
Scheduling Distributed Clusters of Parallel
Machines : Primal-Dual and LP-based
Approximation Algorithms ú

Riley Murray

1
, Megan Chao

2
, and Samir Khuller

3

1 Department of Industrial Engineering & Operations Research, University of
California, Berkeley
Berkeley, CA 94709, USA
rjmurray@berkeley.edu

2 Department of Electrical Engineering & Computer Science, Massachusetts
Institute of Technology
50 Vassar St, Cambridge, MA 02142, USA
megchao@mit.edu

3 Department of Computer Science, University of Maryland, College Park
College Park, MD 20742, USA
samir@cs.umd.edu

Abstract
The Map-Reduce computing framework rose to prominence with datasets of such size that dozens
of machines on a single cluster were needed for individual jobs. As datasets approach the exabyte
scale, a single job may need distributed processing not only on multiple machines, but on multiple
clusters. We consider a scheduling problem to minimize weighted average completion time of n

jobs on m distributed clusters of parallel machines. In keeping with the scale of the problems
motivating this work, we assume that (1) each job is divided into m “subjobs” and (2) distinct
subjobs of a given job may be processed concurrently.

When each cluster is a single machine, this is the NP-Hard concurrent open shop problem. A
clear limitation of such a model is that a serial processing assumption sidesteps the issue of how
di�erent tasks of a given subjob might be processed in parallel. Our algorithms explicitly model
clusters as pools of resources and e�ectively overcome this issue.

Under a variety of parameter settings, we develop two constant factor approximation al-
gorithms for this problem. The first algorithm uses an LP relaxation tailored to this problem
from prior work. This LP-based algorithm provides strong performance guarantees. Our second
algorithm exploits a surprisingly simple mapping to the special case of one machine per cluster.
This mapping-based algorithm is combinatorial and extremely fast. These are the first constant
factor approximations for this problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation algorithms, distributed computing, machine scheduling,
LP relaxations, primal-dual algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.234

ú All authors conducted this work at the University of Maryland, College Park. This work was made
possible by the National Science Foundation, REU Grant CNS 1262805, and the Winkler Foundation.
This work was also partially supported by NSF Grant CCF 1217890.

© Riley Murray, Samir Khuller, Megan Chao;

licensed under Creative Commons License CC-BY

24rd Annual European Symposium on Algorithms (ESA 2016).

Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 234; pp. 234:1–234:17

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.234
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

234:2 Scheduling Distributed Clusters of Parallel Machines

1 Introduction

It is becoming increasingly impractical to store full copies of large datasets on more than
one data center [7]. As a result, the data for a single job may be located not on multiple
machines, but on multiple clusters of machines. To maintain fast response-times and avoid
excessive network tra�c, it is advantageous to perform computation for such jobs in a
completely distributed fashion [8]. In addition, commercial platforms such as AWS Lambda
and Microsoft’s Azure Service Fabric are demonstrating a trend of centralized cloud computing
frameworks in which the user manages neither data flow nor server allocation [1, 11]. In view
of these converging issues, the following scheduling problem arises:

If computation is done locally to avoid excessive network tra�c, how can individual
clusters on the broader grid coordinate schedules for maximum throughput?

This was precisely the motivation for Hung, Golubchik, and Yu in their 2015 ACM
Symposium on Cloud Computing paper [8]. Hung et al. modeled each cluster as having
an arbitrary number of identical parallel machines, and choose an objective of average job
completion time. As such a problem generalizes the NP-Hard concurrent open shop problem,
they proposed a heuristic approach. Their heuristic (called “SWAG”) runs in O(n2m) time
and performed well on a variety of data sets. Unfortunately, SWAG o�ers poor worst-case
performance, as we show in Section 5.

Our contributions to this problem are to extend the model considered by Hung et al. and
to introduce the first constant-factor approximation algorithms for this general problem. Our
extensions of Hung et al.’s model are (1) to allow di�erent machines within the same cluster
to operate at di�erent speeds, (2) to incorporate pre-specified “release times” (times before
which a subjob cannot be processed), and (3) to support weighted average job completion
time. We present two algorithms for the resulting problem. Our combinatorial algorithm
exploits a surprisingly simple mapping to the special case of one machine per cluster, where
the problem can be approximated in O(n2 + nm) time. We also present an LP-rounding
approach with strong performance guarantees. E.g., a 2-approximation when machines are
of unit speed and subjobs are divided into equally sized (but not necessary unit) tasks.

1.1 Formal Problem Statement
I Definition 1 (Concurrent Cluster Scheduling). .

There is a set M of m clusters, and a set N of n jobs. For each job j œ N , there is a set
of m “subjobs” (one for each cluster).
Cluster i œ M has mi parallel machines, and machine ¸ in cluster i has speed v¸i. Without
loss of generality, assume v¸i is decreasing in ¸. 1

The ith subjob for job j is specified by a set of tasks to be performed by machines in
cluster i, denote this set of tasks Tji. For each task t œ Tji, we have an associated
processing time pjit (again w.l.o.g., assume pjit is decreasing in t). We will frequently
refer to “the subjob of job j at cluster i” as “subjob (j, i).”
Di�erent subjobs of the same job may be processed concurrently on di�erent clusters.
Di�erent tasks of the same subjob may be processed concurrently on di�erent machines
within the same cluster.

1 Where we write “decreasing”, we mean “non-increasing.” Where we write “increasing”, we mean
“non-decreasing”.

R. Murray, S. Khuller, and M. Chao 234:3

A subjob is complete when all of its tasks are complete, and a job is complete when all of
its subjobs are complete. We denote a job’s completion time by “Cj”.
The objective is to minimize weighted average job completion time (job j has weight wj).
For the purposes of computing approximation ratios, it is equivalent to minimize

q
wjCj .

We work with this equivalent objective throughout this paper.

