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Abstract

We present a linear time randomized sieve algorithm for the closest-pair problem. The
algorithm as well as its analysis are simple. The algorithm is extended to obtain a randomized
linear time approximation algorithm for the closest bichromatic pair problem.
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1. Introduction

The closest-pair problem can be found in almost any algorithms text-book as a basic problem in
computational geometry (see, e.g., [CLR90, Man89, PS86]). Deterministic algorithms that run
in O(nlogn) time are due to [Ben80, BS76, HNS88, SH75]. These algorithms are optimal in the
algebraic decision-tree model of computation, where a matching lower bound of Q(nlogn), even
for the 1-dimensional closest-pair problem, is implied by a lower bound for element distinctness
[Ben83, Yao91]. The lower bound only holds when the floor function is not allowed, as was
shown by Fortune and Hopcroft [FH79], who obtained an O(nloglogn) deterministic algorithm
by making use of the floor function. This simply stated problem was used by Rabin in a classic
paper [Rab76], to illustrate the power of randomization, where he gave an algorithm that takes
only O(n) expected running time. Rabin uses a random sampling technique to decompose the
problem into “small” subproblems for which the total cost of a brute force method is expected to
be linear, using the floor function. His algorithm, although simple, has a somewhat complicated
analysis.

In this paper, we present a novel approach using a sieve technique that yields a simple new
algorithm. The algorithm takes linear expected time, using the floor function, and has a simple
analysis

The closest-pair problem is defined as follows: given a set S of n points in R?, for some constant
d > 0, the task is to find a closest pair of points (in Euclidean distance). The algorithm is described
for the plane and can be easily extended to run in linear expected time for any fixed dimension.

A generalization of the closest-pair problem is the following closest bichromatic pair problem:
Given a set of n colored points in R?, for some constant d > 0, find a closest pair of points that are
differently colored (“bichromatic pair”); i.e., find a point p and a point ¢ that have different colors,
such that the distance between p and ¢ is minimum among all the bichromatic pairs. An instance
of the problem where each point is colored by one of two colors was considered by Agarwal et al.
[AESW90]. For an input consisting of m red points and n blue points from ®2 (i.e., for d = 3), they
give a randomized algorithm running in expected time O((km log k log m)?/®+mlog? k + klog? m).
(This has applications in solving the Euclidean minimum spanning tree problem as was shown by

[AESW90].)

We extend our closest-pair sieve algorithm and obtain an approzimation algorithm for the
closest bichromatic pair problem. Our algorithm takes O(n) expected time for any fixed d and for
any number of colors, and finds a bichromatic pair whose distance is no more than (1 + €) times
the distance of the actual closest bichromatic pair, for any fixed e.

The algorithm is described for the plane and can be easily extended to run in linear expected
time for any fixed dimension.

The more general all nearest neighbors problem, in which we are required to compute the
closest neighbors for each point in the set 5, has also been well studied [Ben80]. A randomized
O(nlogn) algorithm was given by [Cla83], and a deterministic O(nlogn) algorithm was given by



[Vai89]. In the last few years, the dynamic and semi-dynamic (“on-line”) versions of the closest
pair problem were extensively studied. See [SSS92, Mat93] and references given therein for work
on these problems.

We assume that we can compute the distance between two points in constant time; i.e., square-
roots can be computed in constant time. We also assume that the floor operation can be computed
in constant time (this assumption is implicit in Rabin’s paper as well).

2. The Sieve Closest-Pair Algorithm

Let S be the initial set of given points. We use ¢(5) to denote the distance between points of a
closest pair in 5. We will assume that the points are not numbered, and we will number them as
the algorithm proceeds. The algorithm consists of two stages. We first compute an approximation
for ¢(5); then the approximation is used to compute 6(.5). The main idea of the algorithm is
to do a simple “filtering” process, in which points are deleted from the set. Let 5; be the set of
remaining points at the start of iteration ¢ (initially S is 5). The filtering continues as long as 5;
is non-empty. In the filtering, the sizes of the sets 5; are shrinking geometrically. At the end of
the process we get an approximation (up to a factor of 3) to the closest-pair distance. We then

use a simple technique to find a closest pair.

