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Abstract23

Clustering is a fundamental tool in data mining and machine learning. It partitions points into24

groups (clusters) and may be used to make decisions for each point based on its group. However,25

this process may harm protected (minority) classes if the clustering algorithm does not adequately26

represent them in desirable clusters – especially if the data is already biased.27

At NIPS 2017, Chierichetti et al. [18] proposed a model for fair clustering requiring the rep-28

resentation in each cluster to (approximately) preserve the global fraction of each protected class.29

Restricting to two protected classes, they developed both a 4-approximation for the fair k-center30

problem and a O(t)-approximation for the fair k-median problem, where t is a parameter for the31

fairness model. For multiple protected classes, the best known result is a 14-approximation for fair32

k-center [40].33

We extend and improve the known results. Firstly, we give a 5-approximation for the fair k-center34

problem with multiple protected classes. Secondly, we propose a relaxed fairness notion under which35

we can give bicriteria constant-factor approximations for all of the classical clustering objectives36

k-center, k-supplier, k-median, k-means and facility location. The latter approximations are achieved37

by a framework that takes an arbitrary existing unfair (integral) solution and a fair (fractional) LP38

solution and combines them into an essentially fair clustering with a weakly supervised rounding39

scheme. In this way, a fair clustering can be established belatedly, in a situation where the centers40

are already fixed.41
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1 Introduction51

Suppose we are to reorganize school assignments in a big city. Given a long list of children52

starting school next year and a short list of all available teachers, the goal is to assign the53

students-to-be to (public) schools such that the maximum distance to the school is small.54

The school capacity is given by the number of its teachers: For each teacher, s students55

can be admitted. This challenge is in fact an instance of the capacitated (metric) k-center56

problem. So using a k-center algorithm, you obtain a solution. However, by chance you57

notice an odd occurrence: One school has a huge excess of boys, while another has a surplus58

of girls. From previous assignment iterations, you remember that the schools prefer more59

balanced classes.60

Thus a new challenge arises: Assign the children such that the ratio is (approximately)61

1:1 between boys and girls, and minimize the maximum distance under this condition.1 This62

can be modeled by the following combinatorial optimization problem: Given a point set, half63

of the points are red, the other half is blue. Compute a clustering where each cluster has an64

equal number of red and blue points, and minimize the maximum radius.65

In this form, our example is a special case of the fair k-center problem, as proposed by66

Chierichetti et al. [18] in the context of maintaining fairness in unsupervised machine learning67

tasks. Their model is based on the concept of disparate impact [39] (and the p%-rule). The68

input points are assumed to have a binary sensitive attribute modeled by two colors, and69

discrimination based on this attribute is to be avoided. Since preserving exact balance in70

each cluster may be very costly or even be impossible2, the idea is to ensure that at least 1/t71

of the points of each cluster are of the minority color, where t is a parameter. A cluster with72

this property is called fair, and the fairness constraint can now be added to any clustering73

problem, giving rise to fair k-center, fair k-median, etc. Chierichetti et al. [18] develop a74

4-approximation for a special case of fair k-center and a (t +
Ô

3 + ‘)-approximation for one75

case of fair k-median.76

The fair clustering model as proposed by Chierichetti et al. [18] can also be used to77

incorporate other aspects into our school assignment example: For example, we might want78

to mitigate e�ects of gentrification or segregation. For these use cases, we need multiple79

colors. Then, in each cluster, the ratio between the number of points with one specific80

color and the total number of points shall be in some given range. If the allowed range is81

[0.20, 0.25] for red points, we require that in each cluster, at least a fifth and at most a fourth82

of the points are red. This models well established notions of fairness (statistical parity,83

group fairness), which require that each cluster exhibits the same compositional makeup as84

the overall data with respect to a given attribute. One downside of this notion is that a85

malicious user could create an illusion of fairness by including proxy points: If we wanted to86

create an boy-heavy school in our above example, we could still achieve the desired parity87

by assigning only girls that are very unlikely to attend. Thus, instead of enforcing equal88

representation in the above sense, one could also ask for equal opportunity as proposed by89

Hardt et al. [24] for the case where we take binary decisions (i.e., k = 2) and have access90

1 Or, incorporating the capacities, ensure that the teacher:boys:girls ratio is 1: s

2 : s

2 .
2 Imagine a point set with 49 red and 51 blue points: This cannot at all be divided into true subsets with

exactly the same ratio.
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to a labeled training set. This approach, however, raises the philosophical question if this91

equality of opportunity is a su�cient condition for the absence of discrimination. Rather92

than delving into this complex and much debated issue in this algorithmic paper, we refer to93

the excellent surveys by Romei and Ruggieri [39] and Z̆liobaitė et al. [43] that systematically94

discuss di�erent forms of discrimination and how they can be detected. We assume that it is95

the intent of the user to achieve a truly fair solution.96

Finding fair clusterings turns out to be an interesting challenge from the point of view of97

combinatorial optimization. As other clustering problems with side constraints, it loses the98

property that points can be assigned locally. But while many other constraint problems at99

least allow polynomial algorithms that assign points to given centers optimally, we show that100

even this restricted problem is NP-hard in the case of fair k-center.101

Chierichetti et al. [18] tackle fair clustering problems by a two-step procedure: First, they102

compute a micro clustering into so-called fairlets, which are groups of points that are fair and103

cannot be split further into true subsets that are also fair. Secondly, representative points104

of the fairlets are clustered by an approximation algorithm for the unconstrained problem.105

Consider the special case of a point set with 1:1 ratio of red and blue points. Then a fairlet is106

a pair of one red and one blue point, and a good micro clustering can be found by computing107

a suitable bipartite matching between the two color classes.108

The problem of computing good fairlets gets increasingly di�cult when considering more109

general variants of the problem. For multiple colors and the special case of exact ratio110

preservation (i.e., for all colors, the allowed range for its ratio is one specific number), the111

fairlet computation problem can be reduced to a capacitated clustering problem. This is used112

in [40] to obtain a 14 and 15-approximation for fair k-center and k-supplier with multiple113

colors and exact ratio preservation.114

We give an extensive overview of the existing results and further the fairlet approach in115

order to explore its applicability for di�erent variants of fair clustering in the Appendix of116

the full version [13]. Two major issues arise: Firstly, capacitated clustering is not solved for117

all clustering objectives; indeed, finding a constant-factor approximation for k-median is a118

long-standing open problem. Secondly, (even for k-center) it is unclear how fairlets even look119

like when we have multiple colors and want to allow ranges for the ratios. In this situation,120

subsets of very di�erent size and composition may satisfy the desired ratio.121

A di�erent approach is to combine an LP relaxation of the constrained problem with a122

solution of the unconstrained problem. This approach is not specific for fair clustering; its123

general idea was for example used by Chakrabarty and Swamy [15] for the minimum latency124

facility location problem. Finding a reasonably good solution to the unconstrained problem125

is usually the easiest task with such an approach. Although finding a good formulation of126

the constrained problem as a linear program can be challenging, the main problem in such127

approaches is to combine the two solutions into a new solution whose cost can be bound128

using the quality of the two original solutions. We use such an approach. We start with a129

set of centers, i.e., a solution to the unconstrained problem. Then we build an LP to find a130

