
CMSC 498K : Homework 2

Noah Luck Easterly

March 6, 2008

Problem 1.

Suppose that a document contains 300 pages and contains 20 misprints. What is the probability
that there is more than one misprint on a particular page?

Assuming that all the misprints are independently randomly distributed, we have

Prob(misprint i is on page j) =
1

300

Prob(page j has exactly k misprints) =
(

20
k

) (
1

300

)k (
299
300

)20−k

Prob(page j has m or more misprints) =
20∑

k=m

Prob(page j has exactly k misprints)

= 1−
m−1∑
k=1

Prob(page j has exactly k misprints)

⇒
Prob(page j has more than one misprint)
= 1− [Prob(page j has exactly 0 misprints) + Prob(page j has exactly 1 misprint)]

= 1−

[(
20
0

) (
1

300

)0 (
299
300

)20

+
(

20
1

) (
1

300

)1 (
299
300

)19
]

= 1−

[(
299
300

)20

+ 20 ∗ 29919

30020

]

= 1− 29919

30020
[299 + 20]

= 1− 29919

30020
∗ 319 ≈ 2.03 ∗ 10−3

Problem 2.

Suppose 4% of the parts made in a factory are defective. Suppose we ship out a batch of 25
parts. What is the probability that there are no defective parts in this batch?

Assuming that all occurrences of parts are independent, we have

Prob(any particular part is defective) =
1
25

1

⇒

Prob(in a batch of n parts, exactly k are defective) =
(

n

k

) (
1
25

)k (
24
25

)n−k

Prob(in a batch of 25 parts, exactly 0 are defective) =
(

25
0

) (
1
25

)0 (
24
25

)25

=
(

24
25

)25

≈ 0.360

Problem 3.

Suppose we toss 1000 fair coins. Use Chernoff bounds to derive an upper bound on the proba-
bility that we either get less than 400 heads or more than 600 heads is small.

A fair coin means that
Prob(head) = Prob(tail) =

1
2

Each fair coin is independent. Define 1000 random variables

Xi =

{
1, if the ith coin is a head;
0, otherwise.

Then
Prob(Xi = 1) =

1
2

Let

X =
1000∑
i=1

Xi

Then

µ = E[X] = E[
1000∑
i=1

Xi] =
1000∑
i=1

E[Xi] =
1000∑
i=1

1
2

= 500

So

Prob(less than 400 heads or more than 600 heads) = Prob(|X − µ| ≥ 100)

The corollary to Chernoff’s bounds states:

Prob(|X − µ| ≥ δµ) ≤ 2e(−µδ2)/2

So, with δ = 1
5 , we have,

Prob(less than 400 heads or more than 600 heads) ≤ 2e(−500∗ 1
5

2
)/2 = 2e−10 ≈ 4.54 ∗ 10−5

2

Problem 4.

Suppose we randomly label n nodes of a graph using labels in {1,. . . ,n}. Suppose we now select
a node if its label value is smaller than the labels of all its neighbors. What is the probability
that a node v is selected? Also prove that two adjacent nodes cannot be selected.

Let vk be the node with label k. Due to the selection method

Prob(vk is selected) = Prob(vk is connected only to nodes later in labeled order)

Suppose we know the degree dk of each node vk. There are
(
n−1
dk

)
different sets of size dk

among the other n−1 nodes. If we assume that each node’s edges are evenly distributed among
the other edges, the number of ways of choosing dk nodes from the n− k nodes later in labeled
order than vk is

(
n−k
dk

)
. Therefore,

Prob(vk is selected) =

(
n−k
dk

)(
n−1
dk

)
If we don’t know the degree of each node, but only know the total number of edges m, we

approximate dk by assuming the edges are evenly distributed through the nodes, so that each
node has degree, d = 2m

n . This gives

Prob(vk is selected) =

(
n−k

d

)(
n−1

d

)
v1 is always selected (as it has the minimum label), so Prob(v1 is selected) = 1. Under our

approximation, for k > n−d, vk is never selected, as at least one of the d nodes vk is connected
to must have label ≤ n− d, so Prob(vk is selected , k > n− d) = 0.

