monitor are blocked until they
can obtain a lock on that monitor.

A thread t may lock a particular monitor multiple times; each unlock

1



2 CHAPTER 1. THREADS AND LOCKS

reverses the effect of one lock operation.

The synchronized statement computes a reference to an object; it then
attempts to perform a lock action on that object’s monitor and does not
proceed further until the lock action has successfully completed. After the
lock action has been performed, the body of the synchronized statement
is executed. If execution of the body is ever completed, either normally or
abruptly, an unlock action is automatically performed on that same monitor.

A synchronized method automatically performs a lock action when it
is invoked; its body is not executed until the lock action has successfully
completed. If the method is an instance method, it locks the monitor asso-
ciated with the instance for which it was invoked (that is, the object that
will be known as this during execution of the body of the method). If
the method is static, it locks the monitor associated with the Class object
that represents the class in which the method is defined. If execution of the
method’s body is ever completed, either normally or abruptly, an unlock
action is automatically performed on that same monitor.

The Java programming language neither prevents nor requires detection
of deadlock conditions. Programs where threads hold (directly or indirectly)
locks on multiple objects should use conventional techniques for deadlock
avoidance, creating higher-level locking primitives that don’t deadlock, if
necessary.

Other mechanisms, such as reads and writes of volatile variables and
classes provided in the java.util.concurrent package, provide alternative
mechanisms for synchronization.

1.1.2 Notation in Examples

The Java memory model is not fundamentally based in the object oriented
nature of the Java programming language. For conciseness and simplicity
in our examples, we often exhibit code fragments without class or method
definitions, or explicit dereferencing. Most examples consist of two or more
threads containing statements with access to local variables, shared global
variables or instance fields of an object. We typically use variables names
such as r1 or r2 to indicate variables local to a method or thread. Such
variables are not accessible by other threads.



1.2. INCORRECTLY SYNCHRONIZED PROGRAMS EXHIBIT SURPRISING BEHAVIORS3

Original code Valid compiler transformation
Initially, A == B == 0

Thread 1 Thread 2
1: r2 = A; 3: r1 = B
2: B = 1; 4: A = 2

May observe r2 == 2, r1 == 1

Initially, A == B == 0
Thread 1 Thread 2
B = 1; r1 = B
r2 = A; A = 2

May observe r2 == 2, r1 == 1

Figure 1.1: Surprising results caused by statement reordering

1.2 Incorrectly Synchronized Programs Exhibit Sur-
prising Behaviors

The semantics of the Java programming language allow compilers and mi-
croprocessors to perform optimizations that can interact with incorrectly
synchronized code in ways that can produce behaviors that seem paradoxi-
cal.

Consider, for example, Figure 1.1. This program uses local variables r1
and r2 and shared variables A and B. It may appear that the result r2 ==
2, r1 == 1 is impossible. Intuitively, either instruction 1 or instruction 3
should first in an execution. If instruction 1 comes first, it should not be
able to see the write at instruction 4. If instruction 3 comes first, it should
not be able to see the write at instruction 2.

If some execution exhibited this behavior, then we would know that
instruction 4 came before instruction 1, which came before instruction 2,
which came before instruction 3, which came before instruction 4. This is,
on the face of it, absurd.

However, compilers are allowed to reorder the instructions in either
thread, when this does not affect the execution of that thread in isolation.
If instruction 1 is reordered with instruction 2, then it is easy to see how the
result r2 == 2 and r1 == 1 might occur.

To some programmers, this behavior may seem “broken”. However, it
should be noted that this code is improperly synchronized:

• there is a write in one thread,

• a read of the same variable by another thread,

• and the write and read are not ordered by synchronization.

When this occurs, it is called a data race. When code contains a data race,
counterintuitive results are often possible.

Several mechanisms can produce the reordering in Figure 1.1. The just-
in-time compiler and the processor may rearrange code. In addition, the



4 CHAPTER 1. THREADS AND LOCKS

Original code Valid compiler transformation
Initially: p == q, p.x == 0

Thread 1 Thread 2
r1 = p; r6 = p;
r2 = r1.x; r6.x = 3
r3 = q;
r4 = r3.x;
r5 = r1.x;

May observe r2 == r5 == 0, r4 == 3?

Initially: p == q, p.x == 0

Thread 1 Thread 2
r1 = p; r6 = p;
r2 = r1.x; r6.x = 3
r3 = q;
r4 = r3.x;
r5 = r2;

May observe r2 == r5 == 0, r4 == 3

Figure 1.2: Surprising results caused by forward substitution

memory hierarchy of the architecture on which a virtual machine is run may
make it appear as if code is being reordered. For the purposes of simplicity,
we shall simply refer to anything that can reorder code as being a compiler.
Source code to bytecode transformation can reorder and transform programs,
but must do so only in the ways allowed by this specification.

Another example of surprising results can be seen in Figure 1.2. This
program is also incorrectly synchronized; it accesses shared memory without
enforcing any ordering between those accesses.

One common compiler optimization involves having the value read for
r2 reused for r5: they are both reads of r1.x with no intervening write.

Now consider the case where the assignment to r6.x in Thread 2 happens
between the first read of r1.x and the read of r3.x in Thread 1. If the
compiler decides to reuse the value of r2 for the r5, then r2 and r5 will
have the value 0, and r4 will have the value 3. From the perspective of
the programmer, the value stored at p.x has changed from 0 to 3 and then
changed back.

1.3 Informal Semantics

A program must be correctly synchronized to avoid the kinds of counterin-
tuitive behaviors that can be observed when code is reordered. The use of
correct synchronization does not ensure that the overall behavior of a pro-
gram is correct. However, its use does allow a programmer to reason about
the possible behaviors of a program in a simple way; the behavior of a cor-
rectly synchronized program is much less dependent on possible reorderings.
Without correct synchronization, very strange, confusing and counterintu-
itive behaviors are possible.



1.3. INFORMAL SEMANTICS 5

There are three key ideas to understanding whether a program is cor-
rectly synchronized:

Conflicting Accesses Two accesses (reads of or writes to) the same shared
field or array element are said to be conflicting if at least one of the accesses
is a write.

Happens-Before Relationship Two actions can be ordered by a happens-
before relationship. If one action happens-before another, then the first
is visible to and ordered before the second. It should be stressed that a
happens-before relationship between two actions does not imply that those
actions must occur in that order in a Java implementation. The happens-
before relation mostly stresses orderings between two actions that conflict
with each other, and defines when data races take place. There are a number
of ways to induce a happens-before ordering in a Java program, including:

• Each action in a thread happens-before every subsequent action in that
thread.

• An unlock on a monitor happens-before every subsequent lock on that
monitor.

• A write to a volatile field happens-before every subsequent read of that
volatile.

• A call to start() on a thread happens-before any actions in the started
thread.

• All actions in a thread happen-before any other thread successfully
returns from a join() on that thread.

• If an action a happens-before an action b, and b happens before an
action c, then a happens-before c.

Happens-before is defined more thoroughly in Section 1.5.

Sequential Consistency Sequential consistency is a very strong guaran-
tee that is made about visibility and ordering in an execution of a program.
Within a sequentially consistent execution, there is a total order over all
individual actions (such as a read or a write) which is consistent with the
order they occur in the program. Each individual action is atomic and is
immediately visible to every thread.



6 CHAPTER 1. THREADS AND LOCKS

When a program contains two conflicting accesses that are not ordered by
a happens-before relationship, it is said to contain a data race. A correctly
synchronized program is one that has no data races when it is executed with
the guarantee of sequential consistency. Programmers therefore do not need
to reason about potential reorderings when determining whether their code
is correctly synchronized.

A more subtle example of incorrectly synchronized code can be seen
in Figure 1.3, which shows two different executions of the same program,
both of which contain conflicting accesses to shared variables X and Y. The
two threads in the program lock and unlock a monitor M1. In the execution
shown in Figure 1.3a, there is a happens-before relationship between all pairs
of conflicting accesses. However, in the execution shown in Figure 1.3b, there
is no happens-before ordering between the conflicting accesses to X. Because
of this, the program is not correctly synchronized.

If a program is correctly synchronized, then all executions of the program
will appear to be sequentially consistent. This is an extremely strong guaran-
tee for programmers. Programmers do not need to reason about reorderings
to determine that their code contains data races. If this determination can
be made, the programmer does not need to worry that reorderings will affect
their code.

1.3.1 Sequential Consistency

Sequential consistency is a very strong guarantee that is made about visibility
and ordering in an execution of a program. Within a sequentially consistent
execution, there is a total order over all individual actions (such as reads
and writes) which is consistent with the order of the program.

Each individual action is atomic and is immediately visible to every
thread. If a program has no data races, then all executions of the pro-
gram will appear to be sequentially consistent. As noted before, sequential
consistency and/or freedom from data races still allows errors arising from
groups of operations that need to be perceived atomically and are not.

If we were to use sequential consistency as our memory model, many of
the compiler and processor optimizations that we have discussed would be
illegal. For example, in Figure 1.2, as soon as the write of 3 to p.x occurred,
subsequent reads of that location would be required to see that value.