The filtering process: Pick at random a point from ; and call it ;. The distance to the closest
point from a point z, in the current set S;, is defined to be d(z). Compute d(z;) by computing
the distance from z; to all points in 5;. To obtain S;4; we delete from 5; all points z such that
d(z) > d(z;). In this process, we may also delete some points z such that d(z;) > d(z) > d(z;)/3.
However, all points z such that d(z) < d(z;)/3 will remain in S;41. We stop the filtering process
when the set S; becomes empty. Let i* be the smallest index such that S;x11 = 0 and S« # 0. Let
z;» be the point selected at random from S;« at iteration ¢*. The closest-pair distance 6(5) is at
most d(z;+) and at least d(z;+)/3. Thus at the end of the filtering process we find an approximation
to 6(5) within a factor of 3.
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Figure 1: Neighborhood of a point z



It remains to show how to implement the above process, and how to use the resulting approx-
imation d(z;+) to find a closest pair. These can be done easily by the notion of “neighborhood”.
This notion was previously used in other algorithms for the closest-pair problem and for the more
general all-nearest-neighbors problem. Consider a mesh of size b. The neighborhood of a point z,
is the cell containing « plus the 8 neighboring cells (see Figure 1). Let N(z) be the set of points
in the neighborhood of z. The following facts can be easily verified.

(1) All points whose distance from =z is at least 3b (actually 2v/2b) are not in N(z).

(2) All points whose distance from z is at most b are in N(z).

Note that points with distance from z between b and 24/2b may be either in N(z) or not in N(z).

Implementation of “filtering”: Let z; be a point selected at random from set 5; in iteration
i. We build a mesh of size b = d(z;)/3. A point z is deleted from S; if and only if it is the
only point in its neighborhood (i.e., the only point in N(z)). This can be implemented in O(].5;])
expected number of steps and linear space by using hashing. Specifically, a perfect (i.e., injective)
hash function can be computed in O(]S5;]|) time to represent the |.5;| non-empty cells in O(|5;])
space, by using the algorithm of [FKS84]. Alternatively, standard hashing techniques such as
coalesced hashing can be used (see, e.g., [Knu73, page 514]). The above stated complexities can
be achieved for any input by using hash functions chosen at random from a universal class of hash

functions [CWT9].
Lemma 2.1: When the algorithm terminates (Sixy1 = (), then d(z;+)/3 < 6(5) < d(z;+).

Proof: Clearly, §(5) < d(z;+) (by definition). By Fact (1), in iteration 7 all points z with d(z) >
d(z;) are deleted. Therefore, the sequence {d(z;)} is monotonically decreasing. Let j* be the first
iteration in which a point u of a closest-pair is deleted from S;+. By Fact (2) all points z with
d(z) < d(z;+)/3 are not deleted from 5;+. Note that d(u) = §(.9) since both closest-pair points are
in S;«. Therefore, 6(5) > d(z;+)/3 > d(z;+)/3. o

Computing §(5) from its approximation: We will use the following simple facts.

Consider a mesh of size b and assume that b/3 < §(5) < b. Then

(3) The neighborhood of each point in § contains at most a constant number of points.
(4) Each point of a closest pair is contained in the neighborhood of the other point.
We construct a mesh of size d(z;«) (the approximation of §(5)). For each non-empty cell we

build a list of all points in this cell. This can be implemented in linear expected time and linear
space by using hashing as above. Then, for each point we find the distance to its closest point in



its neighborhood, if such a point exists. By Fact (3) this can be done in constant time per point,
by using a brute force method (or other more efficient techniques). Fact (4) guarantees that for
each point from the closest pair, the other point is in its neighborhood. Thus, the closest pair will
be found by computing the minimum over the distances.

We now give the algorithm in more detail.

The Sieve Closest-Pair Algorithm:

Step 0. Initialize S to be 5, and ¢ = 1.

Step 1. Pick at random a point z; from 5;, and compute d(z;), the distance to the closest point
in 9;.

Step 2. Construct a mesh of size b = d(z;)/3; Define X; = {z; | N(z;) = {z;}};
Siv1 = 8i — Xi. (X; is a collection of points that are alone in their neighborhood.)

Step 3. If Siz1 # 0 then 7 = i+ 1, and goto Step 1.
Else (if Siy1 = 0) let * = 4. (d(z+)/3 < 6(9) < d(zi+).)

Step 4. Construct a mesh of size d(z;«). For each point z in 5, compute the distance to the
closest point to 2 in N(z) (if there is such a point). Find a closest pair by computing the
minimum over all computed distances.

