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Abstract. Correlation clustering is a fundamental combinatorial opti-
mization problem arising in many contexts and applications that has
been the subject of dozens of papers in the literature. In this problem we
are given a general weighted graph where each edge is labeled positive or
negative. The goal is to obtain a partitioning (clustering) of the vertices
that minimizes disagreements – weight of negative edges trapped inside a
cluster plus positive edges between di↵erent clusters. Most of the papers
on this topic mainly focus on minimizing total disagreement, a global
objective for this problem.
In this paper we study a cluster-wise objective function that asks to
minimize the maximum number of disagreements of each cluster, which
we call min-max correlation clustering. The min-max objective is a nat-
ural objective that respects the quality of every cluster. In this paper,
we provide the first nontrivial approximation algorithm for this problem
achieving an O(log n) approximation for general weighted graphs. To do
so, we also obtain a corresponding result for multicut where we wish
to find a multicut solution while trying to minimize the total weight of
cut edges on every component. The results are then further improved to
obtain an O(r2)-approximation for min-max correlation clustering and
min-max multicut for graphs that exclude Kr,r minors.

Keywords: Correlation Clustering · Multicut · Approximation Algo-
rithms

1 Introduction

Correlation clustering is a fundamental optimization problem introduced by
Bansal, Blum and Chawla [3]. In this problem, we are given a general weighted
graph where each edge is labeled positive or negative. The goal is to obtain a
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partitioning of the vertices into an arbitrary number of clusters that agrees with
the edge labels as much as possible. That is a clustering that minimizes dis-
agreements, which is the weight of positive edges between the clusters plus the
weight of negative edges inside the clusters. In addition, correlation clustering
captures some fundamental graph cut problems including min s-t cut, multiway
cut and multicut. Correlation clustering has been studied extensively for more
than a decade [1,2,6,7,10]. Most of the papers have focused on a global min-sum
objective function, i.e. minimizing total number of disagreements or maximizing
the total number of agreements.

In recent work, Puleo and Milenkovic [14] introduced a local vertex-wise min-
max objective for correlation clustering which bounds the maximum number of
disagreements on each node. This problem arises in many community detec-
tion applications in machine learning, social sciences, recommender systems and
bioinformatics [8,16,13]. This objective function makes sure each individual has
a minimum quality within the clusters. They showed this problem is NP-hard
even on un-weighted complete graphs, and developed an O(1) approximation
algorithm for unweighted complete graphs. Charikar et al. [5] improved upon
the work by Puleo et al. [14] for complete graphs by giving a 7 approximation.
For general weighted graphs, their approximation bound is O(

p
n) where n is

the number of vertices. Both these algorithms rely on LP rounding, based on a
standard linear program relaxation for the problem. In contrast, for the global
minimization objective an O(log n)-approximation can be obtained [10]. There-
fore, the local objective for correlation clustering seems significantly harder to
approximate than the global objective.

In this work, we propose a new local cluster-wise min-max objective for
correlation clustering – minimizing the maximum number of disagreements of
each cluster. This captures the case when we wish to create communities that are
harmonious, as global min sum objectives could create an imbalanced community
structure. This new local objective guarantees fairness to communities instead
of individuals. To name a few applications for this new objective, consider a task
of instance segmentation in an image which can be modeled using correlation
clustering [12,11]. A cluster-wise min-max objective makes sure each detected
instance has a minimum quality. Another example is in detecting communities in
social networks, this objective makes sure there are no communities with lower
quality compared to the other communities. No hardness results are known for
the cluster-wise min-max objective.

A similar objective was proposed for the multiway cut problem by Svitkina
and Tardos [15]. In the min-max multiway cut problem, given a graph G and k
terminals the goal is to get a partitioning of G of size k that separates all termi-
nals and the maximum weight of cut edges on each part is minimized. Svitkina
and Tardos [15] showed an O(log3 n) approximation algorithm for min-max mul-
tiway cut on general graphs (this bound immediately improves to O(log2 n) by
using better bisection algorithms). Bansal et al. [4] studied a graph partitioning
problem called min-max k-partitioning from a similar perspective. In this prob-
lem, given a graph G = (V,E) and k � 2 the goal is to partition the vertices into
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k roughly equal parts S1, · · · , Sk while minimizing maxi �(Si). They showed an
O(

p
log n log k) approximation algorithm for this problem. They also improved

the approximation ratio given by Svitkina et al. [15] for min-max multiway cut
to O(

p
log n log k). Bansal et al’s seminal work [4] uses the concept of orthogonal

separators introduced by Chlamtac et al. [9] to achieve their result.

