
Query Planning
in the Presence of Overlapping Sources

Jens Bleiholder1, Samir Khuller2, Felix Naumann1,
Louiqa Raschid2, and Yao Wu2

1 Humboldt-Universität zu Berlin, Germany,
{naumann|bleiho}@informatik.hu-berlin.de

2 University of Maryland, College Park, Maryland, USA,
{samir|yaowu}@cs.umd.edu, louiqa@umiacs.umd.edu

Abstract. Navigational queries on Web-accessible life science sources
pose unique query optimization challenges. The objects in these sources
are interconnected to objects in other sources, forming a large and com-
plex graph, and there is an overlap of objects in the sources. Answering
a query requires the traversal of multiple alternate paths through these
sources. Each path can be associated with the benefit or the cardinality
of the target object set (TOS) of objects reached in the result. There is
also an evaluation cost of reaching the TOS.
We present dual problems in selecting the best set of paths. The first
problem is to select a set of paths that satisfy a constraint on the eval-
uation cost while maximizing the benefit (number of distinct objects in
the TOS). The dual problem is to select a set of paths that satisfies
a threshold of the TOS benefit with minimal evaluation cost. The two
problems can be mapped to the budgeted maximum coverage problem
and the maximal set cover with a threshold. To solve these problems,
we explore several solutions including greedy heuristics, a randomized
search, and a traditional IP/LP formulation with bounds. We perform
experiments on a real-world graph of life sciences objects from NCBI
and report on the computational overhead of our solutions and their
performance compared to the optimal solution.

1 Introduction

The last few years have seen an explosion in the number of public life science
data sources, as well as the volume of data entries about scientific entities, such
as genes, proteins, sequences, etc. Consequently, biologists spend a considerable
amount of time navigating through the contents of these sources to obtain use-
ful information. Life sciences sources, and the navigational queries that are of
interest to scientists, pose some unique challenges. First, information about a
certain scientific entity, e.g., a protein, may be available in a large number of
autonomous sources, each possibly providing a different characterization of the
entity. While the contents of these sources overlap, they are not replicas. Second,
the links between scientific entities (links between data objects) in the different

sources are unique in this domain in that they capture significant knowledge
about the relationship and interactions between these entities. These links are
uncovered in the process of navigation. Third, users are usually interested in
navigational queries.

We consider a given set of sources and assume that the data objects in any of
these sources have links to data objects in the other sources. We further assume
that a (simple) navigational query identifies an origin class, e.g., protein, and
possibly a (set of) origin sources that are of interest, e.g., UniProt. The query
also identifies a target class of interest, e.g., publications, as well as an optional
list of intermediate sources. Answering such queries involves exploring the data
sources and classes, and the links between data sources. Our goal is to find
paths at the logical level (among classes) and paths at the physical level (among
sources implementing these classes). While we note that the query language can
be extended to other query types, for our study we use a simple query.

Each path is associated with a benefit, namely the number of distinct objects
reached in the target object set (TOS) in the target class. Each path is also
associated with a cost of evaluating the query on the sources to compute the
TOS. Given the overlap between sources and the highly interconnected nature
of the object graph, each m-way combination of TOSs of paths is also associated
with a TOS overlap. This overlap represents same objects reached in the TOS

using different paths, and reduces the combined benefit of this path combination.
We present dual problems in this context of selecting the best set of paths.

The first problem is to select a set of paths that satisfy a constraint on the eval-
uation cost while maximizing the benefit or the number of distinct objects in
the TOS of these paths. This problem maps to the budgeted maximum coverage
(BMC) problem [1]. We expect that in many cases, a user is more interested in
reaching some desired minimal number of objects and may not set a constraint
on the budget. To explore this situation, we consider the dual problem, which
selects a set of paths that satisfies a threshold of the TOS benefit with mini-
mal evaluation cost. The dual can be mapped to the maximal set cover with a
threshold (MSCT).

The problems we address apply to many other scenarios. Consider a general
problem - find a best set of paths to the data sources - and a simpler subproblem
- find the best set of sources, ignoring that there might be multiple heterogeneous
paths to reach these sources. This subproblem arises in many data integration
situations, namely whenever (i) the integrated system has access to multiple
sources that overlap in the data they store, (ii) it is not necessarily required
to retrieve all answers to a query (some are enough), and (iii) some per-source
cost is incurred to find and retrieve answers. Applications include metasearch
engines and search engines for intranets, stock information systems (queries cost
money), shopping agents, and digital libraries. For each of these systems it is
worthwhile to access only some data sources and still find satisfying results.

Life science data sources are distributed web accessible sources. Consider the
NCBI that is a portal providing access to all public NIH funded sources. For our
research we created a warehouse of a subset of the links between 5 sources. We

note that creating a warehouse of links for all web access sources á la Google
and providing the statistics needed to solve our problems is a difficult problem
and is discussed in the experiment section.

Contributions. We identify a path overlap problem faced by life scientists in
navigating paths among multiple interconnected and overlapping sources and we
model it as a BMC problem and a dual MSCT problem. We propose an exact
solution (IP), a randomized approximate solution with bounds (LP), unbounded
greedy heuristics, and unbounded randomized solutions. Finally, we present em-
pirical results of our strategies on a sampled real world data graph from the
NCBI. The graph is stored in a database and we discuss the computational
overhead supporting our solutions.