(fractional) fair solution, and use weakly supervised LP rounding to obtain the final integral131

fair solution. We use this method to prove the following statements.132

I Theorem 1. There exists a 5 and 7-approximation for the fair k-center and k-supplier133

problem which preserves ratios exactly.134

I Theorem 2. Given any set of centers S, there exists an assignment „Õ : which is essentially135

fair and incurs a cost that is linear in the cost S induces on the unconstrained problem and136

the cost of an optimal fractional fair clustering of P , for all objectives k-center, k-supplier,137

k-median, k-means, and facility location.138

APPROX/RANDOM 2019
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I Corollary 3. There exists an essentially fair 3/5/3.488/4.675/62.856-approximation for139

the fair k-center/k-supplier/facility location/k-median/k-means problem.140

Here, essentially fair refers to our notion of bicriteria approximation: A cluster C is141

essentially fair if there exists a fractional fair cluster C Õ, such that for each color h the142

number of color h points in C di�er by at most 1 from the mass of color h points in C Õ.143

So this is a small additive fairness violation. After the publication of our results on arXiv144

(Nov 2018), we have learned that in independent research, Bera et al. [12] find algorithms145

in a similar model as our essentially fair clustering model and achieve results similar to146

Corollary 3, for which they provide an almost identical analysis in their arXiv paper (Jan147

2019). Theorem 1 is not a�ected.148

We prove Theorem 2 and Corollary 3 in Section 2. Here the unconstrained starting149

solution can be any solution and we say our algorithm is a black-box approximation. We150

use the given integral solution to guide our rounding of a fractional solution to an LP that151

incorporates fairness. The proof of Theorem 1 can be found in Section 3. It is more involved152

as we cannot use a black-box approach, and instead need to find a suitable set of centers (a153

suitable integral solution) and have to adjust the weakly supervised rounding procedure.154

Our results have two advantages. Firstly, we get results for a wide range of clustering155

problems, and these results improve previous results. For example, we get a 5-approximation156

for the fair k-center problem with exact ratio preservation, where the best known guarantee157

was 14. All our bicriteria results work for multiple colors and approximate ratio preservation,158

a case for which no previous algorithm was known. As for the quality of the guarantees,159

compare the 4.675-approximation for essentially fair k-median clusterings with the best160

previously known �(t)-approximation, which is only applicable to the case of two colors.161

Notice that a similar result can not be achieved by using bicriteria approximation algorithms162

for capacitated clustering. The reduction from capacitated clustering only works when the163

capacities are not violated.164

Secondly, the black-box approach has the advantage that fairness can be established165

belatedly, in a situation where the centers are already given. [21, 44]. Consider our school166

example and notice that the location of the schools cannot be chosen. Our result says that if167

we are alright with essentially fair clusterings, we get a clustering which is not much more168

expensive than a fair clustering where the centers were chosen with the fairness constraint at169

hand.170

Related work.171

Using k centers to cluster points while minimizing a certain objective function has a long172

history in terms of results and applications. For the k-center problem in general metric173

spaces, the 2-approximations developed by Gonzalez [22] and Hochbaum and Shmoys [25]174

were shown to be tight by Hsu and Nemhauser [26]. The k-supplier problem can be 3-175

approximated [25], which is also tight. Facility location can be 1.488-approximated [35],176

which is very close to the known APX-hardness of 1.463 for the problem [23]. For k-median,177

a recent breakthrough has led to a 2.675-approximation [38, 14], while the best hardness178

result lies below two [27]. The gap between best upper and lower bound is even larger for179

k-means, where a 6.357-approximation is the best known [4], and the newest hardness result180

is marginally above 1 [8, 32].181

The k-center problem allows for constant-factor approximations for many useful constraints182

such as capacity constraints [11, 19, 28], lower bounds on the size of each cluster [3, 6] or183

allowing for outliers [16, 20]. This is also true for facility location and capacities [2, 7, 10],184
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uniform lower bounds [5, 42], and outliers [16]. Much less is known for k-median and k-means.185

True constant-factor approximations so far exist only for the outlier constraint [17, 31]. A186

major problem for obtaining constant factor approximations is that the natural LP has an187

unbounded integrality gap, which is also true for the LP with fairness constraints. Bicriteria188

approximations are known that either violate the capacity constraints [34, 36, 37] or the189

cardinality constraint [1].190

A clustering problem where the points have a color was considered by Li, Yi and Zhang [33].191

They provided a 2-approximation for a constraint called diversity, which allows at most one192

point per color in each cluster.193

The fairness constraint has been introduced by Chierichetti et al. [18]. They show a194

4-approximation for the fair k-center problem with two color classes, where one color class195

contains t-times as many points as the other, for some integer t. Rösner and Schmidt gave196

a 14-approximation algorithm for k-center in the extended case with arbitrary many color197

classes. For the fair k-median problem with two color classes, where one color class contains198

t-times as many points as the other, for some integer t, Chierichetti et al. [18] also give199

a �(t)-approximation. Backurs et al. [9] give an O(d · log(n))-approximation for a more200

general version of the fair k-median problem with two color classes, where a problem instance201

consists of n points in Rd. For k-means the only known approximation algorithm only works202

for two color classes, which each contain exactly half of the points. Schmidt et al. [41] give203

a 32.875-approximation for this case. In parallel to our research, Bera et al. [12] have also204

extended the fairness model to multiple colors and approximate fairness preservation. Their205

model additionally allows for an overlap of the protected classes. They achieve results similar206

to Corollary 3.207

Recent work of Kleindessner et al. [30] considers the fairness constraints in the context of208

spectral clustering. Fair data summarization was considered by Kleindessner et al. [29] who209

imposed the fairness constraint on the cluster centers alone. Specifically, they solve k-center210

instances with the added constraint that the chosen centers must satisfy an input distribution211

on the colors (i.e. out of the chosen centers, k
i

must belong to color class i, where k
i

is given212

as part of the input). While this formulation is useful for data summarization (when only213

the centers are reported), it is not guaranteed to lead to fair clusters overall. They propose a214

5-approximation algorithm for the case of two color classes. When there are m color classes,215

they obtain a (3 · 2m ≠ 1)-approximation.216

Preliminaries217

Points and locations.218

We are given a set of n points P and a set of potential locations L. We allow L to be infinite219

(when L = Rd). The task is to open a subset S ™ L of the locations and to assign each220

point in P to an open location via a mapping „ : P æ S. We refer to the set of all points221

assigned to a location i œ S by P (i) := „≠1(i). The assignment incurs a cost governed by a222

semi-metric d : (P fi L) ◊ (P fi L) æ RØ0 that fulfills a —-relaxed triangle inequality223

d(x, z) Æ —(d(x, y) + d(y, z)) for all x, y, z œ P fi L (1)224

for some — Ø 1. Additionally, we may have opening costs f
i

Ø 0 for every potential location225

i œ L or a maximum number of centers k œ N.226

APPROX/RANDOM 2019



18:6 On the cost of essentially fair clusterings

Colors and fairness.227

We are also given a set of colors Col := {col1, . . . , col
g

}, and a coloring col : P æ Col that228

assigns a color to each point j œ P . For any set of points P Õ ™ P and any color col
h