Analysis:

The only thing to show is that the filtering process takes expected linear time. As noted above the
cost of iteration 7 is linear in the size of 5;. Let us show that the sizes of the sets 5;, 7 =1,2,...,
are expected to decrease at least geometrically. The key argument is to consider the sequence
{d(z) : z € 5;} in non-decreasing order. When selecting at random z;, all points z such that
d(z) > d(z;) are deleted. Thus, on the average at least half of the points are deleted in each

iteration, and hence a geometric decrease is expected. Specifically we have

Lemma 2.2:

E(iw)gzn

=1

Proof: Let s; be the cardinality of 5;. We first show by induction that E(s;) < 5%t for¢ > 1. By

5T
the argument given above, E(s;41) < s;/2. Therefore,

E(si41) = B(E(sn)) < B (3 ) = 5B (),

Thus, by inductive hypothesis, E (s;41) < %zfil = 5




By linearity of expectation,

E (Zsz) <E (Z‘SZ) = ZE(SZ) < Z 221 < 2n.
=1 =1 =1 ;

We therefore have,

Theorem 2.3: The sieve closest-pair algorithm solves the closest-pair problem in O(n) expected
time and O(n) space.

3. The e-Closest Bichromatic Pair Algorithm

The sieve algorithm presented consists of two parts. First we obtain an approximation to the
closest bichromatic pair within a factor of 3, in a manner similar to the closest-pair algorithm.
Then we show how to improve the approximation factor to (1 + €), for any fixed e.

Obtaining a rough approximation: For a point z, let d(z) be the distance from z to the
closest point with a different color in the current set. Observe that after picking a point z; at
random and computing the distance d(z;), we can filter the current set to throw out all points z
with d(z) > d(z;); no point z with d(z) < d(z;)/3 is thrown though. This will discard at least
half the points on the average, as can be seen by considering the vector d(z) (z in the current set)
in a sorted order. The implementation is similar to that of the closest-pair algorithm. For each
neighborhood we only need to know whether or not it contains points from at least two different
colors. This suffices for answering queries of the type “does = have a neighbor of different color in
its neighborhood”.

Refining the approximation: Let d(z;+) be the approximation computed above; i.e.,
d(z;+)/3 < & < d(z;+) where § = dist(p,q), (p,q) being a closest bichromatic pair. Consider a
mesh of size d(z;+). It is guaranteed that p is in the neighborhood of ¢q. However, unlike the
case in the closest-pair algorithm, the number of points of the same color in each neighborhood
is unbounded; thus, computing the distance from a point to all points of a different color in its
neighborhood is too costly. Instead, we proceed as follows.

Consider a refined mesh of size b = ¢ d(;+)/9. From each subset of points of the same color lying
in the same cell of the refined mesh we take an arbitrary point as a representative. The distance of a
representative from any point in its cell is at most v/2b < ¢ d(z;+)/6. Therefore, if p’ and ¢’ are the
representatives of p and ¢ (respectively), we have dist(p’, ¢') — dist(p,q) < e d(z;+)/3 < e dist(p, q)
and therefore dist(p’,q") < (1 + €)dist(p,q). It remains to find a closest bichromatic pair among
the representatives.



The number of representatives in each neighborhood (in the mesh of size d(z;+)) is constant
(specifically, it is O(1/€*)). (The number of distinct colored points that can be packed into the
cell is constant, since the mesh was an approximation to a closest bichromatic pair.) Therefore, a
closest bichromatic pair of representatives can be found in O(n) time by computing the distance
from each representative of one color to all representatives of different colors in its neighborhood.

We have

Theorem 3.1: The sieve algorithm presented above solves the e-closest bichromatic pair problem
in O(n) expected time and O(n) space, for any fixed c.

4. Conclusions

In this paper we presented a linear time randomized algorithm for the closest-pair problem, based
on a new sieving technique. It would be interesting to see if the sieving technique would be of
use in designing a deterministic algorithm that is faster than Fortune and Hopcroft’s [FH79].
The algorithm was extended to obtain a randomized linear time approximation algorithm for the
closest bichromatic pair problem. Subsequent to this work, Golin, Raman, Schwarz, and Smid
[GRSS93] described a randomized data structure for the dynamic closest pair problem. For a set
of n points in k-dimensional space, for any fixed k, their data structure supports a closest-pair
computation in constant time; it requires O(n) space, and supports each insertion or deletion in
expected O(logn) time. The previously best known algorithm uses O(nlog®n) space and runs
in O(nloglC nloglogn) amortized time per update; the previously best known linear-space data
structure requires O(y/nlogn) time per update. Their data structure is essentially based on the
algorithm presented in this paper. The sieving procedure presented here is, to quote the authors,
“at the heart of the dynamic algorithm.”
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