For k ∈ (1, n− d], we have

Prob(vk is selected) =

(
n−k

d

)(
n−1

d

) =
(n−k)!

d!(n−k−d)!

(n−1)!
d!(n−1−d)!

=
(n−k)!

(n−k−d)!

(n−1)!
(n−1−d)!

=
(n−1−d)!
(n−k−d)!

(n−1)!
(n−k)!

=
k−1∏
i=1

n− i− d

n− i

⇒

Prob(vk is selected) =
(

n− k + 1− d

n− k + 1

) k−2∏
i=1

n− i− d

n− i

=
(

n− k + 1− d

n− k + 1

)
Prob(vk−1 is selected)

Which gives a natural sense of how the probability changes as k increases in this scenario.
To see that no two adjacent nodes can both be selected, consider adjacent nodes vj , vk. If

vj is selected, this means that j < i,∀vi adjacent to vj . In particular, this means that j < k.
But this means ∃vi = vj , s.t. vk adjacent to vi, i < k, so vk cannot be selected.

3

Problem 5.

Suppose we have a collection of sensor that monitor some targets. Assume that each target
can be monitored by exactly two sensors. Construct a graph G = (V,E) where nodes in V
correspond to sensors, and corresponding to each target there is an edge in the graph connecting
the sesnsor nodes. Our goal is to put the sensors into an on-off cycle to save batter power. Lets
assume that we partition the sensors into two groups A and B, such that each sensor is in
exactly one group and the groups are disjoint. Sensors in group A are switched on for some
time, and then they are shut off and sensors in group B are switched on. Some targets are
always monitored since one of the two sensors is always on.

* Give an example to show that it may be the case that no matter how we come up with
a partitioning of the sensors in some cases there is no schedule that always monitors all
targets.
The simple example is the triangle graph, with three edges connecting three nodes. In
any partition, one group must contain at least two edges, which means that the other
partition cannot cover the point where those two edges meet.

* If the graph has the property that such a schedule exists then develop an algorithm to
find it.
Unfortunately, I was unable to think of any algorithm better than an exhaust, which takes
O((|V |+ |E|)2|E|−1).

Input: Graph G = (V,E)
Output: Partition (A,B)
Choose e ∈ E
foreach A ∈ P(E − {e}) do

B ← E −A
foreach v ∈ V do

countA[v]← 0
countB[v]← 0

end
foreach (u, v) ∈ A do

countA[u]← countA[u] + 1
countA[v]← countA[v] + 1

end
foreach (u, v) ∈ B do

countB[u]← countB[u] + 1
countB[v]← countB[v] + 1

end
done← true
foreach v ∈ V do

if countA[v] = 0 or countB[v] = 0 then
done← false

end
end
if done then

return (A,B)
end

end

4

Since this iterates over all partitions where e ∈ B, and the labeling of the partitions is
arbitrary, it’s easy to see that this checks all possibile partitions. So if one exists in which
both groups are edge covers of the graph, it will be found.

There exists a polynomial algorithm to find a single, minimal edge cover, but I don’t know
it. I suspect it could be adapted to find a partition s.t. each side is an edge cover, though.

* Suppose we partition the sensors randomly. In other words, each sensor joins partition A
with probability 0.5 and B with probability 0.5. What is the expected number of targets
that are covered in both time slots?
If a target v is covered by dv sensors, then the probability that all those sensors are in
group A is

(
1
2

)dv . The same for group B. Therefore, the probability that it is covered by

sensors from both groups is 1− 2
(

1
2

)dv = 1− 21−dv .

If we define the indicator random variable

Xv =

{
1, v is covered by both A and B;
0, otherwise.

So X, the total number of sensors covered by both halves of the partition, is X =
∑

v Xv,
then

E[X] = E[
∑
v∈V

Xv] =
∑
v∈V

(1− 21−dv)

If we approximate dv by d = 2|E|
|V | , the average number of sensors per target, then

E[X] =
∑
v∈V

(1− 21−d) = |V |(1− 21−d)

5