Outline. Sec. 2 first introduces our model of sources, objects, links, queries,
and paths, and next formally states the two optimization problems. To solve the
problems, Sec. 3 presents algorithms to compute exact solutions, an algorithm
with known optimality bounds, and efficient but unbounded algorithms. Sec. 4
describes our experimental data of linked NCBI sources and their source-metrics,
such as cardinality and overlap. In Sec. 5 we report on our experimental results
showing good performance and solution quality for both problems. Finally, Sec. 6
reviews related work and Sec. 7 concludes.

2 Modeling Life Science Data Sources

We introduce a model for life science data sources and queries, and then define
the problem of selecting sources and source paths to answer queries. Further and
more detailed definitions are in [2].

2.1 Data model and queries

A scientific entity or class represents instances of a logical class of objects, e.g.,
Disease, Sequence, etc. A logical link is a directed relationship between two logical
classes. The set of logical classes and logical links between them form the directed
logical graph LG. A logical graph LG is an abstraction (or schema) of the source
graph SG with data sources as nodes. A source S is a real-world accessible data
source. Each logical class can be implemented by several sources. In turn, the
object graph OG is an instance of SG containing representations of real-world
objects and links between them. Finally, a result graph RG is a subset of OG
and contains the data objects and links specific to a particular query. LG, OG,
and RG are analogous to the schema, database instance, and result of a query.

Figure 1 shows an example of a world with four logical classes, Disease, Pro-
tein, Sequence, and Publication, and five sources. Omim is the source that stores
data on genetic knowledge on Disease, and Publications are stored in two sources

PubMed and Books. Each source has some objects stored within, each having
zero or more links to objects in other sources.

A source path p is a path from an origin source in the source graph SG

Disease

Protein Sequence

Publication

OMIM

NCBI Protein NCBI Nucleotide

PubMed Books

a c d e fb

q r s t u v w x

l m n o pg h i k

Fig. 1. A simple model with classes,
sources, objects, and links

to a target source of SG. Figure 2 lists
the five source paths connecting origin
source Omim and target source Pub-

Med or Books in our example SG.
An object link is a directed edge be-

tween two data objects in two differ-
ent sources. Given a source graph, the
object graph OG is a directed graph
in which the set O of all data objects
stored by the sources are the nodes,
and the set L of object links between
these objects are the edges. The object
graph represents our world model of all
the objects and links that we consider.
We note that object t in the OG of
Fig. 1 occurs in the path overlap of two paths from Omim to PubMed, and in
the path overlap of two paths from Omim to Books.

(P1) Omim → PubMed

(P2) Omim → NCBI Protein → PubMed

(P3) Omim → NCBI Nucleotide → PubMed

(P4) Omim → NCBI Protein → Books

(P5) Omim → NCBI Nucleotide → Books

Fig. 2. Five paths from Omim to PubMed or
Books through the source graph of Fig. 1

Consider the following query:
“Return all Publications of Pub-

Med that are linked to an Omim

entry about Diseases related to
the keyword tumor.” To answer
this query, a set of source paths
in SG from Omim to PubMed

are identified. A keyword search
on tumor is used to retrieve rel-
evant entries from Omim. Then,
for each source path, starting
from the selected Omim objects,
all paths in OG that reach PubMed entries are traversed. We define a result
graph as representing the answers of a query against the OG. A result graph is a
subset of the object graph. The target object set (TOS) is the set of objects in the
RG reached in the target source of a particular source path. In the example the
objects reached in PubMed. Either the RG or the TOS for each of the source
paths can be considered to be answers to the query. For the purposes of this
paper, we consider simple queries that start with a set of objects in an origin
source and traverse paths in OG to reach a set of objects (TOS) in each target
source. More complex navigational queries are described in [3].

A source path p in SG can be characterized by a number of metrics, including
the following:

– Length of the path
– Cardinality of attributes of all sources visited by p

– Cardinality of objects in the target source (TOS) - also called the benefit
– Cost of evaluating this source path on OG
– User’s preference for objects in the TOS reached by traversing p

In related work we consider a multi-criteria optimization problem to generate
the best K source paths or skyline paths [4].

2.2 Problem statement

We formulate dual problems with respect to maximizing benefit given some
starting object(s) and a cost constraint. The dual is to find a set of paths with
benefit above a threshold that has the least cost.

Consider the TOSs of two paths. We assume that the benefit of an object
is 1. An important observation when counting target objects is that there is no
additional benefit when the same object occurs in both TOS. We describe this as
TOS overlap. TOS overlap can occur at different degrees, i.e., it can be disjoint,
contained, equivalent, or have some concrete value. A discussion of overlap and
methods to estimate overlap under certain assumptions is given in [2]. We note
that while our problem definition assumes that there is no benefit of finding
objects multiple times in overlapping paths, there are other contexts in which
semantic knowledge is associated with overlap. For example, the fact that an
object was reached by traversing two specific alternate paths may convey some
knowledge about the characteristics of this object, or the sources involved in the
paths.

We assume that there is a cost (or delay) associated with traversing the paths.
This is realistic since accessing multiple sources may both delay the scientists as
they wait for answers to be computed and delivered. It may also have a negative
impact on all other users of these sources. Finally, the commercialization of
certain data products means that actual payments may also be involved. A
simple cost model would be to assign each path a unit cost (1). This turns the
problem into choosing a combination of the best k paths among all possible
paths. A more realistic way of assigning costs to the paths is to follow a cost
model for query evaluation. In a later section, we discuss computing the metrics
of paths in detail.

