
CMSC498K Homework 4 Solutions

Richard Matthew McCutchen

Problem 1

Let T be the event that the coin lands tails, and let W be the event that the selected ball is white. The coin is
fair, so P (T) = 1/2. If the coin lands tails, the ball is taken from urn B, which has 3 white balls among a total
of 15, so P (W | T) = 3/15. Similarly, P (W | ¬T) = 5/12. We want to find P (T |W). By Bayes’s Law:

P (T |W) =
P (T ∩W)

P (W)
=

P (T) · P (W | T)
P (T) · P (W | T) + P (¬T) · P (W | ¬T)

=
(1/2)(3/15)

(1/2)(3/15) + (1/2)(5/12)
= 12/37.

Problem 2

Let σi(S) denote the element of S that comes first in σi; then the sketch of S is
(
σi(S)

)k

i=1
. Consider a fixed i.

σi is random, so σi(A∪B) is equally likely to be any of the elements of A∪B, each with probability 1/|A∪B|.
In particular,

P
(
σi(A ∪B) ∈ A ∩B

)
= |A ∩B|/|A ∪B| = s(A,B).

Now observe that σi(A∪B) ∈ A∩B if and only if σi(A) = σi(B). For if σi(A∪B) is in A∩B, then it is in
both A and B, while neither A nor B has an element that comes before it in σi; thus σi(A) = σi(A∪B) = σi(B).
Conversely, if σi(A) = σi(B) = x, then x is in both A and B and neither A nor B has an element that comes
before x in σi, so σi(A ∪B) = x ∈ A ∩B. Therefore, P

(
σi(A) = σi(B)

)
= s(A,B).

For each i, let Xi be a random variable that is 1 if σi(A) = σi(B) and 0 otherwise. We have shown that

E(Xi) = s(A,B). Let X =
∑k

i=1 Xi; then E(X) = ks(A,B). The orderings σi are all independent, so the
variables Xi are all independent, so we can apply the two-sided Chernoff bound to X:

P
(
|X − E(X)| ≥ εE(X)

)
≤ 2 exp(−ε2E(X)/3)

⇒ P
(
(1− ε)ks(A,B) ≤ X ≤ (1 + ε)ks(A,B)

)
≥ 1− 2 exp(−ε2ks(A,B)/3)

⇒ P
(
(1− ε)s(A,B) ≤ X/k ≤ (1 + ε)s(A,B)

)
≥ 1− 2 exp(−ε2ks(A,B)/3)

Thus, X/k is a good estimate of s(A,B), and we can compute it easily by comparing the two sketches. Suppose
we want

(1− ε)s(A,B) ≤ X/k ≤ (1 + ε)s(A,B)

to hold with error probability δ. It is sufficient that:

2 exp(−ε2ks(A,B)/3) ≤ δ

⇔ 2/δ ≤ exp(ε2ks(A,B)/3)
⇔ ln(2/δ) ≤ ε2ks(A,B)/3

⇔ k ≥ 3 ln(2/δ)
ε2s(A,B)

.

Note: It occurs to me that Chernoff bounds are a form of statistical inference and thus the resulting bounds
should be taken with the same grain of salt as traditional confidence intervals. Consider an experiment that

1

measures a statistic x̂ and uses it as an estimate of a parameter x having some prior probability distribution.
Statistical inference gives the probability that x̂ estimates x well when x has a particular value, or when weighted
by the prior probability distribution of x, the overall probability that x̂ estimates x well whatever x is. These
are not the same as the probability that x̂ estimates x well given the observed value of x̂, which is the relevant
probability in an experiment. Still, statistical inference is a reasonable way for computer scientists to analyze a
statistical algorithm without reference to a particular prior probability distribution.

Problem 3

This is easily done with a hash function. Current computers make it most convenient to use something like MD5
or SHA-1, but we’ll use a universal hash function to get a provable probability bound. Before departure, the
explorers should agree on a positive integer m, a prime p > max(m, 2n), and a randomly chosen hash function
h ∈ Hp,m. When the explorers reach their respective planets, the first explorer interprets the DNA of the Mars
species as an integer x between 0 and 2n − 1, computes h(x), and sends it to the second explorer. The second
explorer interprets the DNA of the Venus species as an integer y in the same way, computes h(y), and declares
the two species identical if and only if h(x) = h(y).

If the species are actually identical, then x = y, so h(x) = h(y) and the explorers will correctly determine
this. If the species differ, then it is a property of the universal hash function Hp,m that Ph

(
h(x) = h(y)

)
≤ 1/m;

thus, the explorers will determine that the species differ with error probability 1/m. The explorers can make the
error probability as small as desired by choosing large m.

Problem 4

Consider a graph G = (V,E). Here’s one easy algorithm:

• Load all edges into a hash table for constant-time adjacency checks.

• For each edge e1 = (a, b) and each edge e2 = (c, d):

– Check whether the edges (a, c), (a, d), (b, c), and (b, d) are all present. If so, conclude that the graph
has the K4 {a, b, c, d}.

• If no K4s were found, conclude that the graph doesn’t have any.

Correctness should be obvious. There are O(|E|2) choices of e1 and e2 and it takes constant time to test each
one, so the algorithm runs in O(|E|2) time.

We can do better if G is d-inductive:

• Load all edges into a hash table.

• Find a d-inductive order of the vertices by repeatedly deleting the lowest-degree vertex, and arrange the
vertices in order from last deleted on the left to first deleted on the right. Scan the edges and build a “left
adjacency list” Lv for each vertex v containing its neighbors to the left (of which there are at most d). This
procedure was discussed in class on February 26.

• For each edge (c, d) (suppose c is left of d):

– Construct Lc ∩ Ld by scanning Lc and checking whether each vertex is also a left neighbor of d.

– For each pair of vertices a, b ∈ Lc∩Ld, check whether (a, b) is an edge. If so, conclude that the graph
has the K4 {a, b, c, d}.

• If no K4s were found, conclude that the graph doesn’t have any.

2

If the algorithm reports that {a, b, c, d} forms a K4, it is correct because it ensured that (c, d) and (a, b) are edges
and that both a and b are (left) neighbors of both c and d. Furthermore, if there is a K4, the algorithm will
consider its two rightmost vertices as c and d and its two leftmost vertices as a and b and thereby find the K4.
Thus, the algorithm is correct.

For the running time: The greedy deletion procedure can be done in O(|E|) total time if the lowest-degree
vertex is found using the same data structure as in the constant-worst-case candidate heavy-hitters algorithm.
Constructing the hash table and all the left adjacency lists takes O(|E|) time. The main loop considers |E| edges
(c, d) and processes each in O(d2) time since |Lc ∩ Ld| ≤ d. Thus, the total running time is O(d2|E|). It is also
O(d3|V |) since |E| ≤ d|V | for a d-inductive graph.

3

