
1

Jaejin Lee
Department of Computer Science & 

Engineering
Michigan State University
jlee@cse.msu.edu

http://www.cse.msu.edu/~jlee



2

§ The Java memory model is widely known as difficult 
to understand.
− It follows a relaxed memory consistency model.

§ Data races and synchronization make it impossible to 
apply classical compiler optimization and analysis 
techniques directly to Java concurrent programs.
− It follows a shared memory programming model.

§ The synergic effect of the non-intuitive Java memory 
model and the non-deterministic behavior prevents 
the programmer from writing correct and efficient 
Java concurrent programs.

§ What if the burden of considering the underlying 
memory model is shifted to a compiler?
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§ The compiler presents to programmers a sequentially consistent 
view of the underlying architecture.

§ The compiler makes it possible to apply classical compiler 
optimization techniques correctly to parallel programs that are 
not handled by conventional compilers.
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An Example of Incorrect Execution in Java

§ With prescient stores.
§ If X is equal to 1 then Y should be 0 (reasoning 

based on sequential consistency).
§ A counter-intuitive result can occur, and this violates 

sequential consistency. It appears that instructions 
(i.e., u and v) are reordered. 

Initially, x = 0, y = 0

Thread 1

u X = x
v y = 1

Thread 2

w Y = y
x x = 1

Incorrect outcome: X = 1, Y = 1
[Pugh, Java Grande’99]

v y = 1 X: 0, Y: 0

w Y = y X: 0, Y: 1

x x = 1 X: 0, Y: 1

u X = x X: 1, Y: 1
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Correctness Criterion (Sequential Consistency)

Execution
uX=xvy=1wY=yxx=1
wY=yxx=1uX=xvy=1
wY=yuX=xxx=1vy=1

…

X Y
0 1
1 0
0 0
…

uX=xvy=1xx=1wY=y 0 1

vy=1wY=yxx=1uX=x 1 1

Unordered, but 
sequentially
consistent

Not sequentially
consistent

(Operations are atomic)

§ A multiprocessor system is sequentially consistent if the result of 
any execution is the same as if the operations of all the 
processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence 
in the order specified by its program. [Lamport, IEEE TOC, 1979]

Thread 1

u X = x
v y = 1

Initially, x = 0, y = 0

Thread 2

w Y = y
x x = 1
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§ Finds conflict relation 
(conflict edges) using an 
escape analysis.

§ Finds critical cycles (minimal 
mixed cycles that consist of 
program ordering edges and 
conflict edges).

u X=x

v y=1

w Y=y

x x=1

Initially x=0,y=0

§ Delays (uDv and wDx) are the program ordering 
edges in the critical cycles (e.g., v w x u v).

§ Enforcing delays is a sufficient condition to guarantee 
sequential consistency.

§ Delays are implemented by fence instructions or the 
ordering constraints of the underlying machine.

Delay Set Analysis [Shasha and Snir, TOPLAS, 1988]



7

§ Dm = ((D∪Do)+)tr – Do (reduce the number 
of delays by using the ordering constraints 
of the underlying architecture)

§ We insert a fence instruction for each 
delay uDmv in a memory-barrier node w.

§ w always executes after u and before v 
whenever u and v executes.

§ A node s dominates a node v with respect 
to a node u (s domu v) if every control 
flow path from u to v goes through s [Lee 
and Padua, PACT’00]. 

§ Any node in domu[v] can be a memory-
barrier node to enforce the delay uDv. 

delay
control flow

u

v

w
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Minimizing 
the Number of Memory-Barrier Nodes

u

w

v

x

delay
control flow

§ If a node w∈domu[v], then w enforces 

the delay uDv.
§ One memory-barrier node w (or v)  is 

enough to enforce both delays uDv and
wDx.

( domu[v] ∩ domw[x] = { w, v } )
§ Minimizing the number of memory-

barrier nodes by using dominators with 
respect to a node is an NP-hard problem 
[Lee and Padua, PACT’00].

§ Use a greedy approximation algorithm.
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An Example of an Incorrect Compiler 
Optimization in Java

§ p.k is not modified in between u and w. In classical sense, it is 
OK to replace p.k in w with x (one form of classical common 
subexpression elimination).

§ If z is equal to 0 then both x and y should be 0 (reasoning based 
on sequential consistency).

Initially, p and q are 
aliases and p.k = 0

Thread 1

u x = p.k;
v y = q.k;
w z = p.k;

Thread 2

x p.k = 1;

Incorrect outcome:
x=0, y=1, z=0

Thread 1

u x = p.k;
v y = q.k;
w’z = x;

Thread 2

x p.k = 1;

[Pugh, Java Grande’99]
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Why It Is an Incorrect Compiler 
Optimization?

§ The same as moving w immediately after u and 
executing u and w together without allowing x
interleaved in between them, i.e., v and w are 
reordered.

§ A counter-intuitive result can occur, and this violates 
sequential consistency. 

Thread 1

u x = p.k;
v y = q.k;
w z = p.k;

Thread 2

x p.k = 1;

Thread 1

u x = p.k;
w z = p.k;
v y = q.k;

Thread 2

x p.k = 1;
u x = p.k;
w z = p.k;
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Another Correctness Criterion
(Subset Correctness)

§ A compiler transformation is correct if the set 
of all possible observable behaviors of a 
transformed program is a subset of all possible 
observable behavior of the original program 
[Lee, Padua, Midkiff, PPoPP’99].
§ A sequential consistency violation implies a 

subset correctness violation, but not vice 
versa.
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How to Avoid the Incorrect Optimization?

§ Use delays as constraints for the compiler transformations.
§ Use a confluence function π to summarize the interaction 

between threads (concurrent static single assignment (CSSA) 
form [Lee,Padua,Midkiff. PPoPP’99]).

§ Use global value numbering to detect equivalent variables 
(concurrent global value numbering [Lee,Padua,Midkiff. 
PPoPP’99]).

Thread 1

p.k = …
…

u x = p.k;
v y = q.k;
w z = p.k;

Thread 2

x p.k = 1;

Thread 1

p.k0 = …
…

u x = π(p.k0,p.k1);
v y = π(p.k0,p.k1); 
w z = π(p.k0,p.k1);

Thread 2

x p.k1 = 1;
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Conclusions 

§ The compiler presents to programmers a natural and 
intuitive memory model (sequential consistency) 
irrespective of whether the underlying memory 
consistency model follows a sequentially consistent or 
a relaxed model. 

§ The compiler makes it possible to apply classical 
compiler optimization techniques correctly to parallel 
programs that are not handled by conventional 
compilers.
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