2 Results & High Level Ideas

In this paper, we give an approximation algorithm for the problem of min-max
correlation clustering.

Definition 1. (Min-max Correlation Clustering) Let G = (V,E) be an edge-

weighted graph such that each edge is labeled positive or negative. The min-max

correlation clustering problem asks for a partioning of the nodes (a clustering)

where the maximum disagreement of a cluster is minimized. Disagreement of a

cluster C is the weight of negative edges with both endpoints inside C plus the

weight of positive edges with exactly one endpoint in C.

We prove the following theorem for min-max correlation clustering.

Theorem 1 Given an edge weighted graph G = (V,E) on n vertices such that

each edge is labeled positive or negative, there exists a polynomial time algorithm

which outputs a clustering C = {C1, · · · , CC} of G such that the disagreement on

each Ci 2 C is at most O(log(n)) ·OPT ; where OPT is the maximum disagree-

ment on each cluster in an optimal solution of min-max correlation clustering.

In order to prove Theorem 1, we give a reduction from the problem of min-
max correlation clustering to a problem which we call min-max multicut.

Definition 2. (Min-max Multicut) Given an edge weighted graph G = (V,E)
and a set of source-sink pairs {(s1, t1), · · · , (sT , tT }, the goal is to give a par-

titioning P = {P1, P2, · · · , P|P|} of G such that all the source sink pairs are

separated, and max1i|P| �(Pi) is minimized.

In min-max multicut, we do not force each part of the partitioning to have
a terminal and there could be some parts without any terminals in the final
solution. However, in the min-max multiway cut problem introduced by Svitkina
and Tardos [15], each part needs to have exactly one terminal. We prove the
following theorem for min-max multicut:

Theorem 2 Given an edge weighted graph G = (V,E) on n vertices, and a set

of source sink pairs SG = {(s1, t1), · · · , (sT , tT )}, there exists a polynomial time

algorithm which outputs a partitioning P = {P1, · · · , P|P|} of G such that all

source sink pairs are separated, and max1i|P| �(Pi)  O(log(n)) ·OPT ; where
OPT is the value of the optimum solution of min-max multicut.

We also consider the following variation of min-max multicut called min-max
constrained multicut. In this variation, the goal is to partition a graph into a
minimum number of parts to separate all source-sink pairs.

Definition 3. (Min-max Constrained Multicut) An edge weighted graph G =
(V,E) and a set of source-sink pairs {(s1, t1), · · · , (sT , tT )} is given. Given k the
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minimum number of parts needed to separate all source sink pairs, the goal is to

partition G into k parts {P1, · · · , Pk} which separate all source-sink pairs, and

max1ik �(Pi) is minimized.

We defer our results for this problem to the full version of this paper. Finally, we
get improved approximation ratios for min-max correlation clustering, min-max
multicut on graphs excluding a fixed minor.
Theorem 3 Given an edge weighted graph G excluding Kr,r minors, there exist

polynomial time O(r2)-approximation algorithms for min-max correlation clus-

tering and min-max multicut.

2.1 High Level Ideas

Most algorithms for correlation clustering with the global minimizing disagree-
ment objective use a linear programming relaxation [7,10,6]. The recent work of
Charikar, Gupta and Scharwtz also uses a similar linear programming relaxation
for the vertex-wise min-max objective [5]. Surprisingly, these relaxations do not
work for the min-max correlation clustering problem considered in this paper.
Indeed, simply obtaining a linear programming relaxation for the cluster-wise
min-max objective looks challenging!

Bansal et al. [4] considered a semidefinite programming (SDP) based approx-
imation algorithm for min-max k balanced partitioning and min-max multiway
cut with k terminals. In their approach, instead of finding the entire solution in
one shot, they obtain a single part at a time. It is possible to encode the same
problem with a linear program albeit with a worse approximation guarantee.
They use SDP rounding to obtain a part with low cut capacity, and repeat the
process until the parts produce a covering of all the vertices. By properly ad-
justing the weight of each part, the covering can be obtained e�ciently. Finally,
they convert the covering to partitioning.

