
1

A Proposed Semantics for
Multithreaded Java

Bill Pugh

2

Basic Framework

• Operational semantics
• Actions occur in a global order

– consistent with original order in each
thread

• except for prescient writes

• If program not correctly synchronized
– reads non-deterministically choose which

value to return from set of candidate writes

3

Terms

• Variable
– a field or array element

• Value
– a primitive type or reference to an object

• Local
– a value stored in a local or on the stack

4

Write Sets

• Sets of writes
– a write is a variable/value pair

• allWrites: all writes performed
• Threads/monitors/volatiles

have/know:
– overwritten: a set of writes known to be

overwritten
– previous: a set of writes known to be in the

past

5

Multimap basics

• These are all monotonic multimaps
– they only grow

• Standard set operations apply
• Applying a multimap to a variable:

– M(v) = { w | <v, w> in M }

• Writes have hidden GUID
– two writes of 42 are distinct

• Subscripts used to indicate thread,
monitor or volatile that “owns/knows”
a multimap

6

Read/Write Semantics
(in thread t)

• ReadNormal(Variable v)
w = choose(allWrites(v) - overwrittent(v))
return w

• WriteNormal(Variable v, Value w)
overwrittent(v) ∪ = previoust(v)
previoust(v) += w
allWrites(v) += w

7

Invariants

• overwrittent ⊂ previoust ⊆ allWrites

• For correctly synchronized code, at
point where you access variable v:
– previoust(v) = allWrites(v)
– | allWrites(v) – overwrittent(v) | = 1

8

Initial write of default value

• When a variable v is created, all threads
t know the initial write w of the default
value to that variable is previous
– allWrites(v) = { w }
– previoust(v) = { w }
– overwrittent(v) = { }

9

Lock/Unlock Semantics

• Lock(Monitor m)
wait until lock on m has been acquired
overwrittent ∪ = overwrittenm
previoust ∪ = previousm

• Unlock(Monitor m)
overwrittenm ∪ = overwrittent
previousm ∪ = previoust
release lock

10

Example
lock A

x = 1

unlock A
x = 3

unlock B

x = 2

unlock A

unlock A

overwrittenA(x) = {0,1}
previousA(x) = {0,1,2}

overwrittenB(x) = {0}
previousB(x) = {0,3}

lock B

print x

x = 4

print xx can print 2 or 3,
but not 0 or 1

must print 4

overwrittent(x) = {0,1}
previoust(x) = {0,1,2, 3}

overwrittenA(x) = {0}
previousA(x) = {0,1}

overwrittent(x) = {0,1,2, 3}
previoust(x) = {0,1,2, 3, 4}

11

Happens-before
relationships

x = 1

x = 3

x = 2
print x

x = 4

print x

x = 0

previous: reachable backwards
overwritten: exists a backwards paths

where it is overwritten

12

Volatile Semantics
• Very similar to monitors

• ReadVolatile(Variable v)
overwrittent ∪ = overwrittenv
previoust ∪ = previousv
return volatileValuev

• WriteVolatile(Variable v, Value w)
overwrittenv ∪ = overwrittent
previousv ∪ = previoust
volatileValuev = w

13

Synchronization
optimizations

• Thread local monitors are no-ops
– Information known by monitor must be

subset of information known by thread

• Thread local volatile fields can be
treated as non-volatile fields

• Recursive locks are no-ops
– recursive lock can’t reveal any new

information
– recursive unlock won’t be read

14

Lock Coarsening

• If you guarantee that no other thread
acquires a lock between a unlock and
lock
– information written by unlock in monitor

will not be read by any other thread
– lock will not acquire any new information
– Unlock and locks have no effect

15

Problem

x = y = 0

j = y

i = 1

Thread 1

i = x

j = 1

Thread 2

Can this result in i = 1 and j = 1?

start threads

16

Need Prescient Writes

• A thread may perform a write early
only if the following conditions hold
– The write is guaranteed to happen
– The variable written to and the value

written are fixed
• including across non-deterministic values

returned by reads

– it is not moved past another access to that
variable

17

Prescient writes (continued)

• A Prescient write may not be reordered
with a preceding lock action unless the
previous unlock on that monitor (if any)
is guaranteed to have been done by the
same thread
– circularity problem?

18

Prescient Reads?