œ Col229

we define col
h

(P Õ) = {j œ P Õ | col(j) = col
h

} to be the set of points colored with col
h

in P Õ.230

We call r
h

(P Õ) := |colh(P

Õ)|
|P Õ| the ratio of col

h

in P Õ. If an implicit assignment „ is clear from231

the context, we write col
h

(i) to denote the set of all points of a color col
h

œ Col assigned to232

an i œ S, i.e., col
h

(i) = col
h

(P (i)).233

A set of points P Õ ™ P is exactly fair if P Õ has the same ratio for every color as P , i.e., for234

each col
h

œ Col we have r
h

(P Õ) = r
h

(P ). We say that P Õ is (¸, u)-fair or just fair for some235

¸ = (¸1, . . . , ¸
g

) and u = (u1, . . . , u
g

), if we have r
h

(P Õ) œ [¸
h

, u
h

] for every color col
h

œ Col.236

In our fair clustering problems, we want to preserve the ratios of colors found in P in our237

clusters. We distinguish two cases: exact preservation of ratios, and relaxed preservation of238

ratios. For the exact preservation of ratios, we ask that all clusters are exactly fair, i.e., P (i)239

is fair for all i œ S.240

For the relaxed preservation of ratios, we are given the lower and upper bounds ¸ = (¸1 =241

p1
1/q1

1 , . . . , ¸
g

= pg

1/qg

1) and u = (u1 = p1
2/q1

2 , . . . , u
g

= pg

2/qg

2) on the ratio of colors in each242

cluster and ask that all clusters are (¸, u)-fair. The exact case is a special case of the relaxed243

case where we set ¸
h

= u
h

= r
h

(P ) for every color col
h

œ Col.244

Essentially fair clusterings are defined below (see Definition 6).245

Objectives.246

We consider fair versions of several classical clustering problems. An instance is given by247

I := (P, L, col, d, f, k, ¸, u), and our goal is to choose a solution (S, „) according to one of the248

following objectives.249

k-center and k-supplier: minimize the maximum distance between a point and its250

assigned location: min max
jœP

d(j, „(j)). In these problems, we have f © 0 and d is a251

metric. Furthermore, in k-center, L = P , whereas in k-supplier , L ”= P is some finite set.252

k-median: minimize
q

jœP

d(j, „(j)), d is a metric, f © 0 and L ™ P .253

k-means: minimize
q

jœP

d(j, „(j)), where P ™ Rm for some m œ N, L = Rm and254

d(x, y) = ||y ≠ x||2 is a semi-metric for — = 2 and f © 0.255

facility location: minimize
q

jœP

d(j, „(j)) +
q

iœS

f
i

, where k = n, d is a metric and256

L is a finite set.257

The fair assignment problem.258

For all the objectives above, we call the subproblem of computing a cost-minimal fair259

assignment of points to given centers the fair assignment problem. We show the following260

theorem in Section A.261

I Theorem 4. Finding an –-approximation for the fair assignment problem for k-center for262

– < 3 is NP-hard.263

(I)LP formulations for fair clustering problems264

Let I = (P, L, col, d, f, k, ¸, u) be a problem instance for a fair clustering problem. We265

introduce a binary variable y
i

œ {0, 1} for all i œ L that decides if i is opened, i.e. y
i

=266

1 … i œ S. Similarly, we introduce binary variables x
ij

œ {0, 1} for all i œ L, j œ P with267

x
ij

= 1 if j is assigned to i, i.e. „(j) = i. All ILP formulations have the inequalities268
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(2)
q
iœL

x
ij

= 1 ’j œ P saying that every point j is assigned to a center, the inequalities269

(3) x
ij

Æ y
i

’i œ L, j œ P ensuring that if we assign j to i, then i must be open, and the270

integrality constraints (4) y
i

, x
ij

œ {0, 1} ’i œ L, j œ P . We may restrict the number of open271

centers to k with (5)
q

iœL

y
i

Æ k. For k-center and k-supplier, the objective is commonly272

encoded in the constraints of the problem, and the (I)LP has no objective function. The273

idea is to guess the optimum value · . Since there is only a polynomial number of choices274

for · , this is easily done. Given · , we construct a threshold graph G
·

= (P fi L, E
·

) on the275

points and locations, where a connection between i œ L and j œ P is added i� i and j are276

close, i.e., {i, j} œ E
·

… d(i, j) Æ · . Then, we ensure that points are not assigned to centers277

outside their range:278

x
ij

= 0 for all i œ L, j œ P, {i, j} /œ E
·

(6)279
280

For the remaining clustering problems, we pick the adequate objective function from the281

following three (let d
ij

:= d(i, j)):282

min
ÿ

iœL,jœP

x
ij

d
ij

(7) min
ÿ

iœL,jœP

x
ij

d2
ij

(8) min
ÿ

iœL,jœP

x
ij

d
ij

+
ÿ

iœL

y
i

f
i

(9)283

We now have all necessary constraints and objectives. For k-center and k-supplier, we use284

inequalities (2)-(6), no objective, and define the optimum to be the smallest · for which the285

ILP has a solution. We get k-median and k-means by combining inequalities (2)-(5) with (7)286

and (8), respectively, and we get facility location by combining (2)-(4) with the objective (9).287

LP relaxations arise from all ILP formulations by replacing (4) by y
i

, x
ij

œ [0, 1] for all288

i œ L, j œ P . To create the fair variants of the ILP formulations, we add fairness constraints289

modeling the upper and lower bound on the balances.290

¸
h

ÿ

jœP

x
ij

Æ
ÿ

col(pj)=colh

x
ij

Æ u
h

ÿ

jœP

x
ij

for all i œ L, h œ Col (10)291

292

Although very similar to the canonical clustering LPs, the resulting LPs become much293

harder to round even for k-center with two colors. We show the following in Section B.294

I Lemma 5. There is a choice of non-trivial fairness intervals such that the integrality gap295

of the LP-relaxation of the canonical fair clustering ILP is �(n) for the fair k-center/k-296

supplier/k-median/facility location problem. The integrality gap is �(n2) for the fair k-means297

problem.298

Essential fairness.299

For a point set P Õ, mass
h

(P Õ) = |col
h

(P Õ)| is the mass of color col
h

in P Õ. For a possibly300

fractional LP solution (x, y), we extend this notion to mass
h

(x, i) :=
q

jœcolh(P ) x
ij

. We301

denote the total mass assigned to i in (x, y) by mass(x, i) =
q

jœP

x
ij

. With this notation,302

we can now formalize our notion of essential fairness.303

I Definition 6 (Essential fairness). Let I be an instance of a fair clustering problem and let304

(x, y) be an integral, but not necessarily fair solution to I. We say that (x, y) is essentially305

fair if there exists a fractional fair solution (xÕ, yÕ) for I such that ’i œ L:306

Âmass
h

(xÕ, i)Ê Æ mass
h

(x, i) Æ Ámass
h

(xÕ, i)Ë ’col
h

œ Col (11)307

and Âmass(xÕ, i)Ê Æ mass(x, i) Æ Ámass(xÕ, i)Ë. (12)308
309
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18:8 On the cost of essentially fair clusterings

2 Essential fair clusterings via black-box approximation310

For essentially fair clustering, we give a powerful framework that employs approximation311

algorithms for (unfair) clustering problems as a black-box and transforms their output into an312

essentially fair solution. In this framework, we start by computing an approximate solution313

for the standard variant of the clustering problem at hand. Next, we solve the LP for the fair314

variant of the clustering problem. Now we have an integral unfair solution, and a fractional315

fair solution. Our final and most important step is to combine these two solutions into an316

integral and essentially fair solution. It consists of two conceptual sub-steps: Firstly, we show317

that it is possible to find a fractional fair assignment to the centers of the integral solution318

that is su�ciently cheap. Secondly, we round the assignment. This last sub-step introduces319

the potential fairness violation of one point per color per cluster.320

We show that this approach yields constant-factor approximations with fairness violation321

for all mentioned clustering objectives. The description will be neutral whenever the322

objective does not matter. Thus, descriptions like the LP mean the appropriate LP for the323

desired clustering problem. When the problem gets relevant, we will specifically discuss324

the distinctions. Notice that for all clustering problems defined in Section 1, P and L are325

finite except for k-means. However, for the k-means problem, we can assume that L = P326

if we accept an additional factor of 2 in the approximation guarantee. Thus, we assume in327

the following that L and P are finite sets. Indeed, we even assume at least L ™ P for all328

problems except k-supplier and facility location.329

2.1 Step 1: Obtaining a fair solution with integral y330

In the first step, we assume that we are given two solutions. Let (xLP , yLP ) be an optimal331

solution to the LP. This solution has the property that the assignments to all centers are fair,332

however, the centers may be fractionally open and the points may be fractionally assigned to333

several centers. Let cLP be the objective value of this solution. For k-supplier and k-center,334

it is the smallest · for which the LP is feasible, for the other objectives, it is the value of335

the LP. We denote the cost of the best integral solution to the LP by cú. We know that336

cLP Æ cú.337

Let (x̄, ȳ) be any integral solution to the LP that may violate fairness, i.e., inequality (10),338

and let c̄ be the objective value of this solution. We think of (x̄, ȳ) as being a solution of an339