Assuming non-uniform costs, benefits, and TOS overlap, the problem is for-
mally defined as follows:
Problem 1 (BMC) Consider a collection of paths P = {p1, p2, . . . pm}, a world
of objects Z = {z1, z2, . . . zn} and a mapping to indicate if element zj occurs
in the TOS of path pi. There is an associated cost for picking each path and
an associated benefit for covering each element. Consider a collection of paths
P ′ ⊆ P; the distinct objects in the corresponding union of the TOS for P ′ is
labeled UnionTOS. The goal of our first problem is to find a set P ′ such that
the total (adjusted) benefit of UnionTOS gained by picking P ′ is maximized, and
the total cost of P ′ does not exceed a given budget B. The problem is known
as the Budgeted Maximum Coverage (BMC) problem in the literature and is
NP-hard [1]. Note that while the overall cost is the sum of the individual costs,

the overall benefit is not the sum of individual benefits but must be adjusted
(reduced) by any existing overlap.
Problem 2 (MSCT) The dual of this problem is the Maximal Set Coverage
(with Threshold) or MSCT problem. The goal is to find a collection of paths
P ′ ⊆ P such that the (adjusted) benefit of UnionTOS gained by picking P ′ is at
least T while minimizing the total cost of P ′.

2.3 An example

To illustrate how to choose combinations of paths we present an example. Fig-
ure 3 shows four data sources Omim, PubMed, NCBI Protein, and NCBI -

Sequence. There are five possible paths from Omim to PubMed (labeled A to
E). Each path starts with a set of Omim objects and terminates in a set of Pub-

Med objects. This results in the path benefit is also shown. The intermediate
objects are not shown in Fig. 3 to not confuse the reader. The table of Fig. 3
shows cost and benefit/cost ratio.

Disease

Protein Sequence

Publication

OMIM

NCBI Protein NCBI Nucleotide

PubMed

DB AC E

Fig. 3. An example graph with five overlapping paths from Omim to PubMed and
their benefit and cost

Assume a cost limit of 20, which must be met and overlap as given in Fig. 3
(overlap(CD)=1 and overlap(CE)=2). We cannot follow all paths given the cost
limit. We use this example in the following section to explain the different algo-
rithms of finding the best subset of paths.

3 Algorithms

To solve BMC and MSCT, we implemented several algorithms to find a combina-
tion of best paths. After stating how to determine exact solutions for comparison
purposes, we model the problem as an IP/LP, and then present some unbounded
solutions including greedy algorithms and a random search algorithm. While the
algorithms are applied to our small example here, we show how they perform on
real-world data sets in Sec. 5.

3.1 Computing exact solutions

BMC: Determining an exact solution for BMC requires looking at all combi-
nations of paths and their TOS, and choosing the one with the highest overlap-
adjusted benefit. The overlap-adjusted benefit simply eliminates duplicate ob-
jects in UnionTOS and then determines the cardinality. As the number of paths
is exponential in the number of sources and the number of possible combina-
tions is also exponential (2n, n being the number of paths) we are dealing with
a “doubly exponential” problem in the number of sources. However, due to the
given cost limit, we may not need to consider all combinations. In our example
only the combinations A, BE, CD, CE, and DE are below the cost limit of 20, the
adjusted benefit results are 11, 14, 13, 10, and 10 respectively. We can see that
the solution BE provides the best adjusted benefit of 14.
MSCT: Determining an exact solution for MSCT requires looking at all possible
combinations of paths and their combined cost. The combination with the least
cost is chosen, given that the overlap-adjusted benefit exceeds some threshold.
In the example the maximum benefit one can gain is 36. If we want to find
the cheapest solution with a guaranteed benefit of 29 (roughly 80%) only the
combinations ABCDE (36), ABCD (34), ABCE (31), ABDE (31), and ABC (29)
need to be considered (overlap adjusted benefit in parentheses). Among these
ABC is cheapest with a cost of 43, still meeting the threshold.

Both problems can be modeled as Integer Programming to get an exact
solution.

In summary, in both cases (BMC and MSCT) we are able to apply some
pruning technique so that we do not need to consider all combinations and are
able to speed up computation.

3.2 Formulation as an IP/LP

We solve BMC and MSCT using a standard LP relaxation and rounding ap-
proach. We show that the expected cost does not exceed the budget in BMC,
and the expected benefit is within a factor of the optimal solution. We show that
the expected benefit meets the threshold of the MSCT problem and the expected
cost is at least within some factor of optimal. Interestingly, an almost identical
randomized rounding approach is suitable for both problems as we show in [5].
BMC Problem: Let S be a family of sets (paths). Let S = {S1, S2, . . . Sm}
and let Z be the set of all objects, Z = {z1, z2, . . . zn}. Let B be the budget
allowed to choose the subset of paths. We set integer variables xi = 1 iff set Si is
picked and yj = 1 iff zj is covered. Let c(Si) be the cost of picking set Si. wj is
the benefit of covering element zj . In our problem, we consider a uniform benefit
for all objects; that is, wj = 1 for each object zj . The IP formulation is as follows:

maximize
∑n
j=1 yj · wj subject to

∑m
i=1 c(Si) · xi ≤ B

yj ≤
∑
{l|zj∈Sl} xl for all j

xi ∈ {0, 1} for all i
yj ∈ {0, 1} for all j

Although the IP gives an optimal solution to the problem, it is impractical to
compute exact solutions; the IP problem is NP-complete. By relaxing the con-
straints that xi and yj must be integers, we have the following Linear Program
(LP) formulation. Note that only the two last constraints of the IP formulation
have been modified as follows: xi ≤ 1, yj ≤ 1.