• Prescient Reads are not needed
• Reads can be done early

– so long as value read is guaranteed to not
be in overwritten set at original point of
read

19

Very Prescient Reads

lock A

read x

x = 1

• Can even do forward
substitution across lock
– At point of lock (and of read),

no other thread knows x=1 to
be previous

– cannot learn that x=1 is
overwritten at lock

20

Requires G-CRF

a = 1

i = a

a = 2

j = a

a = 0

Can this result in i = 2 and j = 1?

21

Example Execution

• T1: a = 1
aW = {0, 1}; o1 = {0}; p1 = {0,1}

• T2: a = 2
aW = {0, 1, 2}; o2 = {0}; p2 = {0,1}

• T1: i = a
choose 2 from {0, 1, 2} – {0}

• T2: j = a
choose 1 from {0, 1, 2} – {1}

22

Final fields

• Have to track data dependence
• Attach overwritten information to final

fields and to local values
– don’t need previous; sync arising from

final should not be used for writes

• A local value consists of a
<value, overwritten>

tuple

23

Changes

• Changes semantics for reads/writes of
normal fields and final fields
– Operations now take an address (a local

value) and a field
• arrays treated as records

• Constructor termination freezes the
appropriate final fields
– details with constructor chaining

24

Read/Write Semantics

• ReadNormal(Value <a, oF>, Field f)
Let v be variable referenced by a.f
w = choose(allWrites(v) – overwrittent(v) – oF)
return <w, oF>

• WriteNormal(Value <a, —>, Field f, Value <w, —>)
Let v be variable referenced by a.f
overwrittent(v) ∪ = previoust(v)
previoust(v) += w
allWrites(v) += w

25

Final Semantics

• ReadFinal(Value <a, oF>, Field f)
Let v be final variable referenced by a.f
oF’ = overwrittenv
return <finalValuev, oF ∪ oF’>

• WriteFinal(Value <a, —>, Field f, Value <w, —>)
Let v be variable referenced by a.f
finalValuev = w

• FreezeFinal(Value <a, —>, Field f)
Let v be variable referenced by a.f
overwrittenv = overwrittent

26

Pseudo-Final fields

• If you store a reference to an object b
into the heap before the B constructor
for b terminates

• Another threads loads that reference
• And synchronization doesn’t guarantee

that the load occurs after the B
constructor terminates
– all final fields of B in b become pseudo-

final

27

Pseudo-Final fields

• Each read of a pseudo-final variable v
non-deterministically returns either the
default value or finalValuev

– overwrittenv is ignored

28

On pseudo-final fields

• In reality, having one improperly
synchronized reference to an object

• shouldn’t affect reads of final fields
through properly synchronized
references

• But I couldn’t make the semantics work

29

Comparison with
other models

• Post-hoc models
– only tell you if a particular execution is

legal
• circularity issues

• Other operational models
– impose weird little constraints not needed

to enforce SC for correctly synchronized
programs (or for safety reasons)

– only arise in contrived cases

30

Simple memory models

• Some models have a simple
global/cache memory model
– one global memory
– one cache per thread

• Actions get committed to global
memory in some total order

• Updates applied to local cache in some
total order

31

Models based on reordering

• A model based on reordering depends
on rules for reordering
– can you reorder read of t3.x?

t2 = t1.x;
t3 = A.p;
t4 = t3.x;

– For example, to
t2 = t1.x;
t3 = A.p;
if (t3 == t1) t4 = t2
else t4 = t3.x

32

Behavior prohibited if dependent
reads can’t be reordered

• Initially
p.next = null

• Thread 1:
p.next = p

• Thread 2:
List tmp = p.next;
if (tmp == p && tmp.next == null) {

// Can’t happen under CRF
}

33

Do we care about behaviors
no one cares about?

• What if memory model prohibits a
weird behavior
– don’t know of any compiler optimizations

that would perform it
– don�’t know of any architectures that would

perform it

• is this a problem?

34

Why we should care

• If behavior is prohibited, need to prove:
– architecture doesn’t allow it
– compiler optimizations don’t allow it

• Even if a compiler doesn’t allow it,
proving that is a burden

35

Challenge

• I don’t know of any examples of
behaviors prohibited by my approach
– except for those we must prohibit
– and edge cases of final fields of objects

escaping their constructors

• but I need outside eyes