A machine is said to operate at unit speed it if can complete a task with processing
requirement “p” in p units of time. More generally, a machine with speed “v” (v Ø 1)
processes the same task in p/v units of time. Machines are said to be identical if they are all
of unit speed, and uniform if they di�er only in speed.

In accordance with Graham et al.’s –|—|“ taxonomy for scheduling problems [6] we
take – = CC to refer to the concurrent cluster environment, and denote our problem by
CC||

q
wjCj .2 Optionally, we may associate a release time rji to every subjob. If any

subjobs are released after time zero, we write CC|r|
q

wjCj .

1.1.1 Example Problem Instances
We now illustrate our model with several examples (see Figures 1 and 2). The tables at left
have rows labeled to identify jobs, and columns labeled to identify clusters; each entry in
these tables specifies the processing requirements for the corresponding subjob. The diagrams
to the right of these tables show how the given jobs might be scheduled on clusters with the
indicated number of machines.

Figure 1 Two examples of our scheduling model. Left: Our baseline example. There are 4 jobs
and 2 clusters. Cluster 1 has 2 identical machines, and cluster 2 has 3 identical machines. Note that
job 4 has no subjob for cluster 1 (this is permitted within our framework). In this case every subjob
has at most one task. Right: Our baseline example with a more general subjob framework : subjob
(2,2) and subjob (3,1) both have two tasks. The tasks shown are unit length, but our framework
does not require that subjobs be divided into equally sized tasks.

1.2 Related Work
Concurrent cluster scheduling subsumes many fundamental machine scheduling problems.
For example, if we restrict ourselves to a single cluster (i.e. m = 1) we can schedule a
set of jobs on a bank of identical parallel machines to minimize makespan (C

max

) or total
weighted completion time (

q
wjCj). With a more clever reduction, we can even minimize

total weighted lateness (
q

wjLj) on a bank of identical parallel machines (see Section 6).
Alternatively, with m > 1 but ’i œ M, mi = 1, our problem reduces to the well-studied
“concurrent open shop” problem.

2 A problem –|—|“ implies a particular environment –, objective function “, and optional constraints —.

ESA 2016

234:4 Scheduling Distributed Clusters of Parallel Machines

Figure 2 Two additional examples of our model. Left: Our baseline example, with variable
machine speeds. Note that the benefit of high machine speeds is only realized for tasks assigned
to those machines in the final schedule. Right: A problem with the peculiar structure that (1) all
clusters but one have a single machine, and (2) most clusters have non-zero processing requirements
for only a single job. We will use such a device for the total weighted lateness reduction in Section 6.

Using Graham et al.’s taxonomy, the concurrent open shop problem is written as
PD||

q
wjCj . Three groups [3, 4, 9] independently discovered an LP-based 2-approximation

for PD||
q

wjCj using the work of Queyranne [13]. The linear program in question has an
exponential number of constraints, but can still be solved in polynomial time with a variant
of the Ellipsoid method. Our “strong” algorithm for concurrent cluster scheduling refines the
techniques contained therein, as well as those of Schulz [14, 15] (see Section 4).

Mastrolilli et al. [10] developed a primal-dual algorithm for PD||
q

wjCj that does
not use LP solvers. “MUSSQ”3 is significant for both its speed and the strength of its
performance guarantee : it achieves an approximation ratio of 2 in only O(n2 + nm) time.
Although MUSSQ does not require an LP solver, its proof of correctness is based on the fact
that it finds a feasible solution to the dual a particular linear program. Our “fast” algorithm
for concurrent cluster scheduling uses MUSSQ as a subroutine (see Section 5).

Hung, Golubchik, and Yu [8] presented a framework designed to improve scheduling
across geographically distributed data centers. The scheduling framework had a centralized
scheduler (which determined a job ordering) and local dispatchers which carried out a schedule
consistent with the controllers job ordering. Hung et al. proposed a particular algorithm for
the controller called “SWAG.” SWAG performed well in a wide variety of simulations where
each data center was assumed to have the same number of identical parallel machines. We
adopt a similar framework to Hung et al., but we show in Section 5.1 that SWAG has no
constant-factor performance guarantee.

1.3 Paper Outline & Algorithmic Results
Although only one of our algorithms requires solving a linear program, both algorithms use
the same linear program in their proofs of correctness; we introduce this linear program in
Section 2 before discussing either algorithm. Section 3 establishes how an ordering of jobs
can be processed to completely specify a schedule. This is important because the complex
work in both of our algorithms is to generate an ordering of jobs for each cluster.

Section 4 introduces our “strong” algorithm: CC-LP. CC-LP can be applied to any
instance of concurrent cluster scheduling, including those with non-zero release times rji.
A key in CC-LP’s strong performance guarantees lay in the fact that it allows di�erent
permutations of subjobs for di�erent clusters. By providing additional structure to the
problem (but while maintaining a generalization of concurrent open shop) CC-LP becomes

3 A permutation of the author’s names: Mastrolilli, Queyranne, Schulz, Svensson, and Uhan.

R. Murray, S. Khuller, and M. Chao 234:5

a 2-approximation. This is significant because it is UGC-Hard to approximate concurrent
open shop (and by extension, our problem) with ratio 2 ≠ ‘ for any ‘ > 0 [2].

Our combinatorial algorithm (“CC-TSPT”) is presented in Section 5. The algorithm is
fast, provably accurate, and has the interesting property that it can schedule all clusters
using the same permutation of jobs.4 After considering CC-TSPT in the general case, we
show how fine-grained approximation ratios can be obtained in the “fully parallelizable”
setting of Zhang et al. [17]. We conclude with an extension of CC-TSPT that maintains
performance guarantees while o�ering improved empirical performance.

The following table summarizes our results for approximation ratios. For compactness,
condition Id refers to identical machines (i.e. v¸i constant over ¸), condition A refers to
rji © 0, and condition B refers to pjit constant over t œ Tji.