Having discussed sequential consistency, we can use it to provide an
important clarification regarding data races and correctly synchronized pro-
grams. A data race occurs in an execution of a program if there are con-
flicting actions in that execution that are not ordered by synchronization.



1.3. INFORMAL SEMANTICS 7

Lock M1

Y = 1

Unlock M1

Lock M1

r1 = Y

Unlock M1

X = 1

r2 = X

Thread 1

Thread 2

Lock M1

Y = 1

Unlock M1

Lock M1

r1 = Y

Unlock M1

X = 1

r2 = X

Thread 1

Thread 2

(a) Thread 1 acquires lock first; (b) Thread 2 acquires lock first;
Accesses to X are ordered by happens-before Accesses to X not ordered by happens-before

Figure 1.3: Ordering by a happens-before relationship



8 CHAPTER 1. THREADS AND LOCKS

A program is correctly synchronized if and only if all sequentially consistent
executions are free of data races. Programmers therefore only need to reason
about sequentially consistent executions to determine if their programs are
correctly synchronized.

A more full and formal treatment of memory model issues for normal
fields is given in Sections 1.4–1.6.

1.3.2 Final Fields

Fields declared final are initialized once, but never changed under normal
circumstances. The detailed semantics of final fields are somewhat different
from those of normal fields. In particular, compilers have a great deal of
freedom to move reads of final fields across synchronization barriers and calls
to arbitrary or unknown methods. Correspondingly, compilers are allowed
to keep the value of a final field cached in a register and not reload it from
memory in situations where a non-final field would have to be reloaded.

Final fields also allow programmers to implement thread-safe immutable
objects without synchronization. A thread-safe immutable object is seen as
immutable by all threads, even if a data race is used to pass references to
the immutable object between threads. This can provide safety guarantees
against misuse of an immutable class by incorrect or malicious code.

Final fields must be used correctly to provide a guarantee of immutability.
An object is considered to be completely initialized when its constructor
finishes. A thread that can only see a reference to an object after that object
has been completely initialized is guaranteed to see the correctly initialized
values for that object’s final fields.

The usage model for final fields is a simple one. Set the final fields for an
object in that object’s constructor. Do not write a reference to the object
being constructed in a place where another thread can see it before the
object’s constructor is finished. If this is followed, then when the object is
seen by another thread, that thread will always see the correctly constructed
version of that object’s final fields. It will also see versions of any object or
array referenced by those final fields that are at least as up-to-date as the
final fields are.

Figure 1.4 gives an example that demonstrates how final fields compare
to normal fields. The class FinalFieldExample has a final int field x and a
non-final int field y. One thread might execute the method writer(), and
another might execute the method reader(). Because writer() writes f
after the object’s constructor finishes, the reader() will be guaranteed to
see the properly initialized value for f.x: it will read the value 3. However,



1.3. INFORMAL SEMANTICS 9

class FinalFieldExample {

final int x;

int y;

static FinalFieldExample f;

public FinalFieldExample() {
x = 3;

y = 4;

}

static void writer() {
f = new FinalFieldExample();

}

static void reader() {
if (f != null) {
int i = f.x; // guaranteed to see 3

int j = f.y; // could see 0

}
}

}

Figure 1.4: Example illustrating final field semantics



10 CHAPTER 1. THREADS AND LOCKS

Thread 1 Thread 2
Global.s = "/tmp/usr".substring(4); String myS = Global.s;

if (myS.equals("/tmp"))
System.out.println(myS);

Figure 1.5: Without final fields or synchronization, it is possible for this code
to print /usr

f.y is not final; the reader() method is therefore not guaranteed to see the
value 4 for it.

Final fields are designed to allow for necessary security guarantees. Con-
sider the code in Figure 1.5. String objects are intended to be immutable
and string operations do not perform synchronization. While the String
implementation does not have any data races, other code could have data
races involving the use of Strings, and the memory model makes weak guar-
antees for programs that have data races. In particular, if the fields of the
String class were not final, then it would be possible (although unlikely)
that Thread 2 could initially see the default value of 0 for the offset of the
string object, allowing it to compare as equal to "/tmp". A later operation
on the String object might see the correct offset of 4, so that the String
object is perceived as being "/usr". Many security features of the Java
programming language depend upon Strings being perceived as truly im-
mutable, even if malicious code is using data races to pass String references
between threads.

This is only an overview of the semantics of final fields. For a more
detailed discussion, which includes several cases not mentioned here, consult
Section 1.9.

1.4 What is a Memory Model?

A memory model describes, given a program and an execution trace of that
program, whether the execution trace is a legal execution of the program.
Java’s memory model works by examining each read in an execution trace
and checking that the write observed by that read is valid according to
certain rules.

The memory model describes possible behaviors of a program. An im-
plementation is free to produce any code it likes, as long as all resulting
executions of a program produce a result that can be predicted by the mem-
ory model. This provides a great deal of freedom for the Java implementor
to perform a myriad of code transformations, including the reordering of



1.5. DEFINITIONS 11

actions and removal of unnecessary synchronization.
A high level, informal overview of the memory model shows it to be a

set of rules for when writes by one thread are visible to another thread.
Informally, a read r can usually see the value of any write w such that w
does not happen-after r and w is not seen to be overwritten by another write
w′ (from r’s perspective).

When we use the term “read” in this memory model, we are only refer-
ring to actions that read fields or array elements. The semantics of other
operations, such as reads of array lengths, executions of checked casts, and
invocations of virtual methods, are not directly affected by data races. The
JVM implementation is responsible for ensuring that a data race cannot
cause incorrect behavior such as returning the wrong length for an array or
having a virtual method invocation cause a segmentation fault.

The memory semantics determine what values can be read at every point
in the program. The actions of each thread in isolation must behave as
governed by the semantics of that thread, with the exception that the values
seen by each read are determined by the memory model. When we refer to
this, we say that the program obeys intra-thread semantics.

1.5 Definitions

In this section we define in more detail some of the informal concepts we
have presented.

Shared variables/Heap memory Memory that can be shared between
threads is called shared or heap memory. All instance fields, static fields and
array elements are stored in heap memory. We use the term variable to refer
to both fields and array elements. Variables local to a method are never
shared between threads and are unaffected by the memory model.

Inter-thread Actions An inter-thread action is an action performed by
one thread that can be detected or directly influenced by another thread.
Inter-thread actions include reads and writes of shared variables and syn-
chronization actions, such as locking or unlocking a monitor, reading or
writing a volatile variable, or starting a thread. Also included are actions
that interact with the external world (external actions), and actions that
cause a thread to go into an infinite loop (thread divergence actions). For
more information on these actions, consult Section 1.7.1.

We do not need to concern ourselves with intra-thread actions (e.g.,
adding two local variables and storing the result in a third local variable).



12 CHAPTER 1. THREADS AND LOCKS

As previously mentioned, all threads need to obey the correct intra-thread
semantics for Java programs.

Every inter-thread action is associated with information about the exe-
cution of that action. All actions are associated with the thread in which
they occur and the program order in which they occur within that thread.
Additional information associated with an action include:

write The variable written to and the value written.
read The variable read and the write seen (from this, we can de-

termine the value seen).
lock The monitor which is locked.

unlock The monitor which is unlocked.

For brevity’s sake, we usually refer to inter-thread actions as simply
actions.

Program Order Among all the inter-thread actions performed by each
thread t, the program order of t is a total order that reflects the order
in which these actions would be performed according to the intra-thread
semantics of t.

Intra-thread semantics Intra-thread semantics are the standard seman-
tics for single threaded programs, and allow the complete prediction of the
behavior of a thread based on the values seen by read actions within the
thread. To determine if the actions of thread t in an execution are legal,
we simply evaluate the implementation of thread t as it would be performed
in a single threaded context, as defined in the rest of the Java Language
Specification.

Each time the evaluation of thread t generates an inter-thread action,
it must match the inter-thread action a of t that comes next in program
order. If a is a read, then further evaluation of t uses the value seen by a as
determined by the memory model.

Simply put, intra-thread semantics are what determine the execution of a
thread in isolation; when values are read from the heap, they are determined
by the memory model.

Synchronization Actions Synchronization actions include locks, unlocks,
reads of and writes to volatile variables, actions that start a thread, and ac-
tions that detect that a thread is done.



1.5. DEFINITIONS 13

Synchronization Order Every execution has a synchronization order. A
synchronization order is a total order over all of the synchronization ac-
tions of an execution. For each thread t, the synchronization order of the
synchronization actions in t is consistent with the program order of t.

Happens-Before Edges If we have two actions x and y, we use x
hb→ y

to mean that x happens-before y. If x and y are actions of the same thread
and x comes before y in program order, then x

hb→ y.
Synchronization actions also induce happens-before edges. We call the

resulting directed edges synchronized-with edges. They are defined as follows:

• An unlock action on monitor m synchronizes-with all subsequent lock
actions on m (where subsequent is defined according to the synchro-
nization order).

