
1

Jaejin Lee
Department of Computer Science &

Engineering
Michigan State University
jlee@cse.msu.edu

http://www.cse.msu.edu/~jlee

2

§ The Java memory model is widely known as difficult
to understand.
− It follows a relaxed memory consistency model.

§ Data races and synchronization make it impossible to
apply classical compiler optimization and analysis
techniques directly to Java concurrent programs.
− It follows a shared memory programming model.

§ The synergic effect of the non-intuitive Java memory
model and the non-deterministic behavior prevents
the programmer from writing correct and efficient
Java concurrent programs.

§ What if the burden of considering the underlying
memory model is shifted to a compiler?

3

§ The compiler presents to programmers a sequentially consistent
view of the underlying architecture.

§ The compiler makes it possible to apply classical compiler
optimization techniques correctly to parallel programs that are
not handled by conventional compilers.

Programmer

Multiprocessor Architecture

Compiler

Relaxed Memory Consistency
(the Java memory model)

Sequential Consistency

Sequential Consistency

Multiprocessor Architecture

Fence instruction insertion

Sequential Consistency

Optimization

4

An Example of Incorrect Execution in Java

§ With prescient stores.
§ If X is equal to 1 then Y should be 0 (reasoning

based on sequential consistency).
§ A counter-intuitive result can occur, and this violates

sequential consistency. It appears that instructions
(i.e., u and v) are reordered.

Initially, x = 0, y = 0

Thread 1

u X = x
v y = 1

Thread 2

w Y = y
x x = 1

Incorrect outcome: X = 1, Y = 1
[Pugh, Java Grande’99]

v y = 1 X: 0, Y: 0

w Y = y X: 0, Y: 1

x x = 1 X: 0, Y: 1

u X = x X: 1, Y: 1

5

Correctness Criterion (Sequential Consistency)

Execution
uX=xvy=1wY=yxx=1
wY=yxx=1uX=xvy=1
wY=yuX=xxx=1vy=1

…

X Y
0 1
1 0
0 0
…

uX=xvy=1xx=1wY=y 0 1

vy=1wY=yxx=1uX=x 1 1

Unordered, but
sequentially
consistent

Not sequentially
consistent

(Operations are atomic)

§ A multiprocessor system is sequentially consistent if the result of
any execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence
in the order specified by its program. [Lamport, IEEE TOC, 1979]

Thread 1

u X = x
v y = 1

Initially, x = 0, y = 0

Thread 2

w Y = y
x x = 1

6

§ Finds conflict relation
(conflict edges) using an
escape analysis.

§ Finds critical cycles (minimal
mixed cycles that consist of
program ordering edges and
conflict edges).

u X=x

v y=1

w Y=y

x x=1

Initially x=0,y=0

§ Delays (uDv and wDx) are the program ordering
edges in the critical cycles (e.g., v w x u v).

§ Enforcing delays is a sufficient condition to guarantee
sequential consistency.

§ Delays are implemented by fence instructions or the
ordering constraints of the underlying machine.

Delay Set Analysis [Shasha and Snir, TOPLAS, 1988]

7

§ Dm = ((D∪Do)+)tr – Do (reduce the number
of delays by using the ordering constraints
of the underlying architecture)

§ We insert a fence instruction for each
delay uDmv in a memory-barrier node w.

§ w always executes after u and before v
whenever u and v executes.

§ A node s dominates a node v with respect
to a node u (s domu v) if every control
flow path from u to v goes through s [Lee
and Padua, PACT’00].

§ Any node in domu[v] can be a memory-
barrier node to enforce the delay uDv.

delay
control flow

u

v

w

8

Minimizing
the Number of Memory-Barrier Nodes

u

w

v

x

delay
control flow

§ If a node w∈domu[v], then w enforces

the delay uDv.
§ One memory-barrier node w (or v) is

enough to enforce both delays uDv and
wDx.