(Id, A, B) (Id, ¬A, B) (Id, A, ¬B) (Id, ¬A, ¬B) (¬Id, A) (¬Id, ¬A)
CC-LP 2 3 3 4 2 + R 3 + R

CC-TSPT 3 - 3 - 2 + R -

The term R is the maximum over i of Ri, where Ri is the ratio of fastest machine to average
machine speed at cluster i.

The most surprising of all of these results is that our scheduling algorithms are remarkably
simple. The first algorithm solves an LP, and then the scheduling can be done easily on each
cluster. The second algorithm is again a rather surprising simple reduction to the case of one
machine per cluster (the well understood concurrent open shop problem) and yields a simple
combinatorial algorithm. The proof of the approximation guarantee is somewhat involved
however.

In addition to algorithmic results, we demonstrate how our problem subsumes that of
minimizing total weighted lateness on a bank of identical parallel machines (see Section 6).
Section 7 provides additional discussion and highlights our more novel technical contributions.

2 The Core Linear Program

Our linear program has an unusual form. Rather than introduce it immediately, we conduct
a brief review of prior work on similar LP’s. All the LP’s we discuss in this paper have
objective function

q
wjCj , where Cj is a decision variable corresponding to the completion

time of job j, and wj is a weight associated with job j.
For the following discussion only, we adopt the notation in which job j has processing

time pj. In addition, if multiple machine problems are discussed, we will say that there are
m such machines (possibly with speeds si, i œ {1, . . . , m}).

The earliest appearance of a similar linear program comes from Queyranne [13]. In
his paper, Queyranne presents an LP relaxation for sequencing n jobs on a single machine
where all constraints are of the form

q
jœS pjCj Ø 1

2

51q
jœS pj

2
2

+
q

jœS p2

j

6
where S is

an arbitrary subset of jobs. Once a set of optimal {Cı
j } is found, the jobs are scheduled in

increasing order of {Cı
j }. These results were primarily theoretical, as it was known at his

time of writing that sequencing n jobs on a single machine to minimize
q

wjCj can be done
optimally in O(n log n) time.

4 We call such schedules “single-‡ schedules.” As we will see later on, CC-TSPT serves as a constructive
proof of existence of near-optimal single-‡ schedules for all instances of CC||

q
w

j

C
j

, including those
instances for which single-‡ schedules are strictly sub-optimal. This is addressed in Section 7.

ESA 2016

234:6 Scheduling Distributed Clusters of Parallel Machines

Queyranne’s constraint set became particularly useful for problems with coupling across
distinct machines (as occurs in concurrent open shop). Four separate groups [3, 4, 9, 10] saw
this and used the following LP in a 2-approximation for concurrent open shop scheduling.

(LP0) min
ÿ

jœN

wjCj s.t.
q

jœS pjiCj Ø 1

2

51q
jœS pji

2
2

+
1q

jœS p2

ji

26
’ S™N

iœM

In view of its tremendous popularity, we sometimes refer to the linear program above as the
canonical relaxation for concurrent open shop.

Andreas Schulz’s Ph.D. thesis developed Queyranne’s constraint set in greater depth [14].
As part of his thesis, Schulz considered scheduling n jobs on m identical parallel machines with
constraints of the form

q
jœS pjCj Ø 1

2m

1q
jœS pj

2
2

+ 1

2

q
jœS p2

j . In addition, Schulz showed

that the constraints
q

jœS pjCj Ø
#
2

qm
i=1

si

$≠1

51q
jœS pj

2
2

+
q

jœS p2

j

6
are satisfied by

any schedule of n jobs on m uniform machines. In 2012, Schulz refined the analysis for several
of these problems [15]. For constructing a schedule from the optimal {Cı

j }, Schulz considered
scheduling jobs by increasing order of {Cı

j }, {Cı
j ≠ pj/2}, and {Cı

j ≠ pj/(2m)}.

2.1 Statement of LP1
The model we consider allows for more fine-grained control of the job structure than is
indicated by the LP relaxations above. Inevitably, this comes at some expense of simplicity
in LP formulations. In an e�ort to simplify notation, we define the following constants, and
give verbal interpretations for each.

µi
.=

qm
i

¸=1

v¸i qji
.= min {|Tji|, mi} µji

.=
qq

ji

¸=1

v¸i pji
.=

q
tœT

ji

pjit (1)

From these definitions, µi is the processing power of cluster i. For subjob (j, i), qji is the
maximum number of machines that could process the subjob, and µji is the maximum
processing power than can be brought to bear on the same. Lastly, pji is the total processing
requirement of subjob (j, i). In these terms, the core linear program, LP1, is as follows.

(LP1) min
q

jœN wjCj

s.t. (1A)
q

jœS pjiCj Ø 1

2

51q
jœS pji

2
2

/µi +
q

jœS p2

ji/µji

6
’S ™ N, i œ M

(1B) Cj Ø pjit/v
1i + rji ’i œ M, j œ N, t œ Tji

(1C) Cj Ø pji/µji + rji ’j œ N, i œ M

Constraints (1A) are more carefully formulated versions of the polyhedral constraints
introduced by Queyranne [13] and developed by Schulz [14]. The use of µji term is new and
allows us to provide stronger performance guarantees for our framework where subjobs are
composed of sets of tasks. As we will see, this term is one of the primary factors that allows
us to parametrize results under varying machine speeds in terms of maximum to average
machine speed, rather than maximum to minimum machine speed. Constraints (1B) and
(1C) are simple lower bounds on job completion time.

The majority of this section is dedicated to proving that LP1 is a valid relaxation of
CC|r|

q
wjCj . Once this is established, we prove the that LP1 can be solved in polynomial

time by providing a separation oracle with use in the Ellipsoid method. Both of these proofs
use techniques established in Schulz’s Ph.D. thesis [14].