• A write to a volatile variable v synchronizes-with all subsequent reads
of v by any thread (where subsequent is defined according to the syn-
chronization order).

• An action that starts a thread synchronizes-with the first action in the
thread it starts.

• The final action in a thread T1 synchronizes-with any action in another
thread T2 that detects that T1 has terminated. T2 may accomplish
this by calling T1.isAlive() or doing a join action on T1.

• If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-
with any point where any other thread (including T2) determines that
T2 has been interrupted (by having an InterruptedException thrown
or by invoking Thread.interrupted or Thread.isInterrupted).

• The write of the default value (zero, false or null) to each variable
synchronizes-with to the first action in every thread.

Although it may seem a little strange to write a default value to a
variable before the object containing the variable is allocated, con-
ceptually every object is created at the start of the program with its
default initialized values. Consequently the default initialization of any
object happens-before any other actions (other than default-writes) of
a program.

• There is a happens-before edge from the end of a constructor of an
object to the start of a finalizer for that object.



14 CHAPTER 1. THREADS AND LOCKS

If an action x synchronizes-with a following action y, then we also have
x

hb→ y. Further more, Happens-before is transitively closed. In other words,
if x

hb→ y and y
hb→ z, then x

hb→ z.
It should be noted that the presence of a happens-before relationship

between two actions does not necessarily imply that they have to take place
in that order in an implementation. If the reordering produces results con-
sistent with a legal execution, it is not illegal. For example, the write of a
default value to every field of an object constructed by a thread need not
happen before the beginning of that thread, as long as no read ever observes
that fact.

More specifically, if two actions share a happens-before relationship, they
do not necessarily have to appear to have happened in that order to any code
with which they do not share a happens-before relationship. Writes in one
thread that are in a data race with reads in another thread may, for example,
appear to occur out of order to those reads.

The wait methods of class Object have lock and unlock actions asso-
ciated with them; their happens-before relationships are defined by these
associated actions. These methods are described further in Section 1.12.

1.6 Approximations to a Memory Model for Java

We have already described sequential consistency. It is too strict for use as
the Java memory model, because it forbids standard compiler and processor
optimizations.

This section reviews sequential consistency, which is too strong to be
usable as a memory model for Java. It also presents another model, called
happens-before consistency. This model is closer to fulfilling the needs of the
Java memory model, but it is too weak; it allows unacceptable violations of
causality. The problems with causality are described in Section 1.6.3.

In Section 1.7, we present the Java memory model, a formal model that
strengthens happens-before consistency to provide adequate guarantees of
causality.

1.6.1 Sequential Consistency

Formally, in sequential consistency, all actions occur in a total order (the
execution order) that is consistent with program order; furthermore, each
read r of a variable v sees the value written by the write w to v such that:

• w comes before r in the execution order, and



1.6. APPROXIMATIONS TO A MEMORY MODEL FOR JAVA 15

Initially, A == B == 0
Thread 1 Thread 2
1: B = 1; 3: A = 2
2: r2 = A; 4: r1 = B

May observe r2 == 0, r1 == 0

Figure 1.6: Behavior allowed by happens-before consistency, but not sequen-
tial consistency

• there is no other write w′ such that w comes before w′ and w′ comes
before r in the execution order.

1.6.2 Happens-Before Consistency

Before presenting the Java model in full, we will present a simpler model,
called happens-before consistency.

We retain from sequential consistency the idea that there is a total order
over all actions that is consistent with the program order. Using this order,
we can relax the rules by which writes can be seen by a read. We compute
a partial order called the happens-before order, as described in Section 1.5.

We say that a read r of a variable v is allowed to observe a write w to v
if, in the happens-before partial order of the execution trace:

• r is not ordered before w (i.e., it is not the case that r
hb→ w), and

• there is no intervening write w′ to v (i.e., no write w′ to v such that
w

hb→ w′ hb→ r).

Informally, a read r is allowed to see the result of a write w if there is no
happens-before ordering to prevent that read.

An execution is happens-before consistent if each read sees a write that it
is allowed to see by the happens-before ordering. For example, the behavior
shown in Figure 1.6 is happens-before consistent, since there are execution
orders that allow each read to see the appropriate write. In this case, since
there is no synchronization, each read can see either the write of the initial
value or the write by the other thread. One such execution order is

1: B = 1
3: A = 2
2: r2 = A; // sees initial write of 0
4: r1 = B // sees initial write of 0



16 CHAPTER 1. THREADS AND LOCKS

Initially, x == y == 0

Thread 1 Thread 2
r1 = x; r2 = y;
if (r1 != 0) if (r2 != 0)

y = 1; x = 1;
Correctly synchronized, so r1 == r2 == 0 is the only legal behavior

Figure 1.7: Happens-Before consistency is not sufficient

Similarly, the behavior shown in Figure 1.1 is happens-before consistent,
since there is an execution order that allows each read to see the appropriate
write. An execution order that displays that behavior is:

1: r2 = A; // sees write of A = 2
3: r1 = B // sees write of B = 1
2: B = 1
4: A = 2

In this execution, the reads see writes that occur later in the execution
order. This may seem counterintuitive, but is allowed by happens-before
consistency. It turns out that allowing reads to see later writes can sometimes
produce unacceptable behaviors.

1.6.3 Causality

Happens-Before consistency is a necessary, but not sufficient, set of con-
straints. Merely enforcing happens-before consistency would allow for unac-
ceptable behaviors – those that violate the requirements we have established
for Java programs. For example, happens-before consistency allows values
to appear “out of thin air”. This can be seen by a detailed examination of
Figure 1.7.

The code shown in Figure 1.7 is correctly synchronized. This may seem
surprising, since it doesn’t perform any synchronization actions. Remember,
however, that a program is correctly synchronized if, when it is executed in
a sequentially consistent manner, there are no data races. If this code is
executed in a sequentially consistent way, each action will occur in program
order, and neither of the writes will occur. Since no writes occur, there can
be no data races: the program is correctly synchronized.

Since this program is correctly synchronized, the only behaviors we can
allow are sequentially consistent behaviors. However, there is an execution
of this program that is happens-before consistent, but not sequentially con-
sistent:



1.6. APPROXIMATIONS TO A MEMORY MODEL FOR JAVA 17

r1 = x; // sees write of x = 1
y = 1;
r2 = y; // sees write of y = 1
x = 1;

This result is happens-before consistent: there is no happens-before re-
lationship that prevents it from occurring. However, it is clearly not accept-
able: there is no sequentially consistent execution that would result in this
behavior. The fact that we allow a read to see a write that comes later in
the execution order can sometimes thus result in unacceptable behaviors.

Although allowing reads to see writes that come later in the execution
order is sometimes undesirable, it is also sometimes necessary. As we saw
above, Figure 1.1 requires some reads to see writes that occur later in the
execution order. Since the reads come first in each thread, the very first
action in the execution order must be a read. If that read can’t see a write
that occurs later, then it can’t see any value other than the initial value for
the variable it reads. This is clearly not reflective of all behaviors.

We refer to the issue of when reads can see future writes as causality,
because of issues that arise in cases like the one found in Figure 1.7. In that
case, the reads cause the writes to occur, and the writes cause the reads to
occur. There is no “first cause” for the actions. Our memory model therefore
needs a consistent way of determining which reads can see writes early.

Examples such as the one found in Figure 1.7 demonstrate that the
specification must be careful when stating whether a read can see a write
that occurs later in the execution (bearing in mind that if a read sees a
write that occurs later in the execution, it represents the fact that the write
is actually performed early).

The Java memory model takes as input a given execution, and a pro-
gram, and determines whether that execution is a legal execution of the
program. It does this by gradually building a set of “committed” actions
that reflect which actions were executed by the program. Usually, the next
action to be committed will reflect the next action that can be performed
by a sequentially consistent execution. However, to reflect reads that need
to see later writes, we allow some actions to be committed earlier than other
actions that happen-before them.

Obviously, some actions may be committed early and some may not. If,
for example, one of the writes in Figure 1.7 were committed before the read of
that variable, the read could see the write, and the “out-of-thin-air” result
could occur. Informally, we allow an action to be committed early if we
know that the action can occur without assuming some data race occurs. In



18 CHAPTER 1. THREADS AND LOCKS

Figure 1.7, we cannot perform either write early, because the writes cannot
occur unless the reads see the result of a data race.

1.7 Specification of the Java Memory Model

This section provides the formal specification of the Java memory model
(excluding issues dealing with final fields, which are described in Section 1.9).

1.7.1 Actions and Executions

An action a is described by a tuple 〈t, k, v, u〉, comprising:

t - the thread performing the action

k - the kind of action: volatile read, volatile write, (normal or non-
volatile) read, (normal or non-volatile) write, lock or unlock. Volatile
reads, volatile writes, locks and unlocks are synchronization actions.
There are also external actions, and thread divergence actions.

v - the variable or monitor involved in the action

u - an arbitrary unique identifier for the action

An execution E is described by a tuple 〈P,A,
po→,

so→,W, V,
sw→ ,

hb→ ,
ob→ 〉, com-

prising:

P - a program

A - a set of actions
po→ - program order, which for each thread t, is a total order all actions

performed by t in A

so→ - synchronization order, which is a total order over all synchronization
actions in A

W - a write-seen function, which for each read r in A, gives W (r), the
write action seen by r in E.