–-approximation algorithm for the standard (unfair) clustering problem for some constant –.340

Since the unconstrained version can only have a lower optimum cost, we then have c̄ Æ – · cú.341

Our goal is now to combine (xLP , yLP ) and (x̄, ȳ) into a third solution, (x̂, ŷ), such that342

the cost of (x̂, ŷ) is bounded by O(cLP + c̄) ™ O(cú). Furthermore, the entries of ŷ shall be343

integral. The entries of x̂ may still be fractional after step 1.344

Let S be the set of centers that are open in (x̄, ȳ). For all j œ P , we use „̄(j) to denote345

the center in S closest to j, i.e., „̄(j) = arg min
iœS

d(j, i) (ties broken arbitrarily). Notice346

that the objective value of using S with assignment „̄ for all points in P is at most c̄, since347

assigning to the closest center is always optimal for the standard clustering problems without348

fairness constraint.349

Depending on the objective, L is a subset of P or not, i.e., „̄ is not necessarily defined350

for all locations in L. We then extend „̄ in the following way. Let i œ L\P be any center,351

and let jú be the closest point to it in P . Then we set „̄(i) := „̄(jú), i.e., i is assigned to the352

center in S which is closest to the point in P which is closest to i. Finally, let C̄(i) = „̄≠1(i)353

be the set of all points and centers assigned to i by „̄. We show the following lemma.354
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I Lemma 7. Let (xLP , yLP ) and (x̄, ȳ) be two solutions to the LP, where (x̄, ȳ) may violate355

inequality (10), but is integral. Then the solution defined by ŷ := ȳ and356

x̂
ij

:=
ÿ

i

ÕœC̄(i)

xLP

i

Õ
j

for all i œ S, j œ P, x̂
ij

:= 0 for all i /œ S, j œ P.357

358

satisfies inequality (10), ŷ is integral, and the cost ĉ of (x̂, ŷ) is bounded by cLP + c̄ for359

k-center, by 2 · cLP + c̄ for k-supplier, k-median, and facility location, and by 12 · cLP + 8 · c̄360

for k-means.361

Proof. Recall that for k-center and k-supplier, speaking of the cost of an LP solution is a362

bit sloppy; we mean that (x̂, ŷ) is a feasible solution in the LP with threshold ĉ.363

The definition of (x̂, ŷ) means the following. For every (fractional) assignment from a364

point j to a center iÕ, we look at the cluster with center i = „̄(iÕ) to which iÕ is assigned365

to by „̄. We then transfer this assignment to i. So from the perspective of i, we collect366

all fractional assignments to centers in C̄(i) and consolidate them at i. Notice that the367

(fractional) number of points assigned to i after this process may be less than one since (x̄, ȳ)368

may include centers that are very close together.369

Since that ŷ is simply ȳ it is integral as well and has the same number of centers, thus370

ŷ also satisfies (5) if the problem uses it. Next, we observe that (x̂, ŷ) satisfies fairness,371

i.e., respects (10). This is true because (xLP , yLP ) satisfies them, and because we move all372

assignment from a center iÕ to the same center „̄(iÕ). This transferring operation preserves373

the fairness. Inequality (3) is true because we only move assignments to centers that are374

fully open in (x̄, ȳ), i.e., the inequality cannot be violated as long as (2) is true (which it375

is for (xLP , yLP ) since it is a feasible LP solution). Equality (2) is true for (x̂, ŷ) since all376

assignment of j is moved to some fully open center. Thus (x̂, ŷ) is a feasible solution for the377

LP. It remains to show that ĉ is small enough, which depends on the objective.378

k-median and k-means. We start by showing this for k-median (where the distances are379

a metric, i.e., — = 1 in the —-triangle inequality (1)) and k-means (where the distances are a380

semi-metric with — = 2). We observe that here, the cost of (x̂, ŷ) is381

ĉ =
ÿ

jœP

ÿ

iœL

x̂
ij

d(i, j) =
ÿ

jœP

ÿ

iœL

ÿ

i

ÕœC̄(i)

xLP

i

Õ
j

d(i, j).382

Now fix i œ L, iÕ œ C̄(i) and j œ P arbitrarily. By the —-relaxed triangle inequality,383

d(i, j) Æ — · d(iÕ, j) + — · d(iÕ, i). Furthermore, we know that iÕ œ C̄(i), i.e., „̄(iÕ) = i and384

d(iÕ, i) Æ d(iÕ, „̄(j)). We can use this to relate d(iÕ, i) to the cost that j pays in (x̄, ȳ):385

d(iÕ, i) Æ d(iÕ, „̄(j)) Æ — · d(j, iÕ) + — · d(j, „̄(j)).386

Adding this up yields387

ÿ

jœP

ÿ

iœL

ÿ

i

ÕœC̄(i)

xLP

i

Õ
j

d(i, j)388

Æ
ÿ

jœP

ÿ

iœL

ÿ

i

ÕœC̄(i)

(— + —2)xLP

i

Õ
j

d(iÕ, j) +
ÿ

jœP

ÿ

iœL

ÿ

i

ÕœC̄(i)

—2 · xLP

i

Õ
j

d(j, „̄(j))389

=(— + —2) · cLP + —2 · c̄.390
391

For — = 1 (k-median), this is 2cLP + c̄, for — = 2 (k-means), we get 12cLP + 8c̄392

Facility location. For facility location, we have to include the facility opening costs. We393
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18:10 On the cost of essentially fair clusterings

open the facilities that are open in (x̄, ȳ), which incurs a cost of
q

iœL

ȳ
i

f
i

. The distance394

costs are the same as for k-median, so we get a total cost of395

ÿ

jœP

ÿ

iœL

ÿ

i

ÕœC̄(i)

2xLP

i

Õ
j

d(iÕ, j) +
ÿ

jœP

ÿ

iœL

ÿ

i

ÕœC̄(i)

xLP

i

Õ
j

d(j, „̄(j)) +
ÿ

iœL

ȳ
i

f
i

Æ 2cLP + c̄.396

397

k-center and k-supplier. For the k-center and k-supplier proof, we again fix i œ L,398

iÕ œ C̄(i) and j œ P arbitrarily and use that d(i, j) Æ d(i, iÕ) + d(iÕ, j). Now for k-center, we399

know that d(i, iÕ) Æ c̄ since iÕ œ C̄(i), and we know that d(iÕ, j) Æ cLP for all j where xLP

ij

400

is strictly positive. Thus, if x̂
ij

is strictly positive, then d(i, j) Æ c̄ + cLP . For k-supplier,401

we have no guarantee that d(i, iÕ) Æ c̄ since iÕ is not necessarily an input point. Instead,402

iÕ œ C̄(i) means that the point jÕ in P which is closest to iÕ is assigned to i by x̄. Since jÕ is403

the closest to iÕ in P , we have d(iÕ, jÕ) Æ d(iÕ, j). Furthermore, since jÕ œ C̄(i), d(i, jÕ) Æ c̄.404