R. Murray, S. Khuller, and M. Chao 234:7

2.2 Proof of LP1’s Validity
The lemmas below establish the basis for both of our algorithms. Lemma 2 generalizes an
inequality used by Schulz [14]. Lemma 3 relies on Lemma 2 and cites an inequality mentioned
in the preceding section (and proven by Queyranne [13]).
I Lemma 2. Let {a

1

, . . . az} be a set of non-negative real numbers. We assume that k Æ z

of them are positive. Let bi be a set of decreasing positive real numbers. Then
qz

i=1

a2

i /bi Ø (
qz

i=1

ai)
2

/
1qk

i=1

bi

2
.

The proof (found in the full version of this paper, [12]) cites the AM-GM inequality and
proceeds with induction from z = k = 2.
I Lemma 3 (Validity Lemma). Every feasible schedule for an instance I of CC|r|

q
wjCj

has completion times that define a feasible solution to LP1(I).
Proof. As constraints (1B) and (1C) are clear lower bounds on job completion time, it
su�ces to show the validity of constraint (1A). Thus, let S be a non-empty subset of N ,
and fix an arbitrary but feasible schedule “F” for I.

Define CF
ji as the completion time of subjob (j, i) under schedule F . Similarly, define

CF
ji¸ as the first time at which tasks of subjob (j, i) scheduled on machine ¸ of cluster i

are finished. Lastly, define p¸
ji as the total processing requirement of job j scheduled on

machine ¸ of cluster i. Note that by construction, we have CF
ji = max¸œ{1,...,m

i

} CF
ji¸ and

CF
j = maxiœM CF

ji. Since pji =
qm

i

¸=1

p¸
ji, we can rather innocuously write

q
jœS pjiC

F
ji =

q
jœS

#qm
i

¸=1

p¸
ji

$
CF

ji. (2)

But using CF
ji Ø CF

ji¸, we can lower-bound
q

jœS pjiC
F
ji. Namely,

q
jœS pjiC

F
ji Ø

q
jœS

qm
i

¸=1

p¸
jiC

F
ji¸ =

qm
i

¸=1

v¸i

q
jœS

#
p¸

ji/v¸i

$
CF

ji¸ (3)

The next inequality uses a bound on
q

jœS

#
p¸

ji/v¸i

$
CF

ji¸ proven by Queyranne [13] for any
subset S of N jobs with processing times

#
p¸

ji/v¸i

$
to be scheduled on a single machine.5

q
jœS

#
p¸

ji/v¸i

$
CF

ji¸ Ø 1

2

51q
jœS

#
p¸

ji/v¸i

$22

+
q

jœS

!#
p¸

ji/v¸i

$"
2

6
(4)

Combining inequalities (3) and (4), we have the following.
q

jœS pjiC
F
ji Ø 1

2
qm

i

¸=1

v¸i

51q
jœS

#
p¸

ji/v¸i

$22

+
q

jœS

!#
p¸

ji/v¸i

$"
2

6
(5)

Ø 1
2

5qm
i

¸=1

1q
jœS p¸

ji

2
2

/v¸i +
q

jœS

qm
i

¸=1

!
p¸

ji

"
2

/v¸i

6
(6)

Next, we apply Lemma 2 to the right hand side of inequality (6) a total of |S| + 1 times.
qm

i

¸=1

1q
jœS p¸

ji

2
2

/v¸i Ø
1qm

i

¸=1

q
jœS p¸

ji

2
2

/
qm

i

¸=1

v¸i =
1q

jœS pji

2
2

/µi (7)
qm

i

¸=1

!
p¸

ji

"
2

/v¸i Ø
!qm

i

¸=1

p¸
ji

"
2

/
qq

ji

¸=1

v¸i = p2

ji/µji ’ j œ S (8)

Citing CF
j Ø CF

ji, we arrive at the desired result.
q

jœS pjiC
F
j Ø 1

2

51q
jœS pji

2
2

/µi +
q

jœS p2

ji/µji

6
“constraint (1A)” (9)

J

5 Here, our machine is machine ¸ on cluster i.

ESA 2016

234:8 Scheduling Distributed Clusters of Parallel Machines

2.3 Theoretical Complexity of LP1
As the first of our two algorithms requires solving LP1 directly, we need to address the
fact that LP1 has m · (2n ≠ 1) + n constraints. Luckily, it is still possible to such solve
linear programs in polynomial time with the Ellipsoid method; we introduce the following
separation oracle for this purpose.

I Definition 4 (Oracle LP1). Define the violation

V (S, i) = 1
2

51q
jœS pji

2
2

/µi +
q

jœS p2

ji/µji

6
≠

q
jœS pjiCj (10)

Let {Cj} œ Rn be a potentially feasible solution to LP1. Let ‡i denote the ordering when jobs
are sorted in increasing order of Cj ≠pji/(2µji). Find the most violated constraint in (1A) for
i œ M by searching over V (Si, i) for Si of the form {‡i(1), . . . , ‡i(j≠1), ‡i(j)}, j œ {1, . . . , n}.
If any of maximal V (Sú

i , i) > 0, then return (Sú
i , i) as a violated constraint for (1A). Otherwise,

check the remaining n constraints ((1B) and (1C)) directly in linear time.

For fixed i, Oracle-LP1 finds the subset of jobs that maximizes “violation” for cluster i.
That is, Oracle-LP1 finds Sú

i such that V (Sú
i , i) = maxSµN V (S, i). We prove the correctness

of Oracle-LP1 by establishing a necessary and su�cient condition for a job j to be in Sú
i .

I Lemma 5. For Pi(A) .=
q

jœA pji, we have x œ Sú
i … Cx ≠ pxi/(2µxi) Æ Pi(Sú

i)/µi.

Proof. For given S (not necessarily equal to Sú
i), it is useful to express V (S, i) in terms

of V (S fi x, i) or V (S \ x, i) (depending on whether x œ S or x œ N \ S). Without loss of
generality, we restrict our search to S : x œ S ∆ px,i > 0.