V - a value-written function, which for each write w in A, gives V (w),
the value written by w in E.

sw→ - synchronizes-with, a partial order over synchronization actions.

hb→ - happens-before, a partial order over actions



1.7. SPECIFICATION OF THE JAVA MEMORY MODEL 19

ob→ - observable order, a total order over all actions that is consistent with
the happens-before order and synchronization order.

Note that the synchronizes-with and happens-before are uniquely deter-
mined by the other components of an execution and the rules for well-formed
executions.

Two of these kinds of actions need special descriptions.

external actions - An external action is an action that is observable out-
side of an execution, and has a result based on an environment external
to the execution. An external action tuple contains an additional com-
ponent, which contains the results of the external action as perceived
by the thread performing the action. This may be information as to
the success or failure of the action, and any values read by the action.

Parameters to the external action (e.g., which bytes are written to
which socket) are not part of the external action tuple. These pa-
rameters are set up by other actions within the thread and can be
determined by examining the intra-thread semantics. They are not
explicitly discussed in the memory model.

The primary impact of observable actions comes from the fact that if
an external action is observed, it can be inferred that other actions
occur in a finite prefix of the observable order.

thread divergence action - A thread divergence action is only performed
by a thread that is in an infinite loop in which no memory or observable
actions are performed. If a thread performs a thread divergence action,
it will be followed by an infinite number of thread divergence actions.
These actions are introduced so that we can explain why such a thread
may cause all other threads to stall and fail to make progress.

1.7.2 Definitions

1. Definition of synchronizes-with. Section 1.5 defines synchronizes-
with edges. The source of a synchronizes-with edge is called a release,
and the destination is called an acquire.

2. Definition of happens-before. The happens-before order is given
by the transitive closure of the synchronizes-with and program order
orders. This is discussed in detail in Section 1.5.

3. Definition of sufficient synchronization edges. A set of synchro-
nization edges is sufficient if it is the minimal set such that you can



20 CHAPTER 1. THREADS AND LOCKS

take the transitive closure of those edges with program order edges,
and determine all of the happens-before edges in the execution. This
set is unique.

4. Restrictions of partial orders and functions. We use f |d to de-
note the function given by restricting the domain of f to d: for all
x ∈ d, f(x) = f |d(x) and for all x 6∈ d, f |d(x) is undefined. Similarly,
we use e→ |d to represent the restriction of the partial order e→ to the
elements in d: for all x, y ∈ d, x

e→ y if and only if x
e→ |d y. If either

x 6∈ d or y 6∈ d, then it is not the case that x
e→ |d y.

1.7.3 Well-Formed Executions

We only consider well-formed executions. An execution E = 〈P,A,
po→,

so→
,W, V,

sw→,
hb→,

ob→〉 is well formed if the following conditions are true:

1. Each read sees a write to the same variable in the execution.
All reads and writes of volatile variables are volatile actions.
For all reads r ∈ A, we have W (r) ∈ A and W (r).v = r.v. The variable
r.v is volatile if and only if r is a volatile read, and the variable w.v is
volatile if and only if w is a volatile write.

2. Happens-before order is acyclic. The transitive closure of synchronizes-
with edges and program order is acyclic.

3. The execution obeys intra-thread consistency. For each thread
t, the actions performed by t in A are the same as would be generated
by that thread in program-order in isolation, with each write w writing
the value V (w), given that each read r sees the value V (W (r)). Values
seen by each read are determined by the memory model. The program
order given must reflect the program order in which the actions would
be performed according to the intrathread semantics of P .

4. The execution obeys happens-before consistency. For all reads
r ∈ A, it is not the case that either r

hb→ W (r) or that there exists a
write w ∈ A such that w.v = r.v and W (r) hb→ w

hb→ r.

5. The execution obeys synchronization-order consistency. For
all volatile reads r ∈ A, it is not the case that either r

so→ W (r) or that
there exists a write w ∈ A such that w.v = r.v and W (r) so→ w

so→ r.



1.7. SPECIFICATION OF THE JAVA MEMORY MODEL 21

1.7.4 Observable Order and Observable External Actions

An execution may have an infinite number of actions. This models a non-
terminating execution. Using the total order given by ob→ , the actions may
have a ordinality greater than omega. This means that there may exist
an action x such that an infinite number of actions occur before x in the
observable order. In an infinite execution, the only external actions that can
be observed are those such that only a finite number of actions occur before
them in the observable order. For finite executions, the observable order
doesn’t have any impact or significance.

1.7.5 Executions and Causality Requirements

A well-formed execution E = 〈P,A,
po→,

so→,W, V,
sw→,

hb→,
ob→〉 is validated by

committing actions from A. If all of the actions in A can be committed,
then the execution satisfies the causality requirements of the Java memory
model.

Starting with the empty set as C0, we perform a sequence of steps where
we take actions from the set of actions A and add them to a set of committed
actions Ci to get a new set of committed actions Ci+1. To demonstrate
that this is reasonable, for each Ci we need to demonstrate an execution Ei

containing Ci that meets certain conditions.
Formally, there must exist

• Sets of actions C0, C1, . . . such that

– C0 = ∅
– i < j implies Ci ⊂ Cj

– A = ∪(C0, C1, C2, . . .)

If A is finite, then the sequence C0, C1, . . . will be finite, ending in a set
Cn = A. However, if A is infinite, then the sequence C0, C1, . . . may
be infinite with an ordinality greater than omega, and it must be the
case that the union of all elements of this infinite sequence is equal to
A.

• Well-formed executions E1, . . . , where Ei = 〈P,Ai,
poi→,

soi→,Wi, Vi,
swi→

,
hbi→,

obi→〉.

Given these, we also define Fi to be the set of fully committed actions in Ei:
the union of all Cj where 0 ≤ j < i.



22 CHAPTER 1. THREADS AND LOCKS

Given these sets of actions C0, . . . and executions E1, . . ., every action in
Ci must be one of the actions in Ei. All actions in Ci must share the same
relative happens-before order and synchronization order in both Ei and E.
Formally,

1. Fi ⊂ Ci ⊆ Ai

2. hbi→ |Ci = hb→ |Ci

3. soi→ |Ci = so→ |Ci

The values written by the writes in Ci must be the same in both Ei and E.
Only the reads in Fi need to see the same writes in Ei as in E. Formally,

4. Vi|Ci = V |Ci

5. Wi|Fi = W |Fi

All reads in Ei that are not in Fi must see writes that happen-before them.
Each read r in Ci − Fi must see writes in Fi in both Ei and E, but may see
a different write in Ei from the one it sees in E. Formally,

6. For any read r ∈ Ai − Fi, we have Wi(r)
hbi→ r

7. For any read r ∈ Ci − Fi, we have Wi(r) ∈ Fi and W (r) ∈ Fi

Given a set of sufficient synchronizes-with edges for Ei, if there is a release-
acquire pair that happens-before an action you are committing, then that
pair must be present in all Ej , where j ≥ i. Formally,

8. Let sswi→ be the swi→ edges that are also in the transitive reduction of
hbi→ but not in

poi→. We call sswi→ the sufficient synchronizes-with edges
for Ei. If x

sswi→ y
hbi→ z and z ∈ Ci, then x

swj→ y for all j ≥ i.

If an action y is committed, all external actions that happen-before y are
also committed.

9. If y is an external action, x
hbi→ y and y ∈ Ci, then x ∈ Ci.



1.8. ILLUSTRATIVE TEST CASES AND BEHAVIORS 23

Initially, x = y = 0
Thread 1 Thread 2
r1 = x; r2 = y;
y = 1; x = r2;

r1 == r2 == 1 is a legal behavior

Figure 1.8: A standard reordering

1.8 Illustrative Test Cases and Behaviors

1.8.1 An Example of a Simple Reordering

As an example of how the memory model works, consider Figure 1.8. Note
that there are initially two writes of the default values to x and y. We wish to
get the result r1 == r2 == 1, which can be obtained if a processor reorders
the statements in Thread 1.

The set of actions C0 is the empty set, and there is no execution E0.
Execution E1 will therefore be an execution where all reads see writes

that happen-before them, as per rule 6. For this program, both reads must
see the value 0 in E1. We first commit the initial writes of 0 to x and y as
well as the write of 1 to y by Thread 1; these writes are contained in the set
C1.

We wish to add r2 = y seeing 1. C1 could not contain this action,
regardless of what write it saw: neither write to y had been committed. C2

may contain this action; however, the read of y must return 0 in E2, because
of rule 6. Execution E2 is therefore identical to E1.

In E3, r2 = y can see any conflicting write that occurs in C2 which is
happens-before consistent for it to see (by rule 7, and our happens-before
consistency criterion). The write this read sees is the write of 1 to y in
Thread 1, which was committed in C1. We commit one additional action in
C3: a write of 1 to x by x = r2.