Thus, we get for k-supplier that405

d(i, j) Æ d(i, iÕ) + d(iÕ, j) Æ d(i, jÕ) + d(iÕ, jÕ) + d(iÕ, j) Æ c̄ + 2 · cLP .406
407

J408

2.2 Step 2: Rounding the x-variables409

For rounding the x-variables, we need to distinguish between two cases of objectives. Let410

j œ P be a point that is fractionally assigned to some centers L
j

™ L.411

First, we have objectives where we can transfer mass from an assignment of j to iÕ œ L
j

to412

an assignment of j to iÕÕ œ L
j

without modifying the objective. We say that such objectives413

are reassignable (in the sense that we can reassign j to centers in L
j

without changing the414

cost). k-center and k-supplier have this property.415

Second, we have objectives where the assignment cost is separable, i.e., where the distances416

influence the cost via a term of the form
q

iœL,jœP

c
ij

· x
ij

for some c
ij

œ RØ0. We call such417

objectives separable. Facility location, k-median and k-means fall into the this category.418

I Lemma 8. Let (x, y) be an –-approximate fractional solution for a fair clustering problem419

with the property that all y
i

, i œ L are integral. Then we can obtain an –-approximative integral420

solution (xÕ, yÕ) with an additive fairness violation of at most one in time O(poly(|S| + |P |)),421

with S := {i œ L | y
i

Ø 1} being the set of locations that are opened in (x, y).422

Proof. We create our rounded –-approximate integral solution (xÕ, yÕ) by min-cost flow423

computations. We begin by constructing a min-cost flow instance which depends on our424

starting solution (x, y) as well as on the objective of the problem we are studying.425

We define a min-cost flow instance (G = (V, A), c, b) (also see Figure 1) with unit capacities426

and costs c on the edges as well as balances b on the nodes. We begin by defining a graph427

Gh = (V h, Ah) for every color h œ Col with428

V h := V h

S

fi V h

P

, V h

S

:=
)

vh

i

| i œ S
*

, V h

P

:=
)

vh

j

| j œ col
h

(P )
*

,

Ah :=
)

(vh

j

, vh

i

) | i œ S, j œ col
h

(P ) : x
ij

> 0
*

,
429

as well as costs ch by ch

a

:= c
ij

for a = (vh

j

, vh

i

) œ Ah, i œ S, j œ col
h

(P ) and balances bh by430

bh

v

:= 1 if v œ V h

P

and bh

v

:= ≠Âmass
h

(x, i)Ê if v = vh

i

œ V h

S

. We use the graphs G
h

to define431
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G = (V, A) by432

V :={t} fi V
S

fi
€

hœCol

V h, V
S

:= {v
i

| i œ S}

A :=
€

hœCol

Ah fi
)

(vh

i

, v
i

) | i œ S, h œ Col : mass
h

(x, i) ≠ Âmass
h

(x, i)Ê > 0
*

fi {(v
i

, t) | i œ S : mass(x, i) ≠ Âmass(x, i)Ê > 0} ,

433

together with costs c of c
a

:= ch

a

for a œ Ah and 0 otherwise, and balances b of b
v

:= bh

v

if434

v œ V h for some h œ Col, b
v

:= ≠B
i

if v = v
i

œ V
S

and b
t

:= ≠B with B
i

= Âmass(x, i)Ê ≠435 q
hœCol

Âmass
h

(x, i)Ê and B := |P | ≠
q

iœS

Âmass(x, i)Ê.436

Separable objectives – k-median and k-means.437

We observe that:438

1. B and B
i

are integers for all i œ S, and so are all capacities, costs and balances.439

Consequently, there are integral optimal solutions for the min-cost flow instance (G, c, b),440

2. (x, y) induces a feasible solution for (G, c, b), by defining a flow x in G as follows:441

x
a

:=

Y
__]

__[

x
ij

if a = (vh

j

, vh

i

) œ Ah, j œ P, i œ S,

mass
h

(x, i) ≠ Âmass
h

(x, i)Ê if a = (vh

i

, v
i

) œ A, h œ Col, i œ S,

mass(x, i) ≠ Âmass(x, i)Ê if a = (v
i

, t) œ A, i œ S.

442

Since (x, y) is a fractional solution, x satisfies capacity and non-negativity constraints443

because x
ij

œ [0, 1] for all i œ L, j œ P and mass
h

(x, i) ≠ Âmass
h

(x, i)Ê, mass(x, i) ≠444

Âmass(x, i)Ê œ [0, 1] for all i œ S and col
h

œ Col as well. We have flow conservation since445

the fractional solution needs to assign all points, and the flow of the edges (vh

i

, v
i

) and446

(v
i

, t) as well as the demand of v
i

and t are chosen in such a way that we have flow447

conservation for all the other nodes as well.448

3. Integral solutions x to the min-cost flow instance (G, c, b) induce an integral solution449

(x̄, y) to the original clustering problem by setting x̄
ij

:= x
a

for a = (vh

j

, vh

i

) œ Ah if450

j œ col
h

(P ), i œ S. Since the flow x is integral, this gives us an integral assignment of all451

points to centers which have been opened, since y was already integral before this step.452

This incurs the additive fairness violation of at most one, since every i œ S is guaranteed453

by our balances to have at least Âmass
h

(x, i)Ê points of color h œ Col and at least454

Âmass(x, i)Ê points in total assigned to it. Since there is at most one outgoing arc of unit455

capacity (vh

i

, v
i

) and (v
i

, t) for an i œ S if mass
h

(x, i) ≠ Âmass
h

(x, i)Ê > 0, we have at456

most Ámass
h

(x, i)Ë points of color col
h

and Ámass(x, i)Ë total points assigned to i.457

Together, this yields that computing a min-cost flow x̂ for (G, c, b) followed by applying the458

third observation to x̂ yields a solution (x̂, y) to the clustering with an additive fairness459

violation of at most one.460

Since (x, y) was inducing the fractional solution x with cost(x) = cost(x, y) to the min-cost461

flow instances, and cost(x) Ø cost(x̂) by construction we have cost(x̂, y) Æ cost(x, y).462

Reassignable objectives – k-center and k-supplier.463

In the case of reassignable objectives, we do not have to care about costs, as long as the464

reassignments happen to centers in L
j

for all points j œ P . We essentially use the same465

strategy as before, but instead of a min cost flow problem we solve the transshipment problem466

(G = (V, A), b) with unit capacities on the edges and balances b on the nodes. Notice that the467
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18:12 On the cost of essentially fair clusterings

three observations from the previous case apply here as well, and reassignability guarantees468

that the cost does not increase. J469

Lemmas 7 and 8 then lead directly to Theorem 2, or, in more detail, to:470

I Theorem 9. Black-box approximation for fair clustering gives essentially fair solutions471

with a cost of cLP + c̄ for k-center, 2cLP + c̄ for k-supplier, k-median and facility location,472

and 12cLP + 8c̄ for k-means where cLP

is the cost of an optimal solution to the fair LP473

relaxation and c̄ is the cost of the given solution.474

We know that cLP is not more expensive than an optimal solution to the fair clustering475

problem. If we use an –-approximation to obtain the unfair clustering solution, we have that476

c̄ is at most – times the cost of an optimal solution to the fair clustering problem. Currently,477

the best known approximation factors are 2 for k-center [22, 25], 3 for k-supplier [25], 1.488478

for facility location [35], 2.675 for k-median [14, 38] and 6.357 for k-means [4], which yields479

Corollary 3.480

Nodes for:

P

c1 c2 c3
S, h

S

t t

b-values

≠B

≠B
i

≠Âmass
h

(x, i)Ê

1

Figure 1 Example for the graph G used in the rounding of the x-variables.
B

i

= Âmass(x, i)Ê ≠ q
hœCol

Âmass
h

(x, i)Ê and B = |P | ≠ q
iœS

Âmass(x, i)Ê.