We solve the LP (using the LP solver CPLEX) thus obtaining an optimal
fractional solution, (x∗, y∗). We then choose a collection of sets S ′ such that
Pr[Set Si is chosen in the set S ′] = x∗i by using a standard technique known as
randomized rounding [6].

Algorithm BMC LP

– Solve the LP relaxation.
– Obtain fractional solution (x∗, y∗).
– Round x∗ values to pick a subset of paths S ′.

This algorithm produces solutions whose expected costs do not exceed B and
have an expected weight of the covered elements (TOS benefit) at least (1− 1

e)
times the LP benefit [5]. Since the LP benefit is an upper bound on the optimal
integral solution, this would be another way of deriving the bound developed
earlier using a greedy algorithm combined with an enumeration approach [1].
MSCT Problem: The notation is the same as in the BMC problem, except
that we want to choose a subset of paths that meet the threshold T while mini-
mizing the cost. The IP formulation is as follows:

minimize
∑m
i=1 c(Si) · xi subject to

∑n
j=1 yj · wj ≥ T

yj ≤
∑
{l|zj∈Sl} xl for all j

xi ∈ {0, 1} for all i
yj ∈ {0, 1} for all j

We relax the last two constraints in IP to obtain the LP formulation: xi ≥ 0,
yj ≥ 0.

Let (x∗, y∗) be the fractional solution obtained by CPLEX. We choose a
collection of sets S ′ such that Pr[Set Si is chosen in S ′] = min(1, αx∗i), where
α is a boosting factor to ensure that we reach the threshold. This algorithm
produces solutions with expected benefit at least (1− 1

eα) · T and expected cost
at most α· OPT [5].

3.3 Greedy Algorithms

We implemented several variants of a greedy heuristic and describe their evalu-
ation in our experiments. Tab. 1 summarizes the results of all greedy algorithms
for the example of Fig. 3. The choice of paths of each algorithm is indicated with
a ∗ in Tab. 1.
Overlap-adjusted Greedy for BMC: Simple greedy variants (choosing paths
in descending order of benefit or benefit/cost ratio) are not optimal, because the
benefit considered does not take into account the overlap. In our example C and

E overlap by 2 so choosing C and E would give a benefit of only 10 instead of
a benefit of 12. So the overlap-adjusted benefit should be taken into account in
computing benefit to cost ratio. This strategy has been suggested in [1]. This
requires some more computation as all benefits need to be adjusted in each step.

Algorithm BMC Greedy

– Rank paths by benefit/cost ratio, in descending order.
– Pick paths with largest benefit/cost ratio, adjust benefit/cost ratio of the

remaining paths.
– Continue as long as the cost constraint (budget) is not exceeded.

In our example, path C is chosen first, as the benefit/cost ratio is highest.
After choosing C the benefit/cost ratios are adjusted. As A and B cannot be
chosen, because of exceeding cost limit, the algorithm chooses D next. This
results in a solution of 93% (13/14) of the optimal solution.
Overlap-adjusted Greedy for MSCT: Similar to BMC Greedy the greedy
algorithm for MSCT also ranks the paths, but now by their cost/benefit ratio
and the lowest ranked path at a time is chosen. The cost/benefit ratios of the
other paths are adjusted. A solution is found as soon as the adjusted benefit
of the combination meets the threshold. This threshold is equivalent to some
fraction (e.g., 90%) of the maximum benefit possible, i.e., the overlap adjusted
benefit if one chooses all possible paths. The algorithm finds a low cost solution
guaranteeing a certain benefit (e.g., 90% of maximum benefit possible).

Algorithm MSCT Greedy

– Rank paths by cost/benefit ratio, in ascending order.
– Pick paths with smallest cost/benefit ratio, adjust cost/benefit ratio

of the remaining paths.
– Continue as long as the benefit constraint is not met.

Assuming a benefit threshold of 29 (roughly 80%), path C is chosen first, as
the cost/benefit ratio is lowest. Next, the ratios are adjusted and B and D are
chosen, resulting in a partial solution with a cost of 33 and an adjusted benefit
of 23. In a last step, the algorithm chooses A and reaches an adjusted benefit
of 34 at a cost of 53. As the threshold of 29 is met, the algorithm stops with a
solution of 123% (53/43) of the optimal.
Overlap-adjusted Greedy for MSCT with pruning: As one looks closer
at the solution of MSCT Greedy one finds that having chosen path D was a bad
choice as even without it the benefit threshold also would have been met. There-
fore we devised an improved version of the greedy algorithm, MSCT Pruning,
which, having chosen a combination of paths, reexamines all paths chosen and
deletes one single redundant path, if one exists. If there is more than one redun-
dant path, the path with the highest cost is deleted.

Algorithm MSCT Pruning

– Perform MSCT Greedy.
– Pick each path of the combination, delete it; determine cost and benefit.

– Choose among these combinations the one with the smallest cost which
also meets the threshold.