C4 contains r1 = x, but it still sees 0 in E4, because of rule 6. In our
final execution E, however, rule 7 allows r1 = x to see the write of 1 to x
that was committed in C3.

For a table showing when given actions are committed, consult Fig-
ure 1.9.

1.8.2 An Example of a More Complicated Reordering

Figure 1.10 shows another unusual behavior. In order for r1 == r2 == r3
== 1, Thread 1 would seemingly need to write 1 to y before reading x.



24 CHAPTER 1. THREADS AND LOCKS

Final First First Sees
Action Value Committed In Final Value In
x = 0 0 C1 E1

y = 0 0 C1 E1

y = 1 1 C1 E1

r2 = y 1 C2 E3

x = r2 1 C3 E3

r1 = x 1 C4 E

Figure 1.9: Table of commit sets for Figure 1.8

Initially, x == y == 0

Thread 1 Thread 2
r1 = x; r2 = y;
r3 = 1 + r1*r1 - r1; x = r2;
y = r3;

r1 == r2 == r3 == 1 is a legal behavior

Figure 1.10: Compilers can think hard about when actions are guaranteed
to occur

However, the dependencies in this program make it appear as if Thread 1
does not know what value r3 will be until after x is read.

In fact, the compiler can perform an analysis that shows that x and y are
guaranteed to be either 0 or 1. Knowing that, the compiler can determine
that the quadratic equation always returns 1, resulting in Thread 1’s always
writing 1 to y. Thread 1 may, therefore, write 1 to y before reading x.

The memory model validates this execution in exactly the same way it
validates the execution in Figure 1.8. Since the program writes the same
value to y regardless of whether it reads 0 or 1 for x, the write is allowed to
be committed before the read of x.

1.9 Final Field Semantics

Fields marked final are initialized once and not changed. This is useful for
passing immutable objects between threads without synchronization.

Final field semantics are based around several competing goals:

• The value of a final field is not intended to change. The compiler
should not have to reload a final field because a lock was obtained,



1.9. FINAL FIELD SEMANTICS 25

a volatile variable was read, or an unknown method was invoked. In
fact, the compiler is allowed to hoist reads within thread t of a final
field f of an object X to immediately after the very first read of a
reference to X by t; the thread never need reload that field.

• Objects that have only final fields and are not made visible to other
threads during construction should be perceived as immutable even if
references to those objects are passed between threads via data races.

– Storing a reference to an object X into the heap during con-
struction of X does not necessarily violate this requirement. For
example, synchronization could ensure that no other thread could
load the reference to X during construction. Alternatively, during
construction of X, a reference to X could be stored into another
object Y ; if no references to Y are made visible to other threads
until after construction of X is complete, then final field guaran-
tees still hold.

• Making a field f final should impose minimal compiler/architectural
cost when reading f .

• Must allow for situations such as deserialization, in which final fields
of an object are modified after construction of the object is complete.

The use of final fields adds constraints on which writes are considered
ordered before which reads, for the purposes of determining if an execution
is legal.

Other techniques, such as deserialization, may cause a final field to be
modified after the end of the enclosing object’s constructor. There must be
a freeze of the final field after each such write. Setting a final field in this
way is meaningful only during deserialization or reconstruction of instances
of classes with blank final fields, before they are made available for access
by other parts of a program.

If a reference to an object is shared with other threads between the initial
construction of an object and when deserialization changes the final fields
of the object, most of the guarantees for final fields of that object can go
kerflooey; this includes cases in which other parts of a program continue to
use the original value of this field.

It should be noted that reflection may be used to set final fields. Specif-
ically, the set(...) method of the Field class in java.lang.reflect may
be used to this effect. If the underlying field is final, this method throws an
IllegalAccessException unless setAccessible(true) has succeeded for
this field and this field is non-static.



26 CHAPTER 1. THREADS AND LOCKS

1.9.1 Formal Semantics of Final Fields

The semantics for final fields are as follows. Assume a freeze action on a
final field f of an object o takes place when the constructor for o in which
f is written exits normally. Note that if one constructor invokes another
constructor, and the invoked constructor sets a final field, the freeze for the
final field takes place at the end of the invoked constructor.

For each execution, the behavior of reads is influenced by two additional
partial orders, dereference chain ( dc→) and memory chain (mc→), which are
considered to be part of the execution (and thus, fixed for any particular ex-
ecution). These partial orders must satisfy the following constraints (which
need not have a unique solution):

• Dereference Chain If an action a is a read or write of a field or
element of an object o by a thread t that did not initialize o, then
there must exist some read r by thread t that sees the address of o

such that r
dc→ a.

• Memory Chain There are several constraints on the memory chain
ordering:

a) If r is a read that sees a write w, then it must be the case that
w

mc→ r.

b) If r and a are actions such that r
dc→ a, then it must be the case

that r
mc→ a.

c) If w is a write of the address of an object o by a thread t that
did not initialize o, then there must exist some read r by thread
t that sees the address of o such that r

mc→ w.

Given a write w, a freeze f , an action a (that is not a read of a final
field), a read r1 of the final field frozen by f and a read r2 such that w

hb→
f

hb→ a
mc→ r1

dc→ r2, then when determining which values can be seen by
r2, we consider w

hb→ r2 (but these orderings do not transitively close with
other hb→ orderings). Note that the dc→ order is reflexive, and r1 can be the
same as r2.

For reads of final fields, the only writes that are deemed to come be-
fore the read of the final field are the ones derived through the final field
semantics.



1.9. FINAL FIELD SEMANTICS 27

1.9.2 Reading Final Fields During Construction

A read of a final field of an object within the thread that constructs that
object is ordered with respect to the initialization of that field within the
constructor by the usual happens-before rules. If the read occurs after the
field is set in the constructor, it sees the value the final field is assigned,
otherwise it sees the default value.

1.9.3 Subsequent Modification of Final Fields

In some cases, such as deserialization, the system will need to change the
final fields of an object after construction. Final fields can be changed via
reflection and other implementation dependent means. The only pattern in
which this has reasonable semantics is one in which an object is constructed
and then the final fields of the object are updated. The object should not
be made visible to other threads, nor should the final fields be read, until all
updates to the final fields of the object are complete. Freezes of a final field
occur both at the end of the constructor in which the final field is set, and
immediately after each modification of a final field via reflection or other
special mechanism.

Even then, there are a number of complications. If a final field is ini-
tialized to a compile-time constant in the field declaration, changes to the
final field may not be observed, since uses of that final field are replaced at
compile time with the compile-time constant.

Another problem is that the specification allows aggressive optimization
of final fields. Within a thread, it is permissible to reorder reads of a final
field with those modifications of a final field that do not take place in the
constructor.

For example, consider the code fragment in Figure 1.11. In the d()
method, the compiler is allowed to reorder the reads of x and the call to g()
freely. Thus, A().f() could return -1, 0 or 1.

To ensure that this problem cannot arise, an implementation may provide
a way to execute a block of code in a final field safe context. If an object
is constructed within a final field safe context, the reads of a final field of
that object will not be reordered with modifications of final field that occur
within that final field safe context.

A final field safe context has additional protections. If a thread has seen
an incorrectly published reference to an object that allows the thread to see
the default value of a final field, and then, within a final-field safe context,
reads a properly published reference to the object, it will be guaranteed to
see the correct value of the final field. In the formalism, code executed within



28 CHAPTER 1. THREADS AND LOCKS

class A {
final int x;
A() {
x = 1;

}
int f() {
return d(this,this);

}
int d(A a1, A a2) {
int i = a1.x;
g(a1);
int j = a2.x;
return j - i;

}
static void g(A a) {
// uses reflection to change a.x to 2

}
}

Figure 1.11: Example of reordering of final field reads and reflective change

a final-field safe context is treated as a separate thread (for the purposes of
final field semantics only).

In an implementation, a compiler should not move an access to a final
field into or out of a final-field safe context (although it can be moved around
the execution of such a context, so long as the object is not constructed
within that context).

One place where use of a final-field safe context would be appropriate is
in an executor or thread pool. By executing each Runnable in a separate
final field safe context, the executor could guarantee that incorrect access
by one Runnable to a object o won’t remove final field guarantees for other
Runnables handled by the same executor.

1.9.4 Examples of Final Field Semantics

In order to determine if a read of a final field is guaranteed to see the initial-
ized value of that field, you must determine that there is no way to construct
a partial order mc→ without providing the chain f

hb→ a
mc→ r1 from the freeze

f of that field to the read r1 of that field.
An example of where this can go wrong can be seen in Figure 1.12. An

object o is constructed in Thread 1 and read by Threads 2 and 3. Dereference



1.9. FINAL FIELD SEMANTICS 29

f is a final field; its default value is 0

Thread 1 Thread 2 Thread 3
r1.f = 42; r2 = p; r6 = q;
p = r1; r3 = r2.f; r7 = r6.f;
freeze r1.f; r4 = q;
q = r1; if (r2 == r4)

r5 = r4.f;

We assume r2, r4 and r6 do not see the value null. r3 and r5 can be 0 or
42, and r7 must be 42.