(domu[v] ∩ domw[x] = { w, v })
§ Minimizing the number of memory-

barrier nodes by using dominators with
respect to a node is an NP-hard problem
[Lee and Padua, PACT’00].

§ Use a greedy approximation algorithm.

9

An Example of an Incorrect Compiler
Optimization in Java

§ p.k is not modified in between u and w. In classical sense, it is
OK to replace p.k in w with x (one form of classical common
subexpression elimination).

§ If z is equal to 0 then both x and y should be 0 (reasoning based
on sequential consistency).

Initially, p and q are
aliases and p.k = 0

Thread 1

u x = p.k;
v y = q.k;
w z = p.k;

Thread 2

x p.k = 1;

Incorrect outcome:
x=0, y=1, z=0

Thread 1

u x = p.k;
v y = q.k;
w’z = x;

Thread 2

x p.k = 1;

[Pugh, Java Grande’99]

10

Why It Is an Incorrect Compiler
Optimization?

§ The same as moving w immediately after u and
executing u and w together without allowing x
interleaved in between them, i.e., v and w are
reordered.

§ A counter-intuitive result can occur, and this violates
sequential consistency.

Thread 1

u x = p.k;
v y = q.k;
w z = p.k;

Thread 2

x p.k = 1;

Thread 1

u x = p.k;
w z = p.k;
v y = q.k;

Thread 2

x p.k = 1;
u x = p.k;
w z = p.k;

11

Another Correctness Criterion
(Subset Correctness)

§ A compiler transformation is correct if the set
of all possible observable behaviors of a
transformed program is a subset of all possible
observable behavior of the original program
[Lee, Padua, Midkiff, PPoPP’99].
§ A sequential consistency violation implies a

subset correctness violation, but not vice
versa.

12

How to Avoid the Incorrect Optimization?

§ Use delays as constraints for the compiler transformations.
§ Use a confluence function π to summarize the interaction

between threads (concurrent static single assignment (CSSA)
form [Lee,Padua,Midkiff. PPoPP’99]).

§ Use global value numbering to detect equivalent variables
(concurrent global value numbering [Lee,Padua,Midkiff.
PPoPP’99]).

Thread 1

p.k = …
…

u x = p.k;
v y = q.k;
w z = p.k;

Thread 2

x p.k = 1;

Thread 1

p.k0 = …
…

u x = π(p.k0,p.k1);
v y = π(p.k0,p.k1);
w z = π(p.k0,p.k1);

Thread 2

x p.k1 = 1;

13

Conclusions

§ The compiler presents to programmers a natural and
intuitive memory model (sequential consistency)
irrespective of whether the underlying memory
consistency model follows a sequentially consistent or
a relaxed model.

§ The compiler makes it possible to apply classical
compiler optimization techniques correctly to parallel
programs that are not handled by conventional
compilers.

14

References

§ Jaejin Lee and David Padua, “Hiding Relaxed Memory Consistency
with Compilers”, IEEE International Conference on Parallel
Architectures and Compilation Techniques, Oct. 2000.

§ Jaejin Lee, “Compilation Techniques for Explicitly Parallel Programs”,
Ph.D. Thesis, University of Illinois, UIUCDCS-R-93-1814, Oct. 1999.

§ Jaejin Lee, David A. Padua, and Samuel P. Midkiff, “Basic Compiler
Algorithms for Parallel Programs”, ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, May 1999.

§ Jaejin Lee, Samuel P. Midkiff, and David A. Padua, “A Constant
Propagation Algorithm for Explicitly Parallel Programs”, International
Journal of Parallel Programming, 26(5):563-589, 1998.

§ Jaejin Lee, Samuel P. Midkiff, and David A. Padua, “Concurrent Static
Single Assignment Form and Constant Propagation for Explicitly
Parallel Programs”, The 10th International Workshop on Languages
and Compilers for Parallel Computing, Aug. 1997.