In our example, after having found the combination CBDA with a benefit
of 34 and a cost of 53, the four combinations BDA (benefit 27, cost 43), CDA
(benefit 24, cost 40), CBA (benefit 29, cost 43) and CBD (benefit 23, cost 33) are
examined additionally. Combination CBA is chosen, as it meets the threshold at
lowest cost.

path benefit/cost BMC - BMC - cost/benefit MSCT - MSCT MSCT
ratio optimal Greedy ratio optimal Greedy Pruning

A 0.55 (0.55) 1.81 * *(1.81) *

B 0.77 * (0.62) 1.3 * *(1.3) *

C 0.8 * (n/a) 1.25 * * *

D 0.6 * (0.5) 1.67 * (1.43) (*)

E 0.67 * (0.33) 1.5 (3)

achieved benefit 14 13 29 34 29

achieved cost 19 20 43 53 43
Table 1. Results of all greedy algorithms compared to the optimal solutions.

3.4 Applying Randomized Optimization

We also applied a randomized technique to the BMC problem. Randomized
approaches find solutions by searching guided by an utility function. The search
through the search space involves random steps, in most cases resulting in faster
convergence to a solution by leaving out unpromising parts of the search space.

Base algorithm Goos describes different approaches to randomized optimiza-
tion [7]. We use one specific specialization of the base algorithm, which is known
as Simulated Annealing. Starting from an initial configuration K0, new config-
urations are created involving the old configuration and some random decision.
A new configuration is accepted if it is better than the old one, but it is also
accepted with a certain probability if it is worse. The acceptance probability
depends on the current temperature, lower temperature meaning lower accep-
tance probability. This enables the algorithm to escape local minima; escaping
is likely in the beginning and becomes more and more unlikely. The temperature
decreases over time, and the algorithm ends if the temperature drops below a
predefined temperature, when it has “cooled down”.

Modeling and implementation We applied this random algorithm by mod-
eling and changing configurations and minimizing an utility function. A con-
figuration K to our problem consists of a set of paths, new configurations are
created as follows:

1. Choose randomly among all available paths and combine them to a path set.
This is done when initializing the start configuration K0.

2. Add or delete a path. First, a path is chosen with a fixed probability out of
all available paths and added to the set of paths if it is not already part of
the set. Second, a path is randomly chosen out of all paths in the set and
deleted from the set. This allows for inserting, deleting, and changing paths
in the set. Creating a new configuration given an old one is done this way.

When changing a configuration (adding, deleting path), updating cost and
benefit information could be done in O(1), when using a bitset representation.
When designing the utility function for BMC, overlap-adjusted benefit plays an
important role, but also cost and other information could be used. Already a
simple utility function consisting only of the overlap-adjusted benefit (OAB)
and a penalty term for not complying with the cost limit yielded good results.
The penalty term (MAX COST) is set to a fixed number, exceeding the highest
single path cost. The chosen utility function for BMC is shown in Equation 1.

UFBMC(K) =

{
−OAB +MAX COST limit exceeded,

−OAB otherwise
(1)

3.5 Computational Complexity

LP: LP problem can be solved by Simplex algorithm in linear time “in practice”.
That is, the number of iterations is linear in the number of constraints, which
is the total number of paths and objects. LP can also be solved in polynomial
time by using Karmarkar’s interior point method.
Greedy Algorithms: Given n paths and bitset representations of the paths and
their objects, adjusting the benefit/cost ratio of a remaining path after having
chosen a path could be done in constant time. Then all greedy variants have a
computational complexity of O(n2).
Randomized Algorithm: The random approach has a computational com-
plexity of c∗O(1). Here, c is a constant given by c ≤ a∗b where a is the maximum
number of configurations tested for acceptability per temperature and b is the
number of distinct temperatures tried.

4 NCBI Data

4.1 NCBI Data Sources

NCBI/NIH is the gatekeeper for all biological data produced using federal funds
in the US3. For the purpose of our experiments, we consider a source graph
SG of five NCBI data sources (Omim, PubMed, NCBI Protein, NCBI -

Nucleotide, and SNP), and the 10 links between these sources. We used the
EFetch utility to sample all objects from these five sources that matched against
a set of several hundred keywords of interest. We then used the ELink utility
to obtain all the links from these objects, along the 10 links, to the four other
sources. We obtained an OG of approx. 28 million objects and 10 million links.
3 www.ncbi.nlm.nih.gov

For simplicity, a query identified an origin source and a target source, and
an optional keyword. A query is satisfied by up to sixteen source paths in the
SG and is evaluated against the database of the sampled OG. For each of the
source paths (and optional keyword), we determine the TOS; this is the set of
objects reached in the target source. We also determine the cost of evaluating
the TOS and the benefit (cardinality of the TOS).

4.2 Metrics for the NCBI Graph

We use a bitset data structure to store the TOS for each path and to compute
the overlap of a set of TOS, and to store UnionTOS. UnionTOS is the union of a
set of TOS(without duplicates). If an object (some position in the UnionTOS) is
present in the path, the corresponding bit in the bitset vector for that path is
set to 1. The bitset is used to efficiently compute the overlap adjusted benefit of
a set of paths. We use DB2 union operator to help us to compute UnionTOS.

The IP/LP requires that the bitset for all paths must be computed a priori in
order to set up the constraints of the IP/LP formulation. The greedy algorithm
requires that some of the overlap adjusted benefits be pre-computed. While it
does not require that the bitset be computed a priori, computing the bitset assists
the algorithm. The random algorithm also computes the overlap adjusted benefit
in an incremental manner and can benefit from the a priori computation of the
bitset.