The problem of extracting a single cluster of min-max correlation clustering
can be captured by a semidefinite programming formulation. Here it is not over
a cut capacity objective, instead we need to simultaneously consider the intra-
cluster negative edges as well as inter-cluster positive edges. Indeed, even for the
global minimization objective, we are not aware of any good rounding algorithm
based on SDP relaxation of correlation clustering. Therefore, rounding the SDP
formulation directly looks di�cult. To overcome this, we instead consider a new
problem of min-max multicut. Demaine et al. [10] have shown an approximation
preserving reduction between multicut and correlation clustering (for the global
objective function). By solving the min-max multicut problem and then using the
aforementioned reduction, we solve the min-max correlation clustering problem.

First, the reduction of Demaine et al. [10] is for the global objective, and an
equivalence in global objective does not necessarily correspond to equivalency in
local min-max objective. Fortunately, we could show indeed such an equivalency
can be proven (the details are deferred to the full version). Thus, the “multicut”
route seems promising as it optimizes over a cut objective. We consider obtaining
each component of the min-max multicut problem, repeat this process to obtain
a covering [4], and finally convert the covering to a partitioning.
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The major technical challenge comes in rounding the SDP relaxation for
the multicut instance where we seek to find a single component with good cut
property. In order for the relaxation to be valid, we have to add new constraints
so that no source-sink pair (si, ti) appears together. We also need to ensure that
the component obtained satisfies a weight lower bound by assigning weights to
each vertex. This is important in the next step when we wish to get a covering
of all the vertices: we will decrease the weight of the vertices in the component
recovered and again recompute the SDP relaxation with the same weight lower
bound. This ensures the same component is not repeatedly recovered and a final
covering can be obtained. To solve min-max multiway cut, Bansal et al. [4] need
to separate k terminals. To do so, they can just guess which of the k terminals if
any should appear in the current component with only k+1 guesses. For us, the
number of such guesses would be 3T where T is the number of source sink pairs
since for every pair (si, ti), either si or ti or none would be part of the returned
component. Since T could be O(n2) such a guessing is prohibitive. We need to
come up with a new approach to address this issue.

We use a SDP relaxation to compute a metric on the graph vertices and add
additional constraints to separate source sink pairs along with the spreading
constraints from Bansal et al. [4] to recover a component of desired size. Next,
we use the SDP separator technique introduced by Bansal et al. [4] to design a
rounding algorithm that returns a set S = {S1, S2, · · · , Sj}, such that for each
Si 2 S, there are no source-sink pairs in Si. Bansal et al. [4] need to glue the
sets in S and report it as a single component, since they wish to get a solution
with specified number of components at the end. However, in min-max multicut
problem, the number of components does not matter. Therefore, we do not need
to union the sets in S, and as a result no source-sink violations happen.

It is possible to use a linear programming formulation for the detour via
multicut and use LP-separators of Bansal et al. [4] in place of orthogonal sepa-
rators and follow our algorithm. This would achieve a similar bound for min-max
multicut and min-max correlation clustering in general graphs, but a much bet-
ter bound of O(r2 · OPT ) for graphs that exclude Kr,r minors. The details are
deferred to the full version.

3 Min-Max Multicut

Given a subset S ✓ V , let �(S) denote the number of edges with exactly one
end-point in S and let the number of source sink pairs (si, ti) such that both si
and ti belong to S be vio(S).

In order to prove Theorem 2, we first wish to find a set S = {S1, · · · , Sj},
such that 8Si 2 S, Si ✓ V , and �(Si)  O(log(n)) · OPT , where OPT is the
maximum number of cut edges on each part of the optimum partitioning for
the min-max multicut problem on graph G. In addition, Pr[vio(Si) � 1]  1/n,
where n is the number of vertices in G.

Graph G = (V,E) can have arbitrary edge weights, w : E ! R+. We as-
sume graph G = (V,E) is also a vertex-weighted graph, and there is a measure
⌘ on V such that ⌘(V ) = 1. This measure is used to get a covering of all the
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vertices. In Section 3.4, Theorem 4 is repeatedly applied to generate a fam-
ily of sets that cover all the vertices. When a vertex is covered its weight is
decreased so the uncovered vertices have a higher weight. Constraint ⌘(S) 2
⌘(S) =

Pj
i=1 ⌘(Si) 2 ⇥

H/4, 12H
⇤
makes sure the newly computed family of

sets S has adequate coverage. Parameter H 2 (0, 1) is equal to 1/k where k
is the number of parts in the optimum partitioning which we guess. Since the
maximum number of parts is at most n, H � 1/n.