Suppose x œ S. By writing Pi(S) = Pi(S \ x) + Pi(x), and similarly decomposing the
sum

q
jœS p2

ji/(2µji), one can show the following.

V (S, i) =V (S \ x, i) + pxi

3
1
2

3
2Pi(S) ≠ pxi

µi
+ pxi

µxi

4
≠ Cx

4
(11)

Now suppose x œ N \ S. In the same strategy as above (this time writing Pi(S) =
Pi(S fi x) ≠ Pi(x)), one can show that

V (S, i) =V (S fi x, i) + pxi

3
Cx ≠ 1

2

3
2Pi(S) + pxi

µi
+ pxi

µxi

44
. (12)

Note that Equations (11) and (12) hold for all S, including S = Sú
i . Turning our attention to

Sú
i , we see that x œ Sú

i implies that the second term in Equation (11) is non-negative, i.e.

Cx ≠ pxi/(2µxi) Æ (2Pi(Sú
i) ≠ pxi) /(2µi) < Pi(Sú

i)/µi. (13)

Similarly, x œ N \ Sú
i implies the second term in Equation (12) is non-negative.

Cx ≠ pxi/(2µxi) Ø (2Pi(Sú
i) + pxi) /(2µi) Ø Pi(Sú

i)/µi (14)

It follows that x œ Sú
i i� Cx ≠ pxi/(2µxi) < Pi(Sú

i)/µi. J

Given Lemma 5, It is easy to verify that sorting jobs in increasing order of Cx ≠pxi/(2µxi)
to define a permutation ‡i guarantees that Sú

i is of the form {‡i(1), . . . , ‡i(j ≠ 1), ‡i(j)} for
some j œ N . This implies that for fixed i, Oracle-LP1 finds Sú

i in O(n log(n)) time. This
procedure is executed once for each cluster, leaving the remaining n constraints in (1B) and
(1C) to be verified in linear time. Thus Oracle-LP1 runs in O(mn log(n)) time.

By the equivalence of separation and optimization, we have proven the following theorem:

R. Murray, S. Khuller, and M. Chao 234:9

I Theorem 6. LP1(I) is a valid relaxation of I œ �CC , and is solvable in polynomial time.

As was explained in the beginning of this section, linear programs such as those in
[3, 4, 9, 13, 14, 15] are processed with an appropriate sorting of the optimal decision variables
{Cı

j }. It is important then to have bounds on job completion times for a particular ordering
of jobs. We address this next in Section 3, and reserve our first algorithm for Section 4.

3 List Scheduling from Permutations

The complex work in both of our proposed algorithms is to generate a permutation of jobs.
The procedure below takes such a permutation and uses it to determine start times, end
times, and machine assignments for every task of every subjob.

List-LPT : Given a single cluster with mi machines and a permutation of jobs ‡, introduce
List(a, i) .= (pai1, pai2, . . . , pai|T

ai

|) as an ordered set of tasks belonging to subjob (a, i),
ordered by longest processing time first. Now define List(‡) .= List(‡(1), i) ü List(‡(2), i) ü
· · · ü List(‡(n), i), where ü is the concatenation operator.

Place the tasks of List(‡) in order- from the largest task of subjob (‡(1), i), to the smallest
task of subjob (‡(n), i). When placing a particular task, assign it whichever machine and
start time results in the task being completed as early as possible (without moving any tasks
which have already been placed). Insert idle time (on all mi machines) as necessary if this
procedure would otherwise start a job before its release time.

The following Lemma is essential to bound the completion time of a set of jobs processed
by List-LPT. The proof is adapted from Gonzalez et al. [5].

I Lemma 7. Suppose n jobs are scheduled on cluster i according to List-LPT(‡). Then for
v̄i

.= µi/mi, the completion time of subjob (‡(j), i) (denoted C‡(j)i) satisfies

C‡(j)i Æ max
1ÆkÆj

r‡(k)i + p‡(j)i/v̄i +
1qj

k=1

p‡(k)i ≠ p‡(j)i1

2
/µi (15)

Proof. For now, assume all jobs are released at time zero. Let the task of subjob (‡(j), i)
to finish last be denoted tú. If tú is not the task in T‡(j)i with least processing time, then
construct a new set T Õ

‡(j)i = {t : p‡(j)itú Æ p‡(j)it} µ T‡(j)i. Because the tasks of subjob
(‡(j), i) were scheduled by List-LPT (i.e. longest-processing-time-first), the sets of potential
start times and machines for task tú (and hence the set of potential completion times for
task tú) are the same regardless of whether subjob (‡(j), i) consisted of tasks T‡(j)i or the
subset T Õ

‡(j)i. Accordingly, reassign T‡(j)i Ω T Õ
‡(j)i without loss of generality.

Let Dj
¸ denote the total demand for machine ¸ (on cluster i) once all tasks of subjobs

(‡(1), i) through (‡(j ≠ 1), i) and all tasks in the set T‡(j)i \ {tú} are scheduled. Using the
fact that C‡(j)iv¸i Æ (Dj

¸ + p‡(j)itú)’¸ œ {1, . . . , mi}, sum the left and right and sides over
¸. This implies C‡(j)i (

qm
i

¸=1

v¸i) Æ mip‡(j)itú +
qm

i

¸=1

Dj
¸ . Dividing by the sum of machine

speeds and using the definition of µi yields

C‡(j)i Æ mip‡(j)itú/µi +
qm

¸=1

Dj
¸/µi Æ p‡(j)i1/v̄i +

1qj
k=1

p‡(k)i ≠ p‡(j)i1

2
/µi (16)

where we estimated p‡(j)itú upward by p‡(j)i1. Inequality (16) completes our proof in the
case when rji © 0. The alternative case is addressed in the full version of this paper. J

Lemma 7 is cited directly in the proof of Theorem 8 and Lemma 13. Lemma 7 is used
implicitly in the proofs of Theorems 9, 10, and 15.