3 True approximations for fair k-center and k-supplier481

We now extend our weakly supervised rounding technique for k-center and k-supplier in482

the case of the exact fairness model. We replace the black-box algorithm with a specific483

approximation algorithm, and then achieve true approximations for the fair clustering484

problems by informed rounding of the LP solution.485

3.1 5-Approximation Algorithm for k-center486

In this section, we consider the fair k-center problem with exact preservation of ratios and487

without any additive fairness violation.488

We give a 5-approximation for this variant. The algorithm begins by choosing a set of489

centers. In contrast to Section 2 we do not use an arbitrary algorithm for the standard490

k-center problem but specifically look for nodes in the threshold graph G
·

= (P, E
·

) where491

E
·

= {(i, j) | i ”= j œ P, d(i, j) Æ ·} that form a maximal independent set S in G2
·

. Here Gt

·

492

denotes the graph on P that connects all pairs of nodes which are connected by a path of493

length at most t in G
·

and we denote the edge set of Gt

·

by Et

·

. As we use the following494

procedure independent for each connected component of G
·

, we will in the description and495
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the following proofs of the procedure assume that G
·

is a connected graph. The procedure496

uses the approach by Khuller and Sussmann [28] (procedure AssignMonarchs) to find S497

which ensures the following property: There exists a tree T spanning all the nodes in S and498

two adjacent nodes in T are exactly distance 3 apart in G
·

. The procedure begins by choosing499

an arbitrary vertex r œ P , called root, into S and marking every node within distance 2 of r500

(including itself). Until all the nodes in P are marked, it chooses an unmarked node u that501

is adjacent to a marked node v and marks all nodes in the distance two neighborhood of u.502

Observe that u is exactly at distance 3 from a node uÕ œ S chosen earlier that caused v to503

get marked. Thus the run of the procedure implicitly defines the tree T over the nodes of504

S. In case G
·

is not a connected graph this procedure is run on each connected component505

and the set S has the following property: There exists a forest F such that F reduced to a506

connected component of G
·

is a tree T spanning all the nodes of S inside of that connected507

component and two adjacent nodes in T are exactly distance 3 apart in G
·

.508

In the next phase, we make use of some structure that feasible solutions with exact509

preservation of the ratios must have.510

B Observation 10. Let m œ N be the smallest integer such that for each color h œ Col we511

have r
h

(P ) = qh

m

for some q
h

œ N. Then for each cluster P (i) in a fair clustering C of P with512

exact preservation of ratios, there exists a positive integer iÕ œ NØ1 such that P (i) contains513

exactly iÕ · q
h

points with color h for each color h œ Col and iÕ · m total points. Thus every514

cluster must have at least q
h

points of color h for each color h œ Col.515

We use Observation 10 and the fixed set of centers S to obtain the following adjusted LP516

for the fractional fair k-center problem.517

ÿ

iœS

x
ij

= 1, ’j œ P (13)518

ÿ

jœcolh(P )

x
ij

= r
h

(P )
ÿ

jœP

x
ij

’i œ S (14)519

ÿ

jœcolh(P )
(i,j)œE

2
·

x
ij

Ø q
h

’i œ S, ’h œ Col (15)520

x
ij

= 0 ’i œ S, j œ P with (i, j) /œ E3
·

(16)521

0 Æ x
ij

Æ 1 ’i œ S, j œ P (17)522
523

Here inequality (15) ensures that each cluster contains at least q
h

points of color h. Let524

S
opt

be the set of centers in the optimal solution and let „
opt

: P æ S
opt

be the optimal525

fair assignment. For the correct guess · , every center i œ S has a distinct center in S
opt

526

which is at most distance one away from i in G
·

. Therefore, there exists q
h

points of each527

color h within distance two of i. This ensures that inequality (15) is satisfiable for the right528

guess · . And since, every center in S
opt

is within distance two of some i œ S, there exists a529

fair assignment of points in P to centers in S within distance three. Thus the above LP is530

feasible for the right · .531

Now for the final phase, the algorithm rounds a fractional solution for the above assignment532

LP to an integral solution of cost at most 5· in a procedure motivated by the LP rounding533

approach used by Cygan et al. in [19] for the capacitated k-center problem. Let —(i) denote534

the children of node i œ S in the tree T . Starting from the leaf nodes we recursively define535

APPROX/RANDOM 2019



18:14 On the cost of essentially fair clusterings

quantities �(i) and ”(i), ’i œ S as follows:536

�(i) =
Eq

jœcol1(P ) x
ij

+
q

i

Õœ—(i) ”(iÕ)
q1

F
q1537

”(i) =
ÿ

jœcol1(P )

x
ij

+
ÿ

i

Õœ—(i)

”(iÕ) ≠ �(i)538

539

For a leaf node i in the tree T we have —(i) = ÿ, then �(i) denotes the amount of color540

1 points assigned to i rounded down to the nearest multiple of q1, while ”(i) denotes the541

remaining amount. The idea is to reassign the remainder to the parent of i. Then for a542

non leaf iÕ �(iÕ) denotes the amount of color 1 points assigned to iÕ plus the remainder that543

all children of iÕ want to reassign to iÕ rounded down to the nearest multiple of q1, while544

”(iÕ) again denotes the remainder. Since by definition of q1 the total number of points in545

col1(P ) must be an integer multiple of q1, �(r) also denotes the the amount of color 1 points546

assigned to r plus the remainder that all children of r want to reassign to r and ”(r) = 0.547

Also note that �(i) is always a positive integer multiple of q1 for any i, and ”(i) is always548

non-negative and less than q1.549

One can think of the x
ij

variables as encoding flow from a vertex j to a node i œ S. We550

call it a color h flow if j has color h. We will re-route these flows (maintaining the ratio551

constraints) such that ’i œ S, j œ col1(P ) x
ij

is equal to �(i) which is an integral multiple552

of q1.553

I Lemma 11. There exists an integral assignment of all vertices with color 1 to centers in554

S in G5
·

that assigns �(i) vertices with color 1 to each center i œ S.555

Proof. Construct the following flow network: Take sets col1(P ) and S to form a bipartite556

graph with an edge of capacity one between a vertex j œ col1(P ) and a center i œ S if and557

only if (i, j) œ E5
·

. Connect a source s with unit capacity edges to all vertices in col1(P )558

and each center i œ S with capacity �(i) to a sink t. We now show a feasible fractional flow559

of value |col1(P )| in this network. For each leaf node i in T which is not the root, assign560

�(i) amount of color 1 flow from the total incoming color 1 flow
q

jœcol1(P ) x
ij

from vertices561

that are at most distance three away from i in G
·

and propagate the remaining ”(i) amount562

of color 1 flow, coming from distance two vertices, upwards to be assigned to the parent of563

node i. This is always possible because by definition ”(i) < q1 and constraint (15) ensures564

that every center has at least q1 amount of color 1 flow coming from distance two vertices.565