After getting a covering of all the vertices, in Section 3.4, it is explained how
to convert a covering into a partitioning with the properties desired in Theorem
2. In order to prove Theorem 1, in the full version of this paper we show how
a O(log n)-approximation algorithm for min-max multicut implies a O(log n)-
approximation algorithm for min-max correlation clustering.

First we prove the following theorem:

Theorem 4 We are given an edge-weighted graph G = (V,w), a set of source

sink pairs SG, a measure ⌘ on V such that ⌘(V ) = 1, and a parameter H 2 (0, 1).
Assume there exists a set T ✓ V such that ⌘(T ) 2 [H, 2H], and vio(T ) = 0. We

design an e�cient randomized algorithm to find a set S, where S = {S1, · · · , Sj}
satisfying 8Si 2 S, Si ✓ V , ⌘(S) =

Pj
i=1 ⌘(Si) 2 ⇥

H/4, 12H
⇤
, and 8Si 2 S,

Pr[vio(Si) � 1]  1
n , and:

�(Si)  O(log(n)) ·min
�
�(T ) : ⌘(T ) 2 [H, 2H], 8(si, ti) 2 SG, |{si, ti} \ T |  1}

In order to prove this theorem, we use the notion of m�orthogonal separators,
a distribution over subsets of vectors, introduced by Chlamtac et al. [9] which is
explained in the following:

Definition 4. Let X be an `22 space (i.e a finite collection of vectors satisfying

`22 triangle inequalities with the zero vector) and m > 0. A distribution over

subsets S of X is an m�orthogonal separator of X with probability scale ↵ > 0,
separation threshold 0 < � < 1, and distortion D > 0, if the following conditions

hold:

– 8u 2 X,Pr(u 2 S) = ↵ kuk2
– 8u, v 2 X if ku� vk2 � �min{kuk2 , kvk2} then Pr(u 2 S and v 2 S) 

min{Pr(u2S),Pr(v2S)}
m

– 8u, v 2 X, Pr(IS(u) 6= IS(v))  ↵D · ku� vk2, where IS is the indicator

function for the set S.

Operator k.k shows the `2 norm. Chlamtac et al. [9] proposed an algorithm for
finding m-orthogonal separators.

Theorem 5 [9] There exists a polynomial-time randomized algorithm that given

an `22 space X containing 0 and a parameter m > 0, and 0 < � < 1, generates
an m�orthogonal separator with distortion D = O�(

p
log |X| logm) and ↵ �

1
poly(|X|) .
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3.1 SDP Relaxation

In order to prove Theorem 4, we use the following SDP relaxation which is
inspired by Bansal et al. [4] except for Constraints 5 and 6. In this relaxation,
we assign a vector v̄ for each vertex v 2 V . The objective is to minimize the
total weight of cut edges. The set of Constraints 2 are `22 triangle inqualities, and
the set of Constraints 3 and 4 are `22 triangle inequalities with the zero vector.
The set of Constraints 5 and 6 make sure that for each source-sink pair (si, ti),
both si and ti do not belong to S since both vectors s̄i and t̄i could not be 1 for
some fixed unit vector simultaneously. Constraint 7 and the set of Constraints 8
make sure the returned subgraph has the desired size. Suppose now that we have
approximately guessed the measure H of the optimal solution H  ⌘(S)  2H.
We can ignore all vertices v 2 V with ⌘(v) > 2H since they do not participate
in the optimal solution and thus write the set of Constraints 8. Constraints (9)
are spreading constraints introduced by Bansal et al. [4] which ensure size of S
is small.

min
P

(u,v)2E w(u, v) kū� v̄k2 (1)

kū� w̄k2 + kw̄ � v̄k2 � kū� v̄k2 8u, v, w 2 V (2)

kū� w̄k2 � kūk2 � kw̄k2 8u,w 2 V (3)

kūk2 + kv̄k2 � kū� v̄k2 8u, v 2 V (4)

ks̄i � t̄ik2 � ks̄ik2 8(si, ti) 2 SG (5)

ks̄i � t̄ik2 � kt̄ik2 8(si, ti) 2 SG (6)
P

v2V kv̄k2 ⌘(v) � H (7)

kv̄k2 = 0 if ⌘(v) > 2H (8)
P

v2V ⌘(v) ·min{kū� v̄k2 , kūk2} � (1� 2H) kūk2 8u 2 V (9)

Lemma 1. Given S⇤ = argmin
�
�(T ) : ⌘(T ) 2 [H, 2H], 8(si, ti) 2 SG, |{si, ti}\

T |  1}, the optimal value of SDP is at most �(S⇤).