ESA 2016

234:10 Scheduling Distributed Clusters of Parallel Machines

4 An LP-based Algorithm

In this section we show how LP1 can be used to construct near optimal schedules for
concurrent cluster scheduling both when rji © 0 and when some rji > 0. Although solving
LP1 is somewhat involved, the algorithm itself is quite simple:

Algorithm CC-LP : Let I = (T, r, w, v) denote an instance of CC|r|
q

wjCj . Use the
optimal solution {Cı

j } of LP1(I) to define m permutations {‡i : i œ M} which sort jobs in
increasing order of Cı

j ≠ pji/(2µji). For each cluster i, execute List-LPT(‡i).

Each theorem in this section can be characterized by how various assumptions help us
cancel an additive term6 in an upper bound for the completion time of an arbitrary subjob
(x, i). Theorem 8 is the most general, while Theorem 10 is perhaps the most surprising.

4.1 CC-LP for Uniform Machines
I Theorem 8. Let Ĉj be the completion time of job j using algorithm CC-LP, and let R be
as in Section 1.3. If rji © 0, then

q
jœN wjĈj Æ (2 + R) OPT . Otherwise,

q
jœN wjĈj Æ

(3 + R) OPT .

Proof. For y œ R, define y+ = max{y, 0}. Now let x œ N be arbitrary, and let i œ M be
such that pxi > 0 (but otherwise arbitrary). Define tú as the last task of job x to complete
on cluster i, and let ji be such that ‡i(ji) = x. Lastly, denote the optimal LP solution
{Cj}.7 Because {Cj} is a feasible solution to LP1, constraint (1A) implies the following (set
Si = {‡i(1), . . . , ‡i(ji ≠ 1), x})

1qj
i

k=1

p‡
i

(k)i

2
2

2µi
Æ

j
iÿ

k=1

p‡
i

(k)i

3
C‡

i

(k)

≠
p‡

i

(k)i

2µ‡
i

(k)i

4
Æ

3
Cx ≠ pxi

2µxi

4 j
iÿ

k=1

p‡
i

(k)i (17)

which in turn implies
qj

i

k=1

p‡
i

(k)i/µi Æ 2Cx ≠ pxi/(2µxi).
If all subjobs are released at time zero, then we can combine this with Lemma 7 and

the fact that pxitú Æ pxi =
q

tœT
xi

pxit to see the following (the transition from the first
inequality the second inequality uses Cx Ø pxitú/v

1i and Ri = v
1i/v̄i).

Ĉxi Æ 2Cx ≠ pxi

µxi
+ pxitú

v̄i
≠ pxitú

µi
Æ Cx(2 + [Ri(1 ≠ 2/mi)]+) (18)

When one or more subjobs are released after time zero, Lemma 7 implies that it is
su�cient to bound max

1ÆkÆj
i

)
r‡

i

(k)i

*
by some constant multiple of Cx. Since ‡i is defined by

increasing Lji
.= Cj ≠ pji/(2µji), L‡

i

(a)i Æ L‡
i

(b)i implies

r‡
i

(a)i +
p‡

i

(a)i

2µ‡
i

(a)i
+

p‡
i

(b)i

2µ‡
i

(b)i
C‡

i

(a)

≠
p‡

i

(a)i

2µ‡
i

(a)i
+

p‡
i

(b)i

2µ‡
i

(b)i
Æ C‡

i

(b)

’ a Æ b (19)

and so max
1ÆkÆj

i

)
r‡

i

(l)i

*
+ pxi/(2µxi) Æ Cx. As before, combine this with Lemma 7 and

the fact that pxitú Æ pxi =
q

tœT
xi

pxit to yield the following inequalities

Ĉxi Æ 3Cx ≠ 3pxi

2µxi
+ pxitú

v̄i
≠ pxitú

µi
Æ Cx(3 + [Ri(1 ≠ 5/(2mi))]+) (20)

-which complete our proof. J

6 “+p
xit

ú ”; see associated proofs.
7 We omit the customary ı to avoid clutter in notation.

R. Murray, S. Khuller, and M. Chao 234:11

4.2 CC-LP for Identical Machines

I Theorem 9. If machines are of unit speed, then CC-LP yields an objective that is...

r
ji

© 0 some r
ji

> 0
single-task subjobs Æ 2 OP T Æ 3 OP T

multi-task subjobs Æ 3 OP T Æ 4 OP T

Proof. Define [·]+, x, Cx, Ĉx, i, ‡i, and tú as in Theorem 8. When rji © 0, one need only
give a more careful treatment of the first inequality in (18) (using µji = qji).

Ĉx,i Æ 2Cx + pxitú ≠ pxitú/mi ≠ pxi/qxi Æ Cx(2 + [1 ≠ 1/mi ≠ 1/qxi]+) (21)

Similarly, when some rji > 0, the first inequality in (20) implies the following.

Ĉx,i Æ 3Cx + pxitú ≠ pxitú/mi ≠ 3pxi/(2qxi) Æ Cx(3 + [1 ≠ 1/mi ≠ 3/(2qxi)]+) (22)

J

The key in the refined analysis of Theorem 9 lay in how ≠pxi/qxi is used to annihilate +pxitú .
While qxi = 1 (i.e. single-task subjobs) is su�cient to accomplish this, it is not strictly
necessary. The theorem below shows that we can annihilate the +pxitú term whenever all
tasks of a given subjob are of the same length. Note that the tasks need not be unit, as the
lengths of tasks across di�erent subjobs can di�er.

I Theorem 10. Suppose v¸i © 1. If pjit is constant over t œ Tji for all j œ N and i œ M ,
then algorithm CC-LP is a 2-approximation when rji © 0, and a 3-approximation otherwise.