In general, the overhead of maintaining the desired metrics can be expensive.
We briefly discuss some of the challenges. Consider computing the TOS or com-
puting the benefit (cardinality of the TOS). Since we created a local database
(warehouse) of all the objects that matched the keywords of interest, we could
directly compute the TOS or its benefit. If the objects corresponding to the key-
word were not sampled and stored in the relational database, we would have
to estimate the TOS and its benefit. In prior work we have developed a model
to make such estimations [2]. That model has the strong assumption of link
independence, which may not hold for real sources.

Determining the cost associated with evaluating each search path on OG
to compute the TOS is also straightforward in our case, because we consider
only simple queries with a keyword of interest and we assume that the links of
OG are stored in our relational database. In general, determining the cost of
evaluating each source path involves estimating the cost of submitting EFetch
queries to the NCBI servers to determine the objects that satisfied some complex
search criterion, and possibly calls to ELink to find all objects that have links to
an object of interest. It may also include some local join processing costs. The
EFetch and ELink access cost depends on the workload on the NCBI servers
and the network workload between the client and the NCBI servers. In our
experiments, the cost associated with a path is the cost of computing the TOS

of the path on the locally stored OG.
Consider for instance a query where the start source is PubMed and the

target source is NCBI Protein. As mentioned there are 16 source paths P0
through P15 between these two sources in this NCBI source graph; they visit the

intermediate nodes NCBI Nucleotide, SNP, or Omim. Note that the source
paths do not have cycles and we do not visit a node or an edge more than once.

P0 P1 P2 P3 P4 P5

P0 30735 22729 2876 26 1560 166

P1 23916 1857 25 1573 108

P2 3261 24 1046 175

P3 40 37 21

P4 2848 80

P5 175

Table 2. Benefit of TOS and pair-wise overlap of 6
paths from PubMed to NCBI Protein

Table 2 reports on the TOS

benefit for each path in the di-
agonal as well as the pair-wise
TOS overlap between pairs of
paths. For lack of space we re-
port on only 6 of the 16 paths.
As can be seen in Tab. 2, the
TOS benefit for each individ-
ual path varies widely from 40
to 30735. We also note that
the pair-wise TOS overlap be-
tween pairs of source paths has a wide variance of values and ranges from a low
of 21 to a high of 22729.

We also illustrate the time to compute the UnionTOS and the time to com-
pute the bitsets for a set of paths. We study 5 different queries, which induce

size of Time to Compute Time to Compute
Query UnionTOS UnionTOS(msec) bitset (msec)

NU to OM 8047 258095 609

NU to PU 122615 217412 7993

NU to PR 561358 164905 34689

PU to NU 1484403 282613 92329

NU to SN 1995918 502012 130765

Table 3. Running Time to Compute Metrics for a Large
Object Graph and Result Graph

different size of re-
sult graph. Thanks
to DB2’s union op-
erator, we are able
to compute UnionTOS

for result graph of size
hundreds of millions
efficiently. Note that
the time to compute
UnionTOS is not pro-
portional to the car-
dinality of the union, but depends on the inherent join complexity, that is car-
dinality of intermediate sources involved in the join. For example, consider the
query from the origin source NCBI Nucleotide to the target source Omim,
even the cardinality of UnionTOS is relatively small, the join complexity is still
comparable to rest queries.

The time to create bitsets for result graph is proportional to cardinality of
UnionTOS as we expected. In the source graph we are interested in, where there
are 5 sources and 10 links, the result graph can be computed efficiently. Comput-
ing these metrics for a large source graph could introduce scalability challenges
and in the future work we will consider both specialized data structures and
methods to estimate these metrics.

5 Experiments on NCBI Data

To demonstrate the effectiveness and efficiency of the different algorithms for
the dual problems, we performed extensive experiments on different sampled
real-world datasets. These are characterized by different start/end sources. For

both BMC and MSCT we used a variety of budgets for cost and thresholds for
benefit and compared the greedy, the random, and the LP solution to the exact
solution. We first describe results for BMC, then for MSCT, and conclude with
some remarks on their runtime.

We used a total of 20 different start/end source combinations, but show re-
sults for only 2 characteristic ones; values are averaged over 10 samples. First we
describe the experimental results, then we analyze them. The following figures
all show relative solution quality compared to the optimal solution at varying
budgets (BMC) and varying benefit thresholds (MSCT). Because BMC maxi-
mizes benefit, the algorithms do not reach 100% whereas MSCT minimizes cost
and therefore the values are above 100%.
Results for BMC: Figure 4(a) shows results of experiments with all paths
between sources SNP and PubMed with different cost limits. Algorithm Greedy
is between 75% and 97% of the optimal solution, being worse at small budgets
but with better relative results at higher budgets. The LP solution also lies
between 75% and 95%, not showing improved performance with higher budgets,
whereas the Random algorithm performs well for all budgets. The chosen path
combinations (not shown here) consists of only a few paths. This leads to the
difference in solution quality, as benefit may differ substantially if one single
path is added/removed to/from the optimal solution.

