Spring 2004 Khuller

HONR 278J
Solutions to Homework 3

Solution 1. Sorting in time O(n + k) where k is the number of inversions and n is the
number of elements. The algorithm is the same as Insertion Sort! We assume we are
given n numbers, A[i], 1 < i < n. We will assume that we have already sorted the
first p numbers in increasing order. We will show how to extend this sorted order to
the first p + 1 numbers. Initially, p = 1 (note that A[1] is sorted). We now consider
Alp+1]. If Alp + 1] > A[p] then there is nothing else to do, and now the first p + 1
numbers are sorted. Otherwise we have to find the right place to “insert” A[p + 1].
Note that we will scan the sorted group from right to left to find the correct place to
insert the new element A[p+ 1]. Each time we compare A[p+ 1] to A[j] with j < p+1
and A[p+1] < A[j], this is an inversion. Note that the number of comparisons needed
is exactly one more than the number of elements that are greater than A[p + 1]. But
each of these elements is an inversion! Imagine that we have to pay one dollar for each
comparison made. If this causes an inversion we pay the “inversion account”. Note
that while inserting A[p+ 1] to the correct position, we charge all but one comparison
to the “inversion account”. For the last comparison we pay the element itself. Note
that the inversion account has k dollars, and each element has one dollar. Thus the
total number of comparisons is n + k.

Solution 2. Add the degree of each node. In doing this sum note that we count each edge
exactly twice. Thus the total sum of degrees is exactly twice the number of edges.
Another way to prove it is by induction on the number of edges. Consider a graph
G = (V,E). Suppose we order the edges e, e, .... Suppose we have inserted i edges
and have a graph G;. Note that the claim is clearly true for i = 1 (base case). We
have one edge, so the RHS is 2. Exactly two nodes have degree 1. Suppose this claim
is true for the first p edges. When we add e,;; then the RHS increases by 2, and
the LHS also increases by exactly 2, since the degrees of two nodes is increased (end
points of ep41), all the others stay the same. The RHS is 2(p+1) = 2+ 2p. Note that
by the induction hypothesis, 2p is exactly the sum of the degrees of all nodes before
edge epy1 was added. Thus the claim is true.

Solution 3. Inboth cases, once the heap has been built, the time to run HEAPSORT(A)
will take O(nlogn). The only benefit of having the array sorted in decreasing order is
that the time spent on building the heap is faster since the elements satisfy the heap
order property for a Max Heap. However, each maximum element is moved to the
end, and replaced by a small element. Thus it will still take O(logn) time to restore
the heap order property.

Solution 4. Not done...
Solution 5.

1. A table in increasing order does represent a valid Min-Heap. This is because the
children of element 7 are 27 and 2¢ + 1. If the table is in sorted order, then the



element values stored at 27 and 27 4 1 are both larger than the value stored at 4.
Thus it satisfies the requirement for a min-heap.

. After inserting the 8 into the Max-heap, the table is 10,8,6,7,2,4,3,5. Essentially,
8 gets added at the end of the table, and since its value is greater than its
parentvalue 5, we exchange the two values. Its new parent has value 7, and we
exchange them again once more.