Figure 1.12: Final field example where reference to object is read twice

and memory chains for the read of r4.f in Thread 2 can pass through any
reads by Thread 2 of a reference to o. On the chain that goes through the
global variable p, there is no action that is ordered after the freeze operation.
If this chain is used, the read of r4.f will not be correctly ordered with
regards to the freeze operation. Therefore, r5 is not guaranteed to see the
correctly constructed value for the final field.

The fact that r5 does not get this guarantee reflects legal transformations
by the compiler. A compiler can analyze this code and determine that r2.f
and r4.f are reads of the same final field. Since final fields are not supposed
to change, it could replace r5 = r4.f with r5 = r3 in Thread 2.

Formally, this is reflected by the dereference chain ordering (r2 = p)
dc→ (r5 = r4.f), but not ordering (r4 = q) dc→ (r5 = r4.f). An alternate
partial order, where the dereference chain does order (r4 = q) dc→ (r5 =
r4.f) is also valid. However, in order to get a guarantee that a final field
read will see the correct value, you must ensure the proper ordering for all
possible dereference and memory chains.

In Thread 3, unlike Thread 2, all possible chains for the read of r6.f
include the write to q in Thread 1. The read is therefore correctly ordered
with respect to the freeze operation, and guaranteed to see the correct value.

In general, if a read R of a final field x in thread t2 is correctly ordered
with respect to a freeze F in thread t1 via memory chains, dereference chains,
and happens-before, then the read is guaranteed to see the value of x set
before the freeze F . Furthermore any reads of elements of objects that
were only reached in thread t2 by following a reference loaded from x are
guaranteed to occur after all writes w such that w

hb→ F .
Figures 1.14 and 1.15 show an example of the transitive guarantees pro-

vided by final fields. For this example, there is no dereference chain in



30 CHAPTER 1. THREADS AND LOCKS

r6 = q

r7 = r6.f

a

a

b

Thread 1 Thread 2 Thread 3

b

r1 = new

freeze r1.f

p = r1

r1.f = 42

q = r1

r2 = p

r4 = q

r5 = r4.f

r3 = r2.f

b

a

Figure 1.13: Memory chains in an execution of Figure 1.12



1.9. FINAL FIELD SEMANTICS 31

a is a final field of a class A
Thread 1 Thread 2
r1 = new A; r3 = p;
r2 = new int[1]; r4 = r3.a;
r1.a = r2; r5 = r4[0]
r2[0] = 42
freeze r1.a;
p = r1;

Assuming Thread 2 read of p sees the write by Thread 1, Thread 2 reads of
r3.a and r4[0] are guaranteed to see the writes to Thread 1.

Figure 1.14: Transitive guarantees from final fields

b

Thread 1 Thread 2

r1 = new A

freeze r1.f

r2[0] = 42

r1.a = r2

p = r1

r3 = p

r5 = r4[0]

r4 = r3.ar2 = new 
in1[1]

a

a b

a

Figure 1.15: Memory chains in an execution of Figure 1.14



32 CHAPTER 1. THREADS AND LOCKS

f is a final field; x is non-final

Thread 1 Thread 2 Thread 3
r1 = new ; r3 = p; r5 = q;
r2 = new ; r4 = r3.x; r6 = r5.f;
r2.x = r1; q = r4;
r1.f = 42;
freeze r1.f;
p = r2;

Assuming that Thread 2 sees the writes by Thread 1, and Thread 3’s read
of q sees the write by Thread 2, r6 is guaranteed to see 42.

Figure 1.16: Yet another final field example

Thread 2 that would permit the reads through a to be traced back to an
incorrect publication of p. Since the final field a must be read correctly,
the program is not only guaranteed to see the correct value for a, but also
guaranteed to see the correct value for contents of the array.

Figures 1.16 and 1.17 show two interesting characteristics of one example.
First, a reference to an object with a final field is stored (by r2.x = r1) into
the heap before the final field is frozen. Since the object referenced by r2
isn’t reachable until the store p = r2, which comes after the freeze, the
object is correctly published, and guarantees for its final fields apply.

This example also shows the use of rule (c) for memory chains. The
memory chain that guarantees that Thread 3 sees the correctly initialized
value for f passes through Thread 2. In general, this allows for immutability
to be guaranteed for an object regardless of which thread writes out the
reference to that object.

1.10 Word Tearing

One implementation consideration for Java virtual machines is that every
field and array element is considered distinct; updates to one field or ele-
ment must not interact with reads or updates of any other field or element.
In particular, two threads that update adjacent elements of a byte array
separately must not interfere or interact and do not need synchronization to
ensure sequential consistency.

Some processors (notably early Alphas) do not provide the ability to
write to a single byte. It would be illegal to implement byte array updates
on such a processor by simply reading an entire word, updating the appro-
priate byte, and then writing the entire word back to memory. This problem



1.10. WORD TEARING 33

r5 = q

r6 = r5.f

b

Thread 1 Thread 2 Thread 3

b

r1 = new

freeze r1.f

r1.f = 42

r2.x = r1

p = r2

r3 = p

q = r4

r4 = r3.xr2 = new

a

a c

a

Figure 1.17: Memory chains in an execution of Figure 1.16



34 CHAPTER 1. THREADS AND LOCKS

public class WordTearing extends Thread {
static final int LENGTH = 8;
static final int ITERS = 1000000;
static byte[] counts = new byte[LENGTH];
static Thread[] threads = new Thread[LENGTH];
final int id;
WordTearing(int i) {

id = i;
}
public void run() {

byte v = 0;
for (int i = 0; i < ITERS; i++) {

byte v2 = counts[id];
if (v != v2) {

System.err.println("Word-Tearing found: " + "counts[" + id
+ "] = " + v2 + ", should be " + v);

return;
}
v++;
counts[id] = v;

}
}
public static void main(String[] args) {

for (int i = 0; i < LENGTH; ++i)
(threads[i] = new WordTearing(i)).start();

}
}

Figure 1.18: Bytes must not be overwritten by writes to adjacent bytes



1.11. NON-ATOMIC TREATMENT OF DOUBLE AND LONG 35

is sometimes known as word tearing, and on processors that cannot easily
update a single byte in isolation some other approach will be required. Fig-
ure 1.18 shows a test case to detect word tearing.

1.11 Non-atomic Treatment of double and long

Some Java implementations may find it convenient to divide a single write
action on a 64-bit long or double value into two write actions on adjacent
32 bit values. For efficiency’s sake, this behavior is implementation specific;
Java virtual machines are free to perform writes to long and double values
atomically or in two parts.

For the purposes of this memory model, a single write to a non-volatile
long or double value is treated as two separate writes: one to each 32-bit
half. This can result in a situation where a thread sees the first 32 bits of
a 64 bit value from one write, and the second 32 bits from another write.
Write and reads of volatile long and double values are always atomic. Writes
to and reads of references are always atomic, regardless of whether they are
implemented as 32 or 64 bit values.

VM implementors are encouraged to avoid splitting their 64-bit values
where possible. Programmers are encouraged to declare shared 64-bit values
as volatile or synchronize their programs correctly to avoid possible compli-
cations.

1.12 Wait Sets and Notification

Every object, in addition to having an associated lock, has an associated wait
set. A wait set is a set of threads. When an object is first created, its wait
set is empty. Elementary actions that add threads to and remove threads
from wait sets are atomic. Wait sets are manipulated in Java solely through
the methods Object.wait, Object.notify , and Object.notifyAll.

Wait set manipulations can also be affected by the interruption status
of a thread, and by the Thread class methods dealing with interruption.
Additionally, Thread class methods for sleeping and joining other threads
have properties derived from those of wait and notification actions.

1.12.1 Wait

Wait actions occur upon invocation of wait(), or the timed forms wait(long
millisecs) and wait(long millisecs, int nanosecs). A call of wait(long
millisecs) with a parameter of zero, or a call of wait(long millisecs,



36 CHAPTER 1. THREADS AND LOCKS

int nanosecs) with two zero parameters, is equivalent to an invocation of
wait().

Let thread t be the thread executing the wait method on object m, and
let n be the number of lock actions by t on m that have not been matched
by unlock actions. One of the following actions occurs.

• If n is zero (i.e., thread t does not already possess the lock for target
m) an IllegalMonitorStateException is thrown.

• If this is a timed wait and the nanosecs argument is not in the range of
0-999999 or the millisecs argument is negative, an IllegalArgumentException
is thrown.

• If thread t is interrupted, an InterruptedException is thrown and t’s
interruption status is set to false.

• Otherwise, the following sequence occurs:

1. Thread t is added to the wait set of object m, and performs n
unlock actions on m.

2. Thread t does not execute any further Java instructions until it
has been removed from m’s wait set. The thread may be removed
from the wait set due to any one of the following actions, and will
resume sometime afterward.

– A notify action being performed on m in which t is selected
for removal from the wait set.