The results of experiments with all paths between source NCBI Protein

and PubMed are shown in Fig. 4(b). Here, all approaches perform exception-
ally well, occasionally not finding the optimal solution but one at approximately
99.9% of it. Regarding the same path with smaller budgets in Fig. 4(c) shows
something different: The same algorithms perform worse than with larger bud-
gets (except Random). The reason for this behavior is that the budgets in the
former case are so large that (almost) all paths are part of the solution. So the
solution quality is influenced by the given budget.
Results for MSCT: Figure 4(d) shows results of experiments with all paths be-
tween source SNP and PubMed, with different benefit thresholds (0.7 meaning
that the benefit of the solution is guaranteed to be at least 70% of the maximum
possible benefit). Both algorithms perform well, Pruning being at least equal,
but in most cases better than Greedy. At a threshold of 1.0 all paths must be cho-
sen, except redundant paths. Greedy sometimes chooses these redundant paths
and Pruning does not remove all, but only one. Therefore, both variants do not
always find the optimal solution.
Discussion: Greedy seems to be the most unreliable algorithm among all. If the
optimal solution is unambiguous (one path, all paths) it mostly finds it, but it
has weaknesses in between. There is also a difference in solution quality, if two
different datasets are compared. This seems to be accountable to the particular
characteristics of the datasets. Comparing the solution quality of Greedy on
the datasets SNP → PubMed (Fig. 4(a)) and NCBI Protein → PubMed

(Fig. 4(b)), Greedy performs better on the former. The difference in these two
datasets lies in the cardinality and the spread of the overlap. In the sets where
Greedy performs better, there is much more variation in the amount of overlap,

40000 60000 80000 100000
budget

20

40

60

80

100

benefit relative to optimal

LP
Random
Greedy
Optimal

(a) BMC Algorithm Results for
datasets from SNP to PubMed, large
budgets.

40000 60000 80000 100000
budget

20

40

60

80

100

benefit relative to optimal

LP
Random
Greedy
Optimal

(b) BMC Algorithm Results for
datasets from NCBI Protein to
PubMed, large budgets.

5000 7500 10000 12500
budget

20

40

60

80

100

benefit relative to optimal

LP

Random

Greedy

Optimal

(c) BMC Algorithm Results for
datasets from NCBI Protein to
PubMed, small budgets.

0.3 0.5 0.8 0.9 1.0
threshold factor

20

40

60

80

100

120

cost relative to optimal

Pruning

Greedy

Optimal

(d) MSCT Algorithm Results for
datasets from SNP to PubMed with
different threshold.

Fig. 4. Selected experimental results

ranging from just a few objects to paths that consist of 80% of all objects,
including several fully contained other paths.

LP performance is comparable to that of Greedy. The differences in solution
quality in different budgets may be explained by the randomized rounding ap-
proach: If LP happens to choose paths with a fractional value close to 1, and we
set the budget as cut-off line, we have a good solution; but if LP chooses several
paths with more or less equal probability around 0.5 (e.g., p1 with 0.51 and p2
with 0.52), then rounding favors p2 to p1. This may not be good in general.

In all tested samples Random performed very well. This is due to the inher-
ent nature of randomized optimization: the randomness in considering different
combinations of paths. Whereas Greedy deterministically determines a combi-
nation of paths, and may be misguided, Random chooses randomly, keeps good
combinations and throws away poor ones. Performance also depends on a good
utility function, which is very simple in our case but does a good job. It is
important to remark that we use one more or less straight forward parameter
setting for all experiments. There is currently no need to adjust parameters to
the characteristics of different data sets.

The fact that BMC and MSCT are coupled can also be seen in the results. In
settings where Greedy performs better on BMC, it generally gives better results
on MSCT, too. In that sense, characteristics of the data set in question influence
the solution of both problems in a similar way.

One important decision in solving BMC is the choice of budget. From Fig-
ures 4(a) and 4(b) one can see that equal budgets result in different solution
qualities, given different data sets. As different data sets result from different
queries, we do not know in advance what quality the solution will preserve. In
this sense, the MSCT problem is in fact the more interesting problem, as we can
require a certain solution quality, as desired by scientists. By solving MSCT we
gain information about the datasets, then we could make use of this knowledge
and determine a budget for BMC if we have limited budget. This way the two
problems interact and assist each other.
Runtime: Concerning average running time, the Greedy algorithms are the
fastest among all algorithms, as expected. For all samples and all different bud-
gets a solution is found within a few milliseconds on a state-of-the-art desktop
computer. The runtime of Random is a few seconds on average whereas comput-
ing an optimal solution depends on the number of paths present in the data. In
the real-world samples we tested, there are only 16 paths leading to an average
runtime of a little less than a second, using the pruning technique mentioned in
Sec. 3.1. However, determining exact solutions for worlds with more paths soon
becomes infeasible. LP usually takes half a minute. However, since LP was run
on a different platform, the runtimes are not directly comparable.

All algorithms would have longer running time if the computation of Union-

TOS and the bitset were not completed a priori. The most significant performance
impact is the LP formulation, which requires the complete computation of the
bitset since it is needed to set up the constraints.

In summary, when an optimal solution is infeasible to compute, Greedy is the
fastest while still returning good results. If one is able to invest some time, one
should employ Random, as it gives nearly optimal objective values at reasonable
runtimes. The advantage of LP is the guarantee (bounds) on the solution quality,
albeit at a higher cost (higher runtime).

6 Related Work

Research in [8] and for Bibfinder [9] addresses the task of learning and maintain-
ing statistics for distributed wide area applications. Bibfinder learns statistics for
a variety of popular bibliographic data sources. Using a combination of machine
learning and data mining techniques, it learns both coverage statistics of a source
with respect to a query term (keyword) as well as the overlap among sources.
We note that our task is more difficult, because we must consider the overlap
of source paths, and the contents of all the sources occurring in the source path
may be associated (indexed) based on some query terms or keywords. Properties
of links and paths have been studied in the context of XML document processing
in the XSketch project [10], but the authors also do not consider overlap as a
part of their framework.