Proof. The definition of pxi gives pxi/qxi =
q

tœT
xi

pxit/qxi. Using the assumption that pjit

is constant over t œ Tji, we see that pxi/qxi = (qxi + |Txi| ≠ qxi)pxitú/qxi, where |Txi| Ø qxi.
Apply this to Inequality (21) from the proof of Theorem 9; some algebra yields

Ĉxi Æ2Cx ≠ pxitú/mi ≠ pxitú (|Txi| ≠ qxi) /qxi Æ 2Cx. (23)

The case with some rji > 0 uses the same identity for pxi/qxi. J

Bansal and Khot [2] showed that is is UGC-Hard to approximate CC|mi © 1|
q

wjCj with
a constant factor less than 2. Theorem 10 is significant because it shows that CC-LP can
attain the same guarantee for arbitrary mi, provided v¸i © 1 and pjit is constant over t.

5 Combinatorial Algorithms

In this section, we introduce an extremely fast combinatorial algorithm with performance
guarantees similar to CC-LP for “unstructured” inputs (i.e. those for which some v¸i > 1, or
some Tji have pjit non-constant over t). We call this algorithm CC-TSPT. CC-TSPT uses
the MUSSQ algorithm for concurrent open shop (from [10]) as a subroutine. As SWAG (from
[8]) motivated development of CC-TSPT, we first address SWAG’s worst-case performance.

ESA 2016

234:12 Scheduling Distributed Clusters of Parallel Machines

5.1 A Degenerate Case for SWAG
The full version of this paper contains a detailed explanation of SWAG’s mechanics beside
pseudocode as a necessary component of making claims on worst-case performance. In this
version of the paper, we omit this reference material for space considerations.

I Theorem 11. For an instance I of PD||
q

Cj, let SWAG(I) denote the objective function
value of SWAG applied to I, and let OPT (I) denote the objective function value of an
optimal solution to I. Then for all L Ø 1, there exists an I œ �P D||

q
C

j

such that
SWAG(I)/OPT (I) > L.

Proof. Let L œ N+ be fixed but otherwise arbitrary. Construct an instance Im
L as follows:

N = N
1

fi N
2

where N
1

is a set of m jobs, and N
2

is a set of L jobs. Job j œ N
1

has
processing time p on cluster j and zero all other clusters. Job j œ N

2

has processing time
p(1 ≠ ‘) on all m clusters. ‘ is chosen so that ‘ < 1/L.

It is easy to verify that SWAG will generate a schedule where all jobs in N
2

precede all
jobs in N

1

(due to the savings of p‘ for jobs in N
2

). We propose an alternative solution in
which all jobs in N

1

precede all jobs in N
2

. Denote the objective value for this alternative
solution ALT (Im

L), noting ALT (Im
L) Ø OPT (Im

L).
By symmetry, and the fact that all clusters have a single machine, we can see that

SWAG(Im
L) and ALT (Im

L) are given by the following

SWAG(Im
L) = p(1 ≠ ‘)L(L + 1)/2 + p(1 ≠ ‘)Lm + pm (24)

ALT (Im
L) = p(1 ≠ ‘)L(L + 1)/2 + pL + pm (25)

Since L is fixed, we can take the limit with respect to m.

lim
mæŒ

SWAG(Im
L)

ALT (Im
L) = lim

mæŒ

p(1 ≠ ‘)Lm + pm

pm
= L(1 ≠ ‘) + 1 > L (26)

The above implies the existence of a su�ciently large number of clusters m, such that m Ø m

implies SWAG(Im
L)/OPT (Im

L) > L. This completes our proof. J

Theorem 11 demonstrates that that although SWAG performed well in simulations, it may
not be reliable. The rest of this section introduces an algorithm not only with superior
runtime to SWAG (generating a permutation of jobs in O(n2 +nm) time, rather than O(n2m)
time), but also a constant-factor performance guarantee.

5.2 CC-TSPT : A Fast 2 + R Approximation
Our combinatorial algorithm for concurrent cluster scheduling exploits an elegant transforma-
tion to concurrent open shop. Once we consider this simpler problem, it can be handled with
MUSSQ [10] and List-LPT. Our contributions are twofold: (1) we prove that this intuitive
technique yields an approximation algorithm for a decidedly more general problem, and (2)
we show that a non-intuitive modification can be made that maintains theoretical bounds
while improving empirical performance. We begin by defining our transformation.

I Definition 12 (The Total Scaled Processing Time (TSPT) Transformation). Let �CC be the
set of all instances of CC||

q
wjCj , and let �P D be the set of all instances of PD||

q
wjCj .

Note that �P D µ �CC . Then the Total Scaled Processing Time Transformation is a mapping

TSPT : �CC æ �P D with (T, v, w) ‘æ (X, w) : xji =
q

tœT
ji

pjit/µi

R. Murray, S. Khuller, and M. Chao 234:13

i.e., xji is the total processing time required by subjob (j, i), scaled by the sum of machine
speeds at cluster i. Throughout this section, we will use I = (T, v, w) to denote an arbitrary
instance of CC||

q
wjCj , and I Õ = (X, w) as the image of I under TSPT. Figure 3 shows

the result of TSPT applied to our baseline example.

Figure 3 An instance I of CC||
q

w
j

C
j

, and its image I Õ = T SP T (I). The schedules were
constructed with List-LPT using the same permutation for I and I Õ.

We take the time to emphasize the simplicity of our reduction. Indeed, the TSPT
transformation is perhaps the first thing one would think of given knowledge of the concurrent
open shop problem. What is surprising is how one can attain constant-factor performance
guarantees even after such a simple transformation.

Algorithm CC-TSPT : Execute MUSSQ on I Õ = TSPT (I) to generate a permutation of
jobs ‡. List schedule instance I by ‡ on each cluster according to List-LPT.

Towards proving the approximation ratio for CC-TSPT, we will establish a critical
inequality in Lemma 13. The intuition behind Lemma 13 requires thinking of every job j in
I as having a corresponding representation in jÕ in I Õ. Job j in I will be scheduled in the
CC environment, while job jÕ in I Õ will be scheduled in the PD environment. We consider
what results when the same permutation ‡ is used for scheduling in both environments.