– A notifyAll action being performed on m.
– An interrupt action being performed on t.
– If this is a timed wait, an internal action removing t from m’s

wait set that occurs after at least millisecs milliseconds plus
nanosecs nanoseconds elapse since the beginning of this wait
action.

– An internal action by the Java JVM implementation. Imple-
mentations are permitted, although not encouraged, to per-
form “spurious wake-ups” – to remove threads from wait sets
and thus enable resumption without explicit Java instructions
to do so. Notice that this provision necessitates the Java cod-
ing practice of using wait only within loops that terminate
only when some logical condition that the thread is waiting
for holds.



1.12. WAIT SETS AND NOTIFICATION 37

Each thread must determine an order over the events that could
cause it to be removed from a wait set. That order does not have
to be consistent with other orderings, but the thread must behave
as though those events occurred in that order. For example, if a
thread t is in the wait set for m, and then both an interrupt of t
and a notification of m occur, there must be an order over these
events.
If the interrupt is deemed to have occurred first, then t will even-
tually return from wait by throwing InterruptedException, and
some other thread in the wait set for m (if any exist at the time
of the notification) must receive the notification. If the notifica-
tion is deemed to have occurred first, then t will eventually return
normally from wait with an interrupt still pending.

3. Thread t performs n lock actions on m.

4. If thread t was removed from m’s wait set in step 2 due to an in-
terrupt, t’s interruption status is set to false and the wait method
throws InterruptedException.

1.12.2 Notification

Notification actions occur upon invocation of methods notify and notifyAll.
Let thread t be the thread executing either of these methods on Object m,
and let n be the number of lock actions by t on m that have not been matched
by unlock actions. One of the following actions occurs.

• If n is zero an IllegalMonitorStateException is thrown. This is the
case where thread t does not already possess the lock for target m.

• If n is greater than zero and this is a notify action, then, if m’s wait
set is not empty, a thread u that is a member of m’s current wait set is
selected and removed from the wait set. (There is no guarantee about
which thread in the wait set is selected.) This removal from the wait
set enables u’s resumption in a wait action. Notice however, that u’s
lock actions upon resumption cannot succeed until some time after t
fully unlocks the monitor for m.

• If n is greater than zero and this is a notifyAll action, then all threads
are removed from m’s wait set, and thus resume. Notice however, that
only one of them at a time will lock the monitor required during the
resumption of wait.



38 CHAPTER 1. THREADS AND LOCKS

1.12.3 Interruptions

Interruption actions occur upon invocation of method Thread.interrupt, as
well as methods defined to invoke it in turn, such as ThreadGroup.interrupt.
Let t be the thread invoking U.interrupt, for some thread u, where t and
u may be the same. This action causes u’s interruption status to be set to
true.

Additionally, if there exists some object m whose wait set contains u, u
is removed from m’s wait set. This enables u to resume in a wait action, in
which case this wait will, after re-locking m’s monitor, throw InterruptedException.

Invocations of Thread.isInterrupted can determine a thread’s inter-
ruption status. The static method Thread.interrupted may be invoked by
a thread to observe and clear its own interruption status.

1.12.4 Interactions of Waits, Notification and Interruption

The above specifications allow us to determine several properties having to
do with the interaction of waits, notification and interruption. If a thread is
both notified and interrupted while waiting, it may either:

• return normally from wait, while still having a pending interrupt (in
other works, a call to Thread.interrupted would return true)

• return from wait by throwing an InterruptedException

The thread may not reset its interrupt status and return normally from
the call to wait.

Similarly, notifications cannot be lost due to interrupts. Assume that
a set s of threads is in the wait set of an object m, and another thread
performs a notify on m. Then either

• at least one thread in s must return normally from wait. By “return
normally”, we mean it must return without throwing InterruptedException,
or

• all of the threads in s must exit wait by throwing InterruptedException

Note that if a thread is both interrupted and woken via notify, and that
thread returns from wait by throwing an InterruptedException, then some
other thread in the wait set must be notified.



1.13. SLEEP AND YIELD 39

1.13 Sleep and Yield

Thread.sleep causes the currently executing thread to sleep (temporarily
cease execution) for the specified duration, subject to the precision and ac-
curacy of system timers and schedulers. The thread does not lose ownership
of any monitors, and resumption of execution will depend on scheduling and
the availability of processors on which to execute the thread.

Neither a sleep for a period of zero time nor a yield operation need have
observable effects.

It is important to note that neither Thread.sleep nor Thread.yield
have any synchronization semantics. In particular, the compiler does not
have to flush writes cached in registers out to shared memory before a call
to sleep or yield, nor does the compiler have to reload values cached in
registers after a call to sleep or yield. For example, in the following (broken)
code fragment, assume that this.done is a non-volatile boolean field:

while (!this.done)
Thread.sleep(1000);

The compiler is free to read the field this.done just once, and reuse
the cached value in each execution of the loop. This would mean that the
loop would never terminate, even if another thread changed the value of
this.done.

Acknowledgments

Many people have contributed to this specification. The primary technical
authors are Jeremy Manson, William Pugh and Sarita Adve. Many other
people have made significant contributions, including all those who partici-
pated in discussions on the JMM mailing list. The total set of people that
have contributed is far too large to enumerate, but certain people made par-
ticularly significant contributions, including Doug Lea, Victor Luchangco,
Jan-Willem Maessen, Hans Boehm, Joseph Bowbeer, and David Holmes.



40 CHAPTER 1. THREADS AND LOCKS



Chapter 2

Finalization

This section details changes to Section 12.6 of the Java language specifica-
tion, which deals with finalization. The relevant portions are reproduced
here.

The class Object has a protected method called finalize; this method
can be overridden by other classes. The particular definition of finalize
that can be invoked for an object is called the finalizer of that object. Before
the storage for an object is reclaimed by the garbage collector, the Java
virtual machine will invoke the finalizer of that object.

Finalizers provide a chance to free up resources that cannot be freed
automatically by an automatic storage manager. In such situations, simply
reclaiming the memory used by an object would not guarantee that the
resources it held would be reclaimed.

The Java programming language does not specify how soon a finalizer
will be invoked, except to say that it will occur before the storage for the
object is reused. Also, the language does not specify which thread will
invoke the finalizer for any given object. It is guaranteed, however, that
the thread that invokes the finalizer will not be holding any user-visible
synchronization locks when the finalizer is invoked. If an uncaught exception
is thrown during the finalization, the exception is ignored and finalization of
that object terminates.

It should also be noted that the completion of an object’s constructor
happens-before the execution of its finalize method (in the formal sense
of happens-before).

It is important to note that many finalizer threads may be active (this
is sometimes needed on large SMPs), and that if a large connected data
structure becomes garbage, all of the finalize methods for every object in that
data structure could be invoked at the same time, each finalizer invocation

41



42 CHAPTER 2. FINALIZATION

running in a different thread.
The finalize method declared in class Object takes no action.
The fact that class Object declares a finalize method means that the

finalize method for any class can always invoke the finalize method for
its superclass. This should always be done, unless it is the programmer’s
intent to nullify the actions of the finalizer in the superclass. Unlike construc-
tors, finalizers do not automatically invoke the finalizer for the superclass;
such an invocation must be coded explicitly.)

For efficiency, an implementation may keep track of classes that do not
override the finalize method of class Object, or override it in a trivial way,
such as:

protected void finalize() throws Throwable {
super.finalize();

}

We encourage implementations to treat such objects as having a finalizer
that is not overridden, and to finalize them more efficiently, as described in
Section 2.0.1.

A finalizer may be invoked explicitly, just like any other method.
The package java.lang.ref describes weak references, which interact

with garbage collection and finalization. As with any API that has spe-
cial interactions with the language, implementors must be cognizant of any
requirements imposed by the java.lang.ref API. This specification does not
discuss weak references in any way. Readers are referred to the API docu-
mentation for details.

2.0.1 Implementing Finalization

Every object can be characterized by two attributes: it may be reachable,
finalizer-reachable, or unreachable, and it may also be unfinalized, finalizable,
or finalized.

A reachable object is any object that can be accessed in any potential
continuing computation from any live thread. Any object that may be
referenced from a field or array element of a reachable object is reachable.
Finally, if a reference to an object is passed to a JNI method, then the object
must be considered reachable until that method completes.

A class loader is considered reachable if any instance of a class loaded by
that loader is reachable. A class object is considered reachable if the class
loader that loaded it is reachable.



43

Optimizing transformations of a program can be designed that reduce
the number of objects that are reachable to be less than those which would
näıvely be considered reachable. For example, a compiler or code generator
may choose to set a variable or parameter that will no longer be used to null
to cause the storage for such an object to be potentially reclaimable sooner.

Another example of this occurs if the values in an object’s fields are
stored in registers. The program then may access the registers instead of
the object, and never access the object again. This would imply that the
object is garbage.

Note that this sort of optimization is only allowed if references are on the
stack, not stored in the heap. For example, consider the Finalizer Guardian
pattern:

class Foo {
private final Object finalizerGuardian = new Object() {

protected void finalize() throws Throwable {
/* finalize outer Foo object */

}
}

}

The finalizer guardian forces a super.finalize to be called if a subclass
overrides finalize and does not explicitly call super.finalize.