Proof. We defer proof to the full version of this paper.

3.2 Approximation Algorithm

In this section, we prove Theorem 4. We propose an approximation algorithm
which is inspired by Bansal et al.’s [4] algorithm for small-set expansion (SSE).
However, there is a significant di↵erence between our algorithm and theirs. In
the SSE problem, one does not need to worry about separating source sink pairs.

First, we solve the SDP relaxation, and then proceed iteratively. In each
iteration, we sample an n3-orthogonal separator S with � = 1/2 and return
it (we repeatedly sample S, until a particular function4 f(S) has some positive
value. Details are deferred to Section 3.3). Then, S is removed from graph G and
the SDP solution, by zeroing the weight of edges incident on S (i.e discarding

4 defined later
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these edges), and zeroing the SDP variables corresponding to vertices in S. The
algorithm maintains the subsets of vertices removed so far in a set U ✓ V , by
initializing U = ;, and then at each iteration by updating U = U [{S}. We keep
iterating until ⌘(U) =

P
Si2U ⌘(Si) � H/4. After the last iteration, if ⌘(U) > H,

we output F = S where S is computed in the last iteration. Otherwise, we put
F = U . Note that in this case, U = {S1, · · · , S|U |}.

3.3 Analysis

First, let’s see what is the e↵ect of algorithm’s changes to the SDP solution. By
zeroing vectors in S and discarding the edges incident on S, the SDP value may
only decrease. Triangle inequalities, and the source-sink constraints still hold.
Constraint

P
v2V kv̄k2 ⌘(v) � H will be violated due to zeroing some variables.

However, since before the last iteration ⌘(U)  H
4 , the following constraint still

holds:

P
v2V kv̄k2 ⌘(v) � 3H

4 (10)

Next, we show the set of spreading constraints (9) will remain satisfied after
removing S. Consider the spreading constraint for a fixed vertex u, two cases
might happen:

Case 1: If 9S 2 U such that u 2 S, then u will be removed and kūk = 0,
the spreading constraint will be satisfied since RHS is 0.

Case 2: If @S 2 U such that u 2 S, the RHS will not change and we can
show that min{kū� v̄k2 , kūk2} does not decrease. If @S0 2 U such that v 2 S0,
then the term min{kū� v̄k2 , kūk2} does not change. If 9S0 2 U such that v 2 S0,
then min{kū� v̄k2 , kūk2} = kūk2 since kv̄k = 0, and its value does not decrease.

Therefore, in both these cases, the spreading constraints will not be violated.

Lemma 2. Let S be a sampled n-orthogonal separator. Fix a vertex u. We claim

that Pr[⌘(S)  12H | u 2 S] � 7
8 .

Proof. We defer proof to Appendix A.1.

Next, we upper bound �(S). By the third property of orthogonal separators:

E[�(S)]  ↵D ·P(u,v)2E kū� v̄k2 · w(u, v)  ↵D · SDP

Where D = O�(
p
log n log(n3)) = O(log n). Note that � = 1/2. Consider the

function f :

f(S) =

(
⌘(S)� �(S) · H

4D·SDP if S 6= ; and ⌘(S) < 12H

0 otherwise

We wish to lower bound E[f(S)]. First, we lower bound E[⌘(S)]. As a result of
Lemma 2 and the first property of orthogonal separators:

E[⌘(S)] =
P

u2V Pr[u 2 S ^ ⌘(S) < 12H] · ⌘(u)
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=
P

u2V Pr[⌘(S) < 12H | u 2 S] · Pr[u 2 S] · ⌘(u) � P
u2V

7↵kūk2⌘(u)
8

Since E[�(S)]  ↵D · SDP and using Constraint 10:

E[f(S)] � P
u2V

7↵kūk2⌘(u)
8 � ↵ ·D · SDP · H

4D·SDP � 7↵ 3H
4

8 � ↵H
4 = 13

32↵H

We have f(S)  2nH since kūk = 0 whenever ⌘(u) > 2H. Therefore, Pr[f(S) >

0] � 13
32↵H

2nH = ⌦(↵n ). So after O(n2/↵) samples, with probability exponentially
close to 1, the algorithm finds a set S with f(S) > 0. f(S) > 0 implies ⌘(S) �
�(S) · H

4D·SDP , therefore �(S)  4D·SDP ·⌘(S)
H . Consider the two possible cases for

the output F :
Case 1: F = U = {S1, S2, · · · , S|U |}, and ⌘(F ) =

P|U |
i=1 ⌘(Si). In this case,

H
4  ⌘(F )  H. The set U is a set of orthogonal separators and each Si 2 U
forms a separate part.