For every non-leaf node i, assign �(i) amount of incoming color 1 flow from distance five566

vertices (including the color 1 flows propagated upwards by its children) and propagate ”(i)567

amount of color 1 flow from distance two vertices (possible due to constraint (15)). Thus568

every center has �(i) amount of color 1 flow passing through it and it is easy to verify that569

the value of the total flow in the network is |col1(P )|. Since the network only has integral570

capacities, there exists an integral max-flow of value |col1(P )|. J571

I Lemma 12. For any reassignment of a color 1 flow, there exists a reassignment of color572

h-flow between the same centers for all h œ Col \ {1}, such that the resulting fractional573

assignment of the vertices satisfies the fairness constraints at each center.574

Proof. Say f1 amount of color 1 flow is reassigned from center i1 to another center i2.575

Reassign f
h

= r
h

· f1/r1 amount of color h flow from i1 to i2 for each color h œ Col \ {1}.576

This is possible as constraint (14) implies that the amount of color h points assigned to i1577

must be equal to rh
r1

times the amount of color 1 points assigned to i1 and f1 must be less578
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than the amount of color 1 points assigned to i1. It is easy to verify that the ratios at i1579

and i2 remain unchanged as by construction the ratio of the reassigned flows is equal to the580

original ratio. J581

From Lemmas 11 and 12 we can say that there is a fair fractional assignment within distance582

5· such that all the color 1 assignments are integral and every center i has �(i) color 1583

vertices assigned to it. Since this assignment is fair the total incoming color h flow at each584

center must be �(i) qh

q1
which are integers for every center i œ S and every color h œ Col.585

I Lemma 13. There exists an integral fair assignment in G5
·

.586

Proof. Construct a flow network for color h vertices similar to the one in lemma 11: Take587

sets col
h

(P ) and S to form a bipartite graph with an edge of capacity one between a vertex588

j œ col
h

(P ) and a center i œ S if and only if (i, j) œ E5
·

. Connect a source s with unit589

capacity edges to all vertices in col
h

(P ) and each center i œ S with capacity �(i) rh
r1

to a590

sink t. The above fractional assignment in G5
·

gives a flow for the above network. Since the591

network only consists of integral demands and capacities, there is an integral max-flow which592

gives the assignment for the color h vertices. J593

I Theorem 14. There exists a 5-approximation for the fair k-center problem with exact594

preservation of ratios.595

Proof. Follows from Lemmas 11, 12 and 13 J596

3.2 7-approximation for k-suppliers597

We adapt the algorithm in Section 3.1 to work for the k-suppliers model to give a 7-598

approximation for the variant with exact preservation of ratios. In the k-suppliers model, we599

are not allowed to open centers anywhere in P . Instead, we are provided a set L of potential600

locations to open centers. The procedure closely resembles the k-center algorithm: construct601

a bipartite threshold graph G
·

= (P fi L, E
·

) where E
·

= {(i, j) | i œ L, j œ P, d(i, j) Æ ·}.602

Choose a root vertex r œ P into S and mark all vertices in P that are within distance two.603

Until all vertices in P are marked, choose an unmarked vertex u œ P that is distance two604

away from a marked vertex and mark all vertices in the distance two neighborhood of u.605

Note that, since G
·

is bipartite, no two vertices in P are adjacent. The vertex u is exactly606

at distance four from a vertex uÕ œ S chosen earlier. This process of selecting vertices in607

S defines a tree T over them with the property that adjacent vertices in T are exactly at608

distance four of each other in G
·

. Since we apply the procedure separately for each of the609

connected components of the threshold graph, we may safely assume that G
·

is connected.610

Let us now temporarily open one center at each vertex in S and make the following611

observations for the k-suppliers case:612

1. Observation 10 still holds.613

2. The corresponding LP is the same as the k-center LP, except it has E4
·

in place of E3
·

in614

constraint (16). This ensures the feasibility of the LP since every location in L is at most615

distance three away from some vertex in S. (Note that in case G
·

is not connected, it616

can happen that some locations in L are not connected to any point and therefore more617

than distance three away from some vertex in S, but since they are not connected to any618

point we can safely ignore them, as they cannot be part of the optimal solution.)619

3. Lemma 11 with G6
·

instead of G5
·

holds. The extra distance of one is introduced because620

the distance between a child vertex and its parent vertex in T is four instead of three.621

4. Lemma 12 holds as it is and Lemma 13 holds when G5
·

is replaced with G6
·

.622
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Thus we have a distance six fair assignment to centers in S. However, this is not a valid623

solution for k-suppliers as S ™ P and we are allowed to open centers only in L. So, we move624

each of these temporary centers to a neighboring location in L to obtain a distance seven625

assignment.626
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Figure 2 Example for the reduction from Exact Cover with 3-sets to the fair assignment problem
for k-center, with U = {a, b, c, d, e, f} and F = {A = {a, b, c}, B = {b, c, d}, C = {d, e, f}}.

Machine Learning Research, pages 325–333. PMLR, 2013. URL: http://proceedings.mlr.772

press/v28/zemel13.html.773

A NP-hardness of the fair assignment problem for k-center774

In this section, we reduce the Exact Cover by 3-sets to the fair assignment problem for775

k-center. The input to the Exact Cover by 3-sets problem is a ground set U of elements and776

a family F of subsets such that each set has exactly three elements from U . The objective is777

to find a set cover such that each element is included in exactly one set. For example, let778

U = {a, b, c, d, e, f}, F = {A = {a, b, c}, B = {b, c, d}, C = {d, e, f}} be an instance. The set779

{A, C} is an exact cover. We call the problem of computing a cost-minimal fair assignment780

of points to given centers the fair assignment problem. It exists once for every objective781

listed above. Even for k-center, the fair assignment problem is NP-hard. This can be shown782

by a reduction from Exact Cover by 3-sets, a variant of set cover. The input is a ground set783

U of elements and a family F of subsets such that each set has exactly three elements from784

U . The objective is to find a set cover such that each element is included in exactly one set.785

For example, let U = {a, b, c, d, e, f}, F = {A = {a, b, c}, B = {b, c, d}, C = {d, e, f}} be an786

instance. The set {A, C} is an exact cover.787

For an instance U , F of the exact cover problem, we construct an unweighted graph,788

which then translates to an input for the fair assignment problem for k-center by assigning789

distance 1 to each edge and using the resulting graph metric. The vertices consist of U , F790

and two sets defined below, A and F . We start by adding an edge between all e œ U and791

any A œ F i� e œ A. We assign color red to the vertices from F and blue to those from U .792

Then we construct a set A which contains three auxiliary blue vertices for each vertex in F .793

These are exclusively connected to their corresponding vertex in F . Then we construct a794

set T of |U|/3 red vertices.3 and connect each vertex in T to every vertex in F . Finally, we795

open a center at each vertex in F . The construction is shown in Figure 2. Observe that the796

distance between an element e œ U and an open center at A œ F in this construction is 1797

i� e œ A, and otherwise, it is 3: If e /œ A, then there is no edge between e and A, and since798

there are no direct connections between the centers, the minimum distance between e and799

another open center is 3.800

I Lemma 15. If there exists an exact cover, there exists a fair assignment of cost 1 where801

the red:blue ratio is 1:3 for each cluster.802

3 Note that if |U| is not a multiple of three, it cannot have an exact cover, so we can assume that |U| is a
multiple of three.
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Proof. Assign each red vertex A œ F and the three auxiliary blue vertices connected to it803

to the center at A. If A is in the exact cover, assign the three blue vertices representing its804

elements and one red vertex from T to the center at A. It is straightforward to verify that805

this assignment is fair and assigns every vertex to some center to which it is connected via a806

direct edge. J807

I Lemma 16. If there exists a fair assignment where red:blue = 1:3 for all clusters of cost808

less than 3, there exists an exact cover.809

Proof. For A œ F , the red vertex at A and the three auxiliary blue vertices attached to it810

must be assigned to the center at A as this is the only center within distance less than 3.811