If these optimizations are allowed for references that are stored on the
heap, then the compiler can detect that the finalizerGuardian field is never
read, null it out, collect the object immediately, and call the finalizer early.
This runs counter to the intent: the programmer probably wanted to call
the Foo finalizer when the Foo instance became unreachable. This sort
of transformation is therefore not legal: the inner class object should be
reachable for as long as the outer class object is reachable.

Transformations of this sort may result in invocations of the finalize
method occurring earlier than might be otherwise expected. In order to allow
the user to prevent this, we enforce the notion that synchronization may keep
the object alive. If an object’s finalizer can result in synchronization on that
object, then that object must be alive and considered reachable whenever a
lock is held on it.

Note that this does not prevent synchronization elimination: synchro-
nization only keeps an object alive if a finalizer might synchronize on it.
Since the finalizer occurs in another thread, in many cases the synchroniza-
tion could not be removed anyway.



44 CHAPTER 2. FINALIZATION

A finalizer-reachable object can be reached from some finalizable object
through some chain of references, but not from any live thread. An unreach-
able object cannot be reached by either means.

An unfinalized object has never had its finalizer automatically invoked;
a finalized object has had its finalizer automatically invoked. A finalizable
object has never had its finalizer automatically invoked, but the Java vir-
tual machine may eventually automatically invoke its finalizer. An object
cannot be considered finalizable until its constructor has finished. Every
pre-finalization write to a field of an object must be visible to the finaliza-
tion of that object. Furthermore, none of the pre-finalization reads of fields
of that object may see writes that occur after finalization of that object is
initiated.

2.0.2 Interaction with the Memory Model

It must be possible for the memory model to decide when it can commit
actions that take place in a finalizer. This section describes the interaction
of finalization with the memory model.

Each execution has a number of reachability decision points, labeled di.
Each action either comes-before di or comes-after di. Other than as explicitly
mentioned, comes before in this section is unrelated to all other orderings in
the memory model.

If r is a read that sees a write w and r comes-before di, then w must
come-before di. If x and y are synchronization actions on the same variable
or monitor such that x

so→ y and y comes-before di, then x must come-before
di.

At each reachability decision point, some set of objects are marked as
unreachable, and some subset of those objects are marked as finalizable.
These reachability decision points are also the points at which References
are checked, enqueued and cleared according to the rules provided in the
JavaDocs for java.lang.ref.

Reachability

The only objects that are considered definitely reachable at a point di are
those that can be shown to be reachable by the application of these rules:

• An object B is definitely reachable at di from static fields if there exists
there is a write w1 to an static field v of a class C such that the value
written by w1 is a reference to B, the class C is loaded by a reachable



45

classloader and there does not exist a write w2 to v s.t. ¬(w2
hb→ w1),

and both w1 and w2 come-before di.

• An object B is definitely reachable from A at di if there is a write w1

to an element v of A such that the value written by w1 is a reference
to B and there does not exist a write w2 to v s.t. ¬(w2

hb→ w1), and
both w1 and w2 come-before di.

• If an object C is definitely reachable from an object B, object B is
definitely reachable from an object A, then C is definitely reachable
from A.

An action a is an active use of X if and only if

• it reads or writes an element of X

• it locks or unlocks X and there is a lock action on X that happens-after
the invocation of the finalizer for X.

• it writes a reference to X

• it is an active use of an object Y , and X is definitely reachable from
Y

If an object X is marked as unreachable at di,

• X must not be definitely reachable at di from static fields,

• All active uses of X in thread t that come-after di must occur in the
finalizer invocation for X or as a result of thread t performing a read
that comes-after di of a reference to X.

• All reads that come-after di that see a reference to X must see writes
to elements of objects that were unreachable at di, or see writes that
came after di.

If an object X marked as finalizable at di, then

• X must be marked as unreachable at di,

• di must be the only place where X is marked as finalizable,

• actions that happen-after the finalizer invocation must come-after di



Index

InterruptedException
and happens-before, 13

notify, 35
wait, 14, 35

action, 12

causality, 17
committed actions, 21, 23
compile-time constant, 27
completely initialized, 8
correctly synchronized, 4

data race, 3, 6
double, non-atomic reads and writes35

external actions, 11, 19
and observable order, 21

final field safe context, 27
final fields, 24

deserialization and, 27
reflection, 27

Finalization
and happens-before, 13
finalizable, 42, 44
finalized, 42, 44
finalizer, 41
finalizer-reachable, 42, 44
reachable, 42
unfinalized, 42, 44
unreachable, 42, 44

Finalizer Guardian, 43

happens-before, 5, 13, 15
happens-before consistency, 15

inter-thread action, 11
intra-thread semantics, 11, 12

lock, 1, 11
and happens-before, 13

long, non-atomic reads and writes35

memory model, 1, 10
monitor, 1

observable order, 21

reachable, 42
read

from memory, 11

Sequential Consistency, 5, 6
synchronization, 1
synchronization action, 11
synchronization order, 13
synchronized-with, 13

thread
isAlive, 13
join, 13
start, 11, 13

thread divergence actions, 11, 19
threads, 1

unlock, 1, 11
and happens-before, 13

46



INDEX 47

volatile, 5
and happens-before, 13

word tearing, 35
write

to memory, 11



48 INDEX



Contents

1 Threads and Locks 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Notation in Examples . . . . . . . . . . . . . . . . . . 2

1.2 Incorrectly Synchronized Programs Exhibit Surprising Behav-
iors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Informal Semantics . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Sequential Consistency . . . . . . . . . . . . . . . . . . 6
1.3.2 Final Fields . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 What is a Memory Model? . . . . . . . . . . . . . . . . . . . 10
1.5 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Approximations to a Memory Model for Java . . . . . . . . . 14

1.6.1 Sequential Consistency . . . . . . . . . . . . . . . . . . 14
1.6.2 Happens-Before Consistency . . . . . . . . . . . . . . 15
1.6.3 Causality . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Specification of the Java Memory Model . . . . . . . . . . . . 18
1.7.1 Actions and Executions . . . . . . . . . . . . . . . . . 18
1.7.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7.3 Well-Formed Executions . . . . . . . . . . . . . . . . . 20
1.7.4 Observable Order and Observable External Actions . . 21
1.7.5 Executions and Causality Requirements . . . . . . . . 21

1.8 Illustrative Test Cases and Behaviors . . . . . . . . . . . . . . 23
1.8.1 An Example of a Simple Reordering . . . . . . . . . . 23
1.8.2 An Example of a More Complicated Reordering . . . . 23

1.9 Final Field Semantics . . . . . . . . . . . . . . . . . . . . . . 24
1.9.1 Formal Semantics of Final Fields . . . . . . . . . . . . 26
1.9.2 Reading Final Fields During Construction . . . . . . . 27
1.9.3 Subsequent Modification of Final Fields . . . . . . . . 27
1.9.4 Examples of Final Field Semantics . . . . . . . . . . . 28

49



50 CONTENTS

1.10 Word Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.11 Non-atomic Treatment of double and long . . . . . . . . . . 35
1.12 Wait Sets and Notification . . . . . . . . . . . . . . . . . . . . 35

1.12.1 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.12.2 Notification . . . . . . . . . . . . . . . . . . . . . . . . 37
1.12.3 Interruptions . . . . . . . . . . . . . . . . . . . . . . . 38
1.12.4 Interactions of Waits, Notification and Interruption . . 38

1.13 Sleep and Yield . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Finalization 41
2.0.1 Implementing Finalization . . . . . . . . . . . . . . . . 42
2.0.2 Interaction with the Memory Model . . . . . . . . . . 44



List of Figures

1.1 Surprising results caused by statement reordering . . . . . . . 3
1.2 Surprising results caused by forward substitution . . . . . . . 4
1.3 Ordering by a happens-before relationship . . . . . . . . . . . 7
1.4 Example illustrating final field semantics . . . . . . . . . . . . 9
1.5 Without final fields or synchronization, it is possible for this

code to print /usr . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Behavior allowed by happens-before consistency, but not se-

quential consistency . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Happens-Before consistency is not sufficient . . . . . . . . . . 16
1.8 A standard reordering . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Table of commit sets for Figure 1.8 . . . . . . . . . . . . . . . 24
1.10 Compilers can think hard about when actions are guaranteed

to occur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.11 Example of reordering of final field reads and reflective change 28
1.12 Final field example where reference to object is read twice . . 29
1.13 Memory chains in an execution of Figure 1.12 . . . . . . . . . 30
1.14 Transitive guarantees from final fields . . . . . . . . . . . . . 31
1.15 Memory chains in an execution of Figure 1.14 . . . . . . . . . 31
1.16 Yet another final field example . . . . . . . . . . . . . . . . . 32
1.17 Memory chains in an execution of Figure 1.16 . . . . . . . . . 33
1.18 Bytes must not be overwritten by writes to adjacent bytes . . 34

51


