
Cost of Implementing Final
Fields



Memory Barriers

! To ensure final field immutability, requires
membar between construction and read of
field on reader & writer sides

! membar = 30 cycles on 21164 Alpha

! On 400 mHz machine = 75 nanosecs

! Test Setup

! Sun Ultra 60 (OK, is a cheat)

! Finalized SPEC benchmarks



Projected Slowdown on (finalized)
SPECjvm98

Seconds/MBSecondsBenchmark

30 (x1.2)25Mtrt

67 (x1.8)37Mpeg

21 (x1.4)15Jess

35 (x1.1)32Javac

28 (x1.6)17Jack

52 (x1.2)42Db

120 (x3.6)33Compress



getfields/getstatics/aaloads of
finals

! compress:1,154,641,140

! db:127,964,512

! jack:144,184,226

! javac:33,309,513

! jess:72,481,686

! mpeg:397,994,634

! mtrt:66,610,552



getfields/getstatics/aaloads

! Optimized so that there is only one mb for a
given object in a method
! Maximum we can hope for from data flow analysis
! Avg of 60% speed up, but still ugly

! compress:225,926,010 (-81%)
! db:64,563,485 (-50%)
! jack:13,024,896 (-91%)
! javac:18,500,829 (-45%)
! jess:30,442,641(-58%)
! mpeg:14,440,020 (-97%)
! mtrt:65,999,754 (-1%)



Object Aging

! Why look twice at objects?
! Can have a nursery for new objects where

you do MBs

! Can have an "older area_ where you do not
do MBs

! Can accomplish in a couple of ways



Methods

! Execute Global Memory Barrier (GMB)
! Execute a GMB whenever a getfield of a final

field of a new object is performed

! Execute a GMB at each context switch

! Execute a GMB whenever n getfields of final
fields of new objects are performed
! For other n-1, execute local membars



Method 1

" If a GMB is executed every time there is a
getfield of a final field of a new object
" Also "ages" any other objects created recently

" Since they are GMBs, cannot compare
directly to MB costs

" But we get an order of magnitude or two



Results

" compress:2,299 (x500000)

" db:1,473,201(x90)

" jack: 2,843,324 (x50)

" javac:1,375,102 (x30)

" jess:1,490,406 (x50)

" mpeg:2,542 (x160000)

" mtrt:196,403 (x330)



Method 2

" Further refinement:
" Getfield of a final field with a reference to it stored in

the heap

" If it is not in the heap, then it is local, and we do not
need to perform the MBs

" Done in addition to dataflow

" Might be difficult to detect references stored in
heap
" But let_s look at results anyway



Results

" compress:125 (x920000)

" db:64 (x2000000)

" jack:3,261 (x44000)

" javac:121,942 (x270)

" jess:776 (x93000)

" mpeg:91(x4400000)

" mtrt:400 (x170000)



Method 3

" Why have a global memory barrier each
time?
" Might have significantly fewer if we had a

global memory barrier every n accesses of a
new object

" Every other access we have a local MB

" Would optimize n for GMB time vs. MB time



Performing a GMB after X MBs
GMBs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 & 10

javac
jess
jack
compress
mtrt
mpegaudio



Cost of Performing MBs and
GMBs

" Depends on the system

" Number of MBs is roughly a multiple of
number of GMBs
" Performed after n membars, it is n-1 times

number of GMBs

" Could tune performance based on
comparative cost of GMB on a given system



Method 4

" What if we did it on every context swap, instead
of every n mbs?

" Simulated by
" counting instructions for a benchmark
" dividing by time to get n
" issuing a GMB every n instructions

" Results are fairly good, but a few degenerate
cases



Results

" number of GMBs

" compress:125

" db:123

" jack:1,330,470

" javac:656

" jess:1,155

" mpeg:220

" mtrt:219

" number of MBs

" compress:138

" db:30,466,705

" jack:0

" javac:602,764

" jess:42

" mpeg:22

" mtrt:56



Ultimately

" The cost of implementing final field
immutability in an obvious way would be
excessive

" Must have a few tricks and tweaks to
make finals reasonable