Case 2: F = S. In this case, let’s show the last iteration of step 1 as U =
Uold [ {S}. We know ⌘(U) > H, and ⌘(Uold) <

H
4 , therefore ⌘(S) > 3H/4. Also

f(S) > 0 implies ⌘(S)  12H. Therefore, 3H/4 < ⌘(S)  12H.
In both cases, H

4  ⌘(F )  12H.

We showed when a set Si 2 U is sampled, �(Si)  4D·SDP ·⌘(Si)
H . However, in

the LHS of this inequality, edges like (u, v) where u 2 Sj , v 2 Si and j < i are

not considered. We can show
Pi�1

j=1 �(Sj , Si) 
Pi�1

j=1
4D·SDP ·⌘(Sj)

H  4D · SDP

since
Pi�1

j=1 ⌘(Sj)  H. Therefore, �(Si)  4D·SDP ·⌘(Si)
H +

Pi�1
j=1 �(Sj , Si) 

O(D · SDP ) since ⌘(Si)  12H.
In addition, by the second property of orthogonal separators, for each source-

sink pair (sj , tj), the probability that both sj and tj belong to the orthogonal

separator Si is bounded by 1
n3 . Therefore, Pr[vio(Si) � 1]  T

n3  n2

n3 = 1
n . This

completes the proof of Theorem 4.
The following corollary is implied from Theorem 4 and is used in the next

section.

Corollary 1. Given an edge-weighted graph G = (V,w), a set of source sink

pairs SG, a measure ⌘ on V such that ⌘(V ) = 1, and a parameter ⌧ , a set S =
{S1, · · · , Sj} could be found satisfying 8Si 2 S, Si ✓ V,Pr[vio(Si) � 1]  1/n,

and �(Si)  O(log(n)) ·OPT , where OPT = argmin{�(T ) : ⌘(T )
⌘(V ) � ⌧, vio(T ) =

0}. In addition, ⌘(S) =
Pj

i=1 ⌘(Si) � ⌦(⌧ · ⌘(V )).

Proof. The algorithm guesses H � ⌧ such that H  ⌘(OPT )  2H. Guessing is
feasible since 0  ⌘(OPT )  n·⌘(u), where u is the weight of the heaviest element
in OPT , and H can be chosen from the set {2t⌘(u) : u 2 V, t = 0, · · · , log(n)} of
size O(n log(n)). Theorem 4 is invoked with parameter H. The obtained solution
S satisfies the properties of this corollary.

3.4 Covering & Aggregation

Once we find F , we follow the multiplicative update algorithm of [4] with some
minor modifications, to get a covering of all the vertices. Then, we use the
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aggregation step to convert the covering to a partitioning. This step is simpler
than [4] since we are not required to maintain any size bound on the subgraphs
returned after aggregation.

Theorem 6 Given graph G = (V,E) and T pairs of source and sink, running

Algorithm 1 on this instance outputs a multiset S that satisfies the following

conditions:

– for all S 2 S: �(S)  D ·OPT where D = O(log(n)),Pr[vio(S) � 1]  1/n
– for all v 2 V ,

|{S2S:v2S}|
|S| � 1

5�kn , where � = O(1) and k is the number of

parts in the optimal solution which we guess.

Proof. We defer proof to Appendix A.2.

Algorithm 1: Covering Procedure for Min-Max Multicut

1 Set t = 1, S = ; and y1(v) = 1 8v 2 V ;
2 Guess k, which is the number of parts in the optimal solution;
3 while

P
v2V yt(v) > 1

n do
4 Find set St = {S1, · · · , Sj} using Corollary 1, where ⌧ = 1

k and
8v 2 V, ⌘(v) = yt(v)/

P
v2V yt(v);

5 S = St [ S;
6 // Update the weights of the covered vertices;
7 for v 2 V do
8 Set yt+1(v) = 1

2 · yt(v) if 9Si 2 St such that v 2 Si, and
yt+1(v) = yt(v) otherwise.;

9 Set t = t+ 1;
10 return S;
Now the covering of G is converted into a partitioning of G without violating
min-max objective by much.