While the optimization goal of conventional DBMS optimizers—find the com-
plete and correct query result with minimal cost—is certainly different from the
goal of this paper—find the most complete answer within a fixed budget—there
are several aspects that carry over to our problem.

The first is selectivity estimation of query predicates, for instance as intro-
duced in [11]. In our case, predicates are query keywords, which amounts to “=”-
predicates, and links between sources, which amounts to foreign key predicates.
Based on certain assumptions, such as independence and uniform distribution of
data values, selectivity estimators use table cardinalities and selectivity factors
to estimate the result of joins and other operations. In our case, even the car-
dinality of base tables is difficult to assess. Currently we assume to simply have
that information. Compounding the problem is the overlap of sources, which
in effect reduces the cardinality-contribution of sources in some unknown way.
The basics of selectivity estimation are used in our system, and future work will
extend the metadata with histograms and will drop many of the underlying as-
sumptions. Also, the advanced technique of learning statistics [12] is particularly
useful in our scenario, as we are not merely dealing with approximate statistics
but often with wholly unknown statistics of foreign sources.

A second similarity of conventional optimization lies in the cost model. Con-
ventional optimizers usually model cost as processing time or throughput. In our
scenario, the dominant cost is network traffic and the fetching of objects in other
sources. Currently, we do not support different access paths, thus modeling the
cost for us is straightforward. Again, future work can adopt a more sophisticated
cost model making use of different ways to access data in sources, such as Web
Services, JDBC, HTML forms, etc.

Finally, there is of course much to learn from distributed query process-
ing [13]. As the query model presented in this paper is fairly simple and we
focus on the logical aspects rather than the physical aspects of query execution,
we do not discuss the relevance here. Our first priority is to provide functionality
to biologists, our second is to provide it efficiently.

7 Conclusions and Future work

Originally motivated by the problem of finding good paths and sets of paths
through NCBI life sciences sources we have generalized the problem to data in-
tegration in the presence of overlapping sources, which applies to many different
kinds of information systems. We presented a broad range of algorithms to solve
this problem, from exact algorithms to bounded algorithms to greedy algorithms
and simulated annealing. Each of these algorithms has different properties that
we analyze and verify experimentally. To summarize, life sciences data sources
are an excellent field to test new query models (paths through sources) and op-
timization problems (overlap-adjusted benefit), all the while solving problems
that are relevant to biologists.

Possible future work is abundant. In a direct continuation of the work pre-
sented here we plan to expand on the types of queries to find out how our
algorithms fare under different applications. Further strands of research are in

the field of path query languages, efficient enumeration of all possible paths,
and finally optimization techniques on the actual web-accessible NCBI sources
rather than on large sampled sets stored in a local database.
Acknowledgment. This research was supported in part by the German Re-
search Society (DFG grant no. NA 432) and NSF Grants IIS0205489, IIS0219909
and EIA0130422. We thank Maria Esther Vidal for helpful discussions.

References

1. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70 (1999) 39–45

2. Lacroix, Z., Murthy, H., Naumann, F., Raschid, L.: Links and paths through life
sciences data sources. In: Proceedings of the International Workshop on Data
Integration for the Life Sciences (DILS), Springer (2004) 203–211

3. Mihaila, G., Naumann, F., Raschid, L., Vidal, M.E.: A data model and query
language to explore enhanced links and paths in life science sources. In: Proceedings
of the ACM SIGMOD Workshop on The Web and Databases (WebDB). (2005)

4. Raschid, L., Vidal, M.E., Cardenas, M., Marquez, N., Wu, Y.: Challenges of nav-
igational queries: Finding best paths in graphs. Technical report, University of
Maryland (2005)

5. Khuller, S., Raschid, L., Wu, Y.: LP randomized rounding for maximum cover-
age problem and minimum set cover with threshold problem. Technical report,
University of Maryland (2005)

6. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press
(1995)

7. Goos, G.: Vorlesungen über Informatik - Paralleles Rechnen und nicht-analytische
Lösungsverfahren. Volume 4. Springer Verlag, Berlin, Germany (1998)

8. Gruser, J.R., Raschid, L., Zadorozhny, V., Zhan, T.: Learning response time for
websources using query feedback and application in query optimization. VLDB
Journal 9 (2000) 18–37

9. Nie, Z., Kambhampati, S.: A frequency-based approach for mining coverage statis-
tics in data integration. In: Proceedings of the International Conference on Data
Engineering (ICDE). (2004) 387–398

10. Polyzotis, N., Garofalakis, M.: Structure and value synopses for XML data graphs.
In: Proc. of the Int. Conf. on Very Large Databases (VLDB). (2002)

11. Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., Price, T.: Access path
selection in a relational database management system. In: Proce. of the ACM Int.
Conf. on Management of Data (SIGMOD), Boston, MA (1979) 23–34

12. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning Opti-
mizer. In: Proc. of the Int. Conf. on Very Large Databases (VLDB), Rome, Italy
(2001) 19–28

13. Kossmann, D.: The state of the art in distributed query processing. ACM Com-
puting Surveys 32 (2000) 422–469

