
CMSC498K Homework 1 Solutions

Richard Matthew McCutchen

Problem 1

I’m going to prove only that Li,j and Mi,j are lower and upper bounds on the number of elements greater than
the jth in the sample (and not that the bounds are achievable) because this is all that is needed for the rest of
the proof. In fact, Mi,s is not achievable for i > 1: it is (s + i− 1) · 2i but there are only s · 2i elements in the
entire set!

Lemma: Li,j = j · 2i − 1 and Mi,j = (i + j − 1)2i.

Proof: Let S = (S1, . . . , Ss) be a sample at level i. To avoid clunkiness in stating the proof of the formula for Mi,j ,
we begin by observing that the formula is equivalent to saying that S’s set has at least M ′

i,j = s · 2i−Mi,j − 1 =
(s + 1− i− j)2i − 1 elements less than Sj . The proof proceeds by induction on i.

i = 0: A sample at level 0 is just the original set, so the elements greater than the jth element of the sample
are exactly elements 1 through j − 1 of the sample. Thus L0,j = M0,j = j − 1, which agrees with the formulas.

i > 0: Suppose the lemma holds for i − 1, and let A and B be the samples at level i − 1 from which S
was generated. S consists of the even-indexed elements of A and B, sorted in increasing order. Without loss of
generality, suppose Sj came from A; specifically, suppose it was A2p. Since A is sorted, even-indexed elements
of A appear in S before or after Sj as they appeared before or after A2p in A. Thus, S1 through Sj consist of
A2, A4, . . . , A2p as well as some elements of B. Since the elements of A take up p spots, the remaining j − p
spots must contain B2, . . . , B2(j−p). In order for the elements of A to fit, we have p ≤ j.

Now, what elements of S’s set are necessarily greater than Sj? By the inductive hypothesis, A’s set has at
least Li−1,2p = 2p ·2i−1−1 elements greater than A2p = Sj . Furthermore, if p < j, then B2(j−p) and the at least
Li−1,2(j−p) = 2(j− p) · 2i−1− 1 greater elements of B’s set are also greater than Sj , contributing 2(j− p) · 2i−1

additional elements. (If p = j, this quantity is just zero.) Thus, S’s set has a total of at least

(2p · 2i−1 − 1) + 2(j − p) · 2i−1 = 2j · 2i−1 − 1 = j · 2i − 1 = Li,j

elements greater than Sj , as desired.
The argument for M ′

i,j is similar. Based on the composition given above of elements S1 through Sj , elements
Sj+1 through Ss must consist of A2(p+1) through As and B2(j−p+1) through Bs. In order for the elements of A
to fit, we have (s− 2p)/2 ≤ s− j, which is to say, 2(j − p) ≤ s.

What elements of S’s set are necessarily less than Sj? A’s set contributes at least

M ′
i−1,2p = (s + 1− (i− 1)− 2p)2i−1 − 1

such elements. Furthermore, if 2(j − p) < s, then B2(j−p+1) and the at least

M ′
i−1,2(j−p+1) = (s + 1− (i− 1)− 2(j − p + 1))2i−1 − 1

lesser elements of B’s set are also less than Sj , contributing (s + 1 − (i − 1) − 2(j − p + 1))2i−1 additional
elements. Thus, S’s set has a total of at least(

(s + 1− (i− 1)− 2p)2i−1 − 1
)

+
(
(s + 1− (i− 1)− 2(j − p + 1))2i−1

)

1

=
(
2(s + 1− (i− 1)− p− (j − p + 1)

)
2i−1 − 1 = (s + 1− i− j)2i − 1 = M ′

i,j

elements less than Sj , as desired. (If on the other hand 2(j − p) = s, which is to say 2p = 2j − s, then the
elements of A’s set are enough by themselves:

(s + 1− (i− 1)− 2p)2i−1 − 1 = (s + 1− (i− 1)− 2j + s)2i−1 − 1

= (2s + 2− i− 2j)2i−1 − 1 ≥ (2s + 2− 2i− 2j)2i−1 − 1 = (s + 1− i− j)2i − 1 = M ′
i,j .)

2

Problem 2

We use the trick described in class on February 19 to handle duplicates (assuming, say, that everything in Y
comes after everything in X), so from here on we can assume there aren’t any. n = 1 is trivial; we consider
n ≥ 2. Let X(i) denote the ith element of X.

• Set i← 1, j ← 1, and w ← n.

• While w > 2:

– Let k = b(w − 1)/2c. If X(i + k) < Y (j + k), then set i ← i + k; otherwise, set j ← j + k. Either
way, set w ← w − k.

• Return the median of X(i), X(i + 1), Y (i), and Y (i + 1).

Lemma: Let
S = {X(i), . . . , X(i + w − 1), Y (j), . . . , Y (j + w − 1)}.

Between executions of the loop, the algorithm maintains the invariant that the median of S is the same as that
of all 2n elements.

Proof: The invariant holds at the beginning because S contains all 2n elements. We must show that a single
iteration of the loop preserves it. By the inductive hypothesis, it is enough to show that the median of S after
the iteration is the same as the median of S before the iteration.

S contains 2w elements, and the median is the average of the two middle elements, which have ranks w and
w + 1. WLOG, suppose X(i + k) < Y (j + k); otherwise swap X with Y and i with j in the following argument.