Theorem 7 Given a weighted graph G = (V,E), a set of source-sink pairs

(s1, t1), · · · , (sT , tT ), and a cover S consisting of subsets of V such that:

– 8v 2 V , v is covered by at least a fraction

c
nk of sets S 2 S, where k is

the number of partitions of the optimum solution which we guessed in the

covering section, and c 2 (0, 1].
– 8S 2 S, �(S)  B, Pr[vio(S) � 1]  1/n.

We propose a randomized polynomial time algorithm which outputs a partition

P of V such that 8Pi 2 P, �(Pi)  2B, and Pr[vio(Pi) � 1]  1/n.

Algorithm 2: Aggregation Procedure For Min-Max Multicut

1 Step 1: Sort sets in S in a random order: S1, S2, · · · , S|S|. Let
Pi = Si \ ([j<iSj).

2 Step 2: while There is a set Pi such that �(Pi) > 2B do
3 Set Pi = Si and for all j 6= i, set Pj = Pj \ Si;

Proof. We defer proof to Appendix A.3.

Acknowledgements: We are grateful to Nikhil Bansal for useful discussions
during a Dagstuhl workshop on scheduling (18101) .
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A Missing Proofs
A.1 Proof of Lemma 2

Proof. Consider a vertex u and let Au = {v : kū� v̄k2 � � kūk2} and Bu = {v :
kū� v̄k2 < � kūk2}. Assume for now that u 2 S. We show with high probability
⌘(Au \ S) is small, and ⌘(Bu) is also small. Vertex u satisfies the spreading
constraint. It is easy to see that:

(1� 2H) kuk2  P
v2V ⌘(v) ·min{kū� v̄k2 , kūk2}  � kūk2 ⌘(Bu) + kūk2 ⌘(Au)

Since ⌘(V ) = 1 and Au [Bu = V , ⌘(Au) + ⌘(Bu) = 1, and � = 1/2 therefore:

(1� 2H)  �⌘(Bu) + (1� ⌘(Bu)) (11)

) ⌘(Bu)  2H

1� �
= 4H (12)

Consider an arbitrary vertex v 2 Au where kv̄k 6= 0. By definition of Au,
kū� v̄k2 � � kūk2 � �min{kūk2 , kv̄k2}. Therefore, by the second property of
orthogonal separators and since we assumed u 2 S, then Pr[v 2 S | u 2 S] 
1
n3  H. The second inequality holds since H � 1/n.

Now we show a bound for E[⌘(Au \ S) | u 2 S]:

E[⌘(Au \ S) | u 2 S] =
P

v2Au
⌘(v) Pr[v 2 S | u 2 S]  H

Now, we want to bound Pr[⌘(S) � 12H |u 2 S]. The event {⌘(S) � 12H |u 2 S}
implies the event {⌘(Au \ S) � 8H | u 2 S} since ⌘(Bu \ S)  ⌘(Bu)  4H.
(The second inequality holds by (12)). Now we are ready to complete the proof.

Pr[⌘(S) � 12H|u 2 S]  Pr[⌘(Au\S) � 8H|u 2 S]  E[⌘(Au \ S) | u 2 S]

8H
 H

8H
= 1/8

We showed Pr[⌘(S) � 12H |u 2 S]  1/8, therefore Pr[⌘(S)  12H |u 2 S] � 7/8
and the proof is complete.

A.2 Proof of Theorem 6

Proof. For an iteration t, let Y t =
P

v2V yt(v). Consider the optimal solution
{S⇤

i }ki=1 to the min-max multicut problem. There exists at least a S⇤
j 2 {S⇤

i }ki=1

with weight greater than or equal to the average (yt(S⇤
j ) � Y t

k ), vio(S⇤
j ) =

0, and �(S⇤
j )  OPT . Therefore by Corollary 1 where H = 1

k , a set St =
{S1, S2, · · · , Sj} could be found where 8Si 2 St, �(Si)  O(log n) · OPT ,
Pr[vio(Si) � 1]  1/n.