Also, no center can have more than two red vertices assigned to it because there are only six812

blue vertices in distance less than 3 of any center. Therefore, each red vertex in T must be813

assigned to a distinct center and each such center A will have exactly three blue vertices814

from U assigned to it which correspond to the elements in the set that A represents. Thus,815

the sets corresponding to the centers that have two red vertices assigned to them form an816

exact cover for U . J817

B Integrality gap of the canonical clustering LP818

We show that any integral fair solution needs large clusters to implement awkward ratios of819

the input points. This allows us to derive a non-constant integrality gap for the canonical820

clustering LP.821

I Lemma 17. Let P be a point set with r red and r ≠ 1 blue points and let k Ø 1. If the822

ratio of red points r
red

(C
i

) is at most

r≠k+1
2r≠2k+1 for each cluster C

i

, then any fair solution can823

have at most k clusters.824

Proof. Consider a solution with kÕ > k clusters. Since we have more red points there must825

be at least one cluster C
i

that contains more red points than blue points. The ratio of red826

points r
red

(C
i

) of this cluster is minimized if the solution contains kÕ ≠ 1 clusters with one827

blue and one red point, and one cluster with the remaining r ≠ kÕ blue and r ≠ kÕ + 1 red828

points. However,829

r ≠ kÕ + 1
2r ≠ 2kÕ + 1 >

r ≠ k + 1
2r ≠ 2k + 1830

831

Since the highest ratio of red points in any other solution can only be higher, the claim832

follows. J833

We remark that Lemma 17 is not true for essentially fair solutions.834

The canonical fair clustering ILP consists of (2)–(6) and (10). In the k-median/facility835

location case and in the k-means case, let write OPT
F

for the optimum value of its LP836

relaxation and and let us call the value of an optimum integral solution OPT
I

. We then837

define the integrality gap of the ILP as OPT
I

/OPT
F

. In the k-center case, the ILP does838

not have an objective function, but we can define its integrality gap in the following sense:839

If ·
I

, ·
F

is the smallest · such that the LP-relaxation has a feasible integral or fractional840

solution, respectively, then we define the integrality gap as ·
I

/·
F

.841

I Lemma 5. There is a choice of non-trivial fairness intervals such that the integrality gap842

of the LP-relaxation of the canonical fair clustering ILP is �(n) for the fair k-center/k-843

supplier/k-median/facility location problem. The integrality gap is �(n2) for the fair k-means844

problem.845
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Figure 3 Integrality gap example.

Proof. Consider the input points P lying on a line, as shown in Figure 3. Specifically, we846

have r red points {r1, r2, . . . , r
r

} that alternate with r ≠ 1 blue points {b1, b2, . . . , b
r≠1}. The847

distance between consecutive points is 1.848

We require that the ratio of the red points of each cluster is between 0 and (r ≠1)/(2r ≠3)849

and set k = r ≠ 1. The input ratio r/(2r ≠ 1) of the red points lies in the interior of this850

interval as851

r

2r ≠ 1 <
r ≠ 1
2r ≠ 3 ≈∆ 2r2 ≠ 3r < 2r2 ≠ 3r + 1,852

853

and thus our input is well-defined and the fairness relaxation is non-trivial. We then ask for854

a clustering of P with at most k centers that respects the fairness constraints.855

Consider the following feasible solution for the LP-relaxation. The solution opens a center856

at each of the r ≠ 1 = k blue points and assigns the blue point to itself and the red points on857

each side in the following way: for each 1 Æ i Æ r ≠ 1, assign r
i

to b
i

by a fraction of r≠i

r≠1858

and for each 2 Æ i Æ r assign r
i

to b
i≠1 a fraction of i≠1

r≠1 . Each red point is fully assigned in859

this way. We also get that in a cluster around some fixed b
i

, the total assignment coming860

from red points is r

r≠1 and the assignment coming from blue points is 1; thus, each cluster861

has a ratio of red points of862

r

r≠1
1 + r

r≠1
=

r

r≠1
2r≠1
r≠1

= r

2r ≠ 1 .863

864

We therefore respect the balance requirements.865

However, as (r ≠ 1)/(2r ≠ 3) = (r ≠ kÕ + 1)/(2r ≠ 2kÕ + 1) for kÕ = 2, by Lemma 17 any866

integral solution satisfying the ratio requirement can at most open two centers.867

In the k-center case, the fractional solution has a radius of 1 and the integral solution868

has a radius of at least Â(r ≠ 1)/2Ê = �(n). The k-center problem is a special case of869

the k-supplier problem; thus, the integrality gap for the k-supplier problem can only be870

larger.871

In the k-median case, the fractional solution has a cost of O(n): The blue points incur872

no cost and each red point r
i

contributes (r ≠ i)/(r ≠ 1) · 1 + (i ≠ 1)/(r ≠ 1) · 1 = 1 to the873

objective function. Since the optimum integral solution can have at most two centers, it874

has to contain one cluster spanning at least Âr/2Ê consecutive points. This incurs a cost875

of at least 2 ·
qÂr/4Ê≠1

j=1 j = �(n2).876

In the facility location case, we observe that we can open at most two facilities in a fair877

integral solution. Hence, the analysis for the k-median case carries over (even if we set878

all opening costs to zero).879

In the k-means case, each red point r
i

incurs a cost of (r≠i)/(r≠1)·12+(i≠1)/(r≠1)·12 = 1880

in the fractional solution; the blue points again incur no cost as they are chosen as centers.881

However, the integral solution now has a cost of at least 2 ·
qÂr/4Ê≠1

j=1 j2 = �(n3).882
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18:22 On the cost of essentially fair clusterings

This integrality gap yields a lower bound on the quality guarantee of any LP-rounding884

approach for this ILP. Thus, Lemma 5 implies that no fair constant factor approximation can885

be achieved by rounding the canoncial fair clustering ILP. The counterexample in 5 breaks886

down in the essential fairness model.887

C Facts about the k-means cost function888

We use some well-known facts about the k-means function when extending our results for889

k-median to k-means. The first one is that squared distances satisfy a relaxed triangle890

inequality:891

I Lemma 18. It holds for all x, y, z œ Rd

that892

||x ≠ z||2 Æ 2||x ≠ z||2 + 2||z ≠ y||2.893

The next lemma is also a folklore statement which can be extremely useful. It implies894

that the best 1-means is always the centroid of a point set, and has further consequences,895

like Lemma 20 which we state below, a fact which is also commonly used in approximation896

algorithms for the k-means problem.897

I Lemma 19. For any P µ Rd

, and z œ Rd

,898

ÿ

xœP

||x ≠ z||2 =
ÿ

xœP

||x ≠ µ(P )||2 + |P | · ||µ(P ) ≠ z||2,899

where µ(P ) = 1
|P |

q
xœP

x is the centroid of P .900

One corollary of Lemma 19 is that the optimum cost of the best discrete solution is not901

much more expensive than the best choice of centers from Rd.902

I Lemma 20. Let P µ Rd

be a set of point in the Euclidean space, and let Sú µ Rd

be a set903

of k points that minimizes the k-means objective, i.e., it minimizes904

ÿ

xœP

min
cœS

||x ≠ c||2905

over all choices of S µ Rd

with |S| = k. Furthermore, let Ŝ be the set of centers that906

minimizes the k-means objective over all choices of S µ P with |S| = k, i.e., the best choice907

of centers from P itself. Then it holds that908

ÿ

xœP

min
cœŜ

||x ≠ c||2 Æ
ÿ

xœP

min
cœS

ú
||x ≠ c||2.909

Thus, restricting the set of centers to the input point set increases the cost of an optimal910

solution by a factor of at most 2.911