Let u ∈ [0, k). All the elements X(i + k) through X(i + w − 1) are greater than X(i + u) because X is
sorted. But we also know Y (j + k) > X(i + k), and elements Y (j + k + 1) through Y (j + w − 1) are greater
than Y (j + k) because Y is sorted. Thus, the 2(w − k) elements

X(i + k), . . . , X(i + w − 1), Y (j + k), . . . , Y (j + w − 1)

are all greater than X(i + u), so the rank of X(i + u) in S is at most 2w − 2(w − k) = 2k ≤ w − 1. Therefore,
by setting i← i + k and w ← w− k, we are effectively dropping the k elements X(i) through X(i + k− 1) from
S, all of which have rank at most w − 1 and are therefore less than the two elements determining the median.

Similarly, let v ∈ [w− k,w). All the elements Y (j) through Y (j + w− k− 1) are less than Y (j + v) because
Y is sorted. We have 2k ≤ w − 1, so k ≤ w − k − 1, so Y (j + k) is among these elements. We also know
X(i+k) < Y (j +k), and elements X(i) through X(i+k−1) are less than X(i+k) because X is sorted. Thus,
the (w − k) + (k + 1) = w + 1 elements

Y (j), . . . , Y (j + w − k − 1), X(i), . . . , X(i + k)

are all less than Y (j + v), so the rank of Y (j + v) in S is at least w + 2. Therefore, by setting w ← w − k and
leaving j unchanged, we are effectively dropping the k elements Y (j + w− k) through Y (j + w− 1) from S, all
of which have rank at most w + 2 and are therefore less than the two elements determining the median.

2

We dropped k elements on each side of the two determining the median, so the median remains unchanged,
as desired. 2

When the final step is reached, w will be 2, so by the Lemma, the median of X(i), X(i + 1), Y (i), and
Y (i + 1) is the same as that of the original 2n elements. Therefore, the algorithm’s result is correct. For the
running time, note that the quantity v = w − 2 decreases by at least half its value on each iteration until it
reaches zero (because k = b(w− 1)/2c = d(w− 2)/2e = dv/2e), so there are O(log vorig) = O(log n) iterations,
and each iteration takes constant time.

Problem 3

Here’s the incredibly slick algorithm:

• Select the median m of S using the linear-time algorithm based on groups of 5. (If |S| is even, we can just
select each of the two middle elements and average them.)

• Create a new array containing the absolute difference between m and each element of S. Any ties in
comparing elements of this array are broken by considering earlier elements to be smaller.

• Select the element of rank k in the difference array; call it d.

• Scan the difference array, and for each element less than d as well as d itself, output the corresponding
element of S.

Since d has rank k, the algorithm outputs the elements of S corresponding to the k smallest absolute differ-
ences. These are just the k elements of S closest to the median, so the algorithm is correct. And for the running
time, each of the four steps of the algorithm runs in O(n) time, so the entire algorithm runs in O(n) time.

Problem 4

Whatever number the first die shows, the probability that the second die differs from it is 5/6. Assuming that
happens, the probability that the third die differs from the first two is 4/6, and so on. Thus, the probability that
all the numbers are different is 5!/65 = 5/324.

Problem 5

Let m be the number of edges in the graph. We assume that the vertices are numbered 1 to n and we have the
graph in adjacency-list form. Here’s the algorithm:

• For each vertex, sort its adjacency list in increasing order.

• For each edge e = (vi, vj):

– Scan the (sorted) adjacency lists of vi and vj in tandem, visiting elements in increasing order, as one
would do in mergesort. For each vertex vk that appears in both lists, report (vi, vj , vk) as a triangle.

Clearly every triple (vi, vj , vk) that the algorithm reports as a triangle really is a triangle because (vi, vj) is
an edge and vk is adjacent to both of its endpoints. Just as clearly, every triangle in the graph will be reported
(once for each of its edges). Thus, the algorithm is correct; we just need to analyze its running time.

Suppose the vertex degrees do not exceed ∆. Then each adjacency list is at most ∆ in length, so sorting one
adjacency list takes time O(∆ log ∆) and sorting all of them takes time O(n∆ log ∆). Scanning the adjacency
lists for one of the m edges takes time proportional to the total length of the two lists, which is O(∆). Thus, the
entire list-scanning phase takes time O(m∆) for a grand total of O(∆(n log ∆ + m)).

3

If ∆ is constant, then m ≤ n∆/2 (because the sum of the vertex degrees is at most n∆ and each edge
contributes 2 to this sum), so the running time is linear in n. In the general case, no vertex degree can exceed
n− 1, so we can take ∆ = n− 1 for a running time of O(n2 log n + mn).

For extremely sparse graphs (m = o(n log n)), we can improve the running time by leaving the adjacency lists
unsorted and processing an edge by inserting the neighbors of each endpoint into a hashtable. This eliminates
the sorting phase, and the scanning phase still runs in O(m∆) time unless we have really bad luck with the
hashtable, so the running time becomes O(mn). (We can avoid the need for a potentially slow reinitialization
of the hashtable for each edge by storing a generation counter in each hashtable entry and ignoring entries from
outdated generations.)

4