Now we show the second property of the theorem holds. Let ` denote the
number of iterations in the while loop. Let |{S 2 S : v 2 S}| = Nv. By the
updating rules y`+1(v) = 1/2Nv . Therefore 1

2Nv
= y`+1(v)  1/n, which implies

Nv � log(n). By Corollary 1, yt(St) � 1
�kY

t where � = O(1). Therefore:

Y t+1 = Y t � 1

2
yt(St)  (1� 1

2�k
)Y t

Which implies Y `  (1� 1
2�k )

`�1Y 1 = (1� 1
2�k )

`�1n. Also Y ` > 1/n therefore,

`  1 + 4�k ln(n)  5�k log(n). In each iteration t, the number of sets in St is
at most n (since all the sets in St are disjoint), therefore |S|  5�kn log(n), and
the second property is proved.
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A.3 Proof of Theorem 7

Proof. A similar proof to the one given by Bansal et al. [4] shows after step 2,
for each Pi 2 P, �(Pi)  2B. We start by analyzing Step 1. Observe that after
Step 1, the collection of sets {Pi} is a partition of V and Pi ✓ Si for every i.
Particularly, vio(Pi)  vio(Si). Note, however, that the bound �(Pi)  B may
be violated for some i since Pi might be a strict subset of Si.
We finish the analysis of Step 1 by proving that E[

P
i �(Pi)]  2knB/c. Fix an

i  |S| and estimate the expected weight of edges E(Pi,[j>iPj), given that the
ith set in the random ordering is S. If an edge (u, v) belongs to E(Pi,[j>iPj),
then (u, v) 2 E(Si, V \ Si) = E(S, V \ S) and both u, v /2 [j<iSj . For any edge
(u, v) 2 �(S) (with u 2 S, v /2 S), Pr((u, v) 2 E(Pi,[j>iPj) | Si = S)  Pr(v /2
[j<iSj | Si = S)  (1� c

nk )
i�1, since v is covered by at least c

nk fraction of sets
in S and is not covered by Si = S. Hence,

E[w(E(Pi,[j>iPj)) | Si = S]  (1� c

nk
)i�1�(S)  (1� c

nk
)i�1B

and E[w(E(Pi,[j>iPj))  (1� c
nk )

i�1B. Therefore:

E
⇥P

i �(Pi)
⇤
= 2 · E ⇥P

i w(E(Pi,[j>iPj))
⇤  2

P1
i=0(1� c

nk )
iB = 2knB/c

Now we want to analyze step 2. Consider potential function
P

i �(Pi), we showed
after step 1, E

⇥P
i �(Pi)

⇤  2knB/c. We prove that this potential function
reduces quickly over the iterations of Step 2, thus, Step 2 terminates after a
small number of steps. After each iteration of Step 2, the following invariant
holds: the collection of sets {Pi} is a partition of V and Pi ✓ Si for all i.
Particularly, vio(Pi)  vio(Si). Using an uncrossing argument, we show at every
iteration of the while loop in step 2,

P
i �(Pi) decreases by at least 2B.

�(Si) +
P

j 6=i �(Pj \ Si)  �(Si) +
P

j 6=i

⇣
�(Pj) + w(E(Pj \ Si, Si))� w(E(Si \ Pj , Pj))

⌘

 �(Si) +
P

j 6=i

⇣
�(Pj)

⌘
+ w(E(V \ Si, Si))� w(E(Pi, V \ Pi))

=
P

j

⇣
�(Pj)

⌘
+ 2�(Si)� 2�(Pi) 

P
j

⇣
�(Pj)

⌘
� 2B

The above inequalities use the facts that Pi ✓ Si for all i and that all the Pj ’s
are disjoint. The second inequality uses the facts that

P
j 6=i w(E(Pj \ Si, Si)) =

w(E(V \ Si, Si)), and
P

j 6=i w(E(Si \ Pj , Pj)) � w(E(Pi, V \ Pi)), which hold
since the collection of sets {Pi} is a partition of V , and Pi ✓ Si. In particu-
lar,

P
j 6=i w(E(Si \ Pj , Pj)) � w(E(Pi, V \ Pi)) holds since for each edge e if

e 2 E(Pi, Pj) then e 2 E(Si \ Pj , Pj). The last inequality holds since �(Si)  B
and �(Pi) > 2B.
This proves that the number of iterations of the while loop is polynomially
bounded and after step 2, �(Pi)  2B for each Pi.
In addition, since each Pi is a subset of Si, vio(Pi)  vio(Si). Therefore Pr[vio(Pi) �
1]  1/n.