Now the definitions for the lemma: let CCC
‡(j)

be the completion time of job ‡(j) resulting
from List-LPT on an arbitrary permutation ‡. Define CCCı

‡(j)

as the completion time of job
‡(j) in the CC environment in the optimal solution. Lastly, define CP D,IÕ

‡(jÕ
)

as the completion
time of job ‡(jÕ) in I Õ when scheduling by List-LPT(‡) in the PD environment.

I Lemma 13. For I Õ = TSPT (I), let jÕ be the job in I Õ corresponding to job j in I. For an
arbitrary permutation of jobs ‡, we have CCC

‡(j)

Æ CP D,IÕ

‡(jÕ
)

+ R · CCCı
‡(j)

.

Proof. After list scheduling has been carried out in the CC environment, we may determine
CCC

‡(j)i - the completion time of subjob (‡(j), i). We can bound CCC
‡(j)i using Lemma 7 (which

implies (27)), and the serial-processing nature of the PD environment (which implies (28)).

CCC
‡(j)i Æ p‡(j)i1 (1/v̄ ≠ 1/µi) +

qj
¸=1

p‡(¸)i/µi (27)
qj

¸=1

p‡(¸)i/µi Æ CP D,IÕ

‡(jÕ
)

’ i œ M (28)

If we relax the bound given in Inequality (27) and combine it with Inequality (28), we see
that CCC

‡(j)i Æ CP D,IÕ

‡(jÕ
)

+ p‡(j)i1/v̄. The last step is to replace the final term with something
more meaningful. Using p‡(j)1

/v̄ Æ R · CCCı
‡(j)

(which is immediate from the definition of R)
the desired result follows. J

While Lemma 13 is true for arbitrary ‡, now we consider ‡ = MUSSQ(X, w). The proof of
MUSSQ’s correctness established the first inequality in the chain of inequalities below. The

ESA 2016

234:14 Scheduling Distributed Clusters of Parallel Machines

second inequality can be seen by substituting pji/µi for xji in LP0(I Õ) (this shows that the
constraints in LP0(I Õ) are weaker than those in LP1(I)). The third inequality follows from
the Validity Lemma.

q
jœN w‡(j)

CP D,IÕ

‡(j)

Æ 2
q

jœN wjC
LP0(IÕ

)

j Æ 2
q

jœN wjC
LP1(I)

j Æ 2OPT (I) (29)

Combining Inequality (29) with Lemma 13 allows us to bound the objective in a way that
does not make reference to I Õ.

q
jœN w‡(j)

CCC
‡(j)

Æ
q

jœN w‡(j)

Ë
CP D,IÕ

‡(j)

+ R · CCCı
‡(j)

È
Æ 2 · OPT (I) + R · OPT (I) (30)

Inequality (30) completes our proof of the following theorem.

I Theorem 14. Algorithm CC-TSPT is a 2 + R approximation for CC||
q

wjCj.

5.3 CC-TSPT with Unit Tasks and Identical Machines
Consider concurrent cluster scheduling with v¸i = pjit = 1 (i.e., all processing times are unit,
although the size of the collections Tji are unrestricted). In keeping with the work of Zhang,
Wu, and Li [17] (who studied this problem in the single-cluster case), we call instances with
these parameters “fully parallelizable,” and write — = fps for Graham’s –|—|“ taxonomy.

Zhang et al. showed that scheduling jobs greedily by “Largest Ratio First” (decreasing
wj/pj) results in a 2-approximation, where 2 is a tight bound. This comes as something
of a surprise since the Largest Ratio First policy is optimal for 1||

q
wjCj - which their

problem very closely resembles. We now formalize the extent to which P |fps|
q

wjCj

resembles 1||
q

wjCj : define the time resolution of an instance I of CC|fps|
q

wjCj as
flI = minjœN,iœM

'
pji/mi

(
. Indeed, one can show that as the time resolution increases, the

performance guarantee for LRF on P |fps|
q

wjCj approaches that of LRF on 1||
q

wjCj .
We prove the analogous result for our problem.

I Theorem 15. CC-TSPT for CC|fps|
q

wjCj is a (2 + 1/flI)≠approximation.

Proof. Applying techniques from the proof of Lemma 13 under the hypothesis of this theorem,
we have CCC

‡(j),i Æ CP D,IÕ

‡(j)

+ 1. Next, use the fact that for all j œ N , CCC,OP T
‡(j)

Ø flI by the
definition of flI . These facts together imply CCC

‡(j),i Æ CP D,IÕ

‡(j)

+ CCC,OP T /flI . Thus

q
jœN wjCCC

‡(j)

Æ
q

jœN wj

Ë
CP D,IÕ

‡(j)

+ CCC,OP T /flI

È
Æ 2 · OPT + OPT/flI . (31)

J

5.4 CC-ATSPT : Augmenting the LP Relaxation
The proof of Theorem 14 appeals to a trivial lower bound on CCCı

‡(j)

, namely p‡(j)1

/v̄ Æ
R · CCCı

‡(j)

. We attain constant-factor performance guarantees in spite of this, but it is natural
to wonder how the need for such a bound might come hand-in-hand with empirical weaknesses.
Indeed, TSPT can make subjobs consisting of many small tasks look the same as subjobs
consisting of a single very long task. Additionally, a cluster hosting a subjob with a single
extremely long task might be identified as a bottleneck by MUSSQ, even if that cluster has
more machines than it does tasks to process.

We would like to mitigate these issues by introducing the simple lower bounds on Cj as
seen in constraints (1B) and (1C). This is complicated by the fact that MUSSQ’s proof of

R. Murray, S. Khuller, and M. Chao 234:15

correctness only allows constraints of the form in (1A). For I œ �P D this is without loss of
generality, since |S| = 1 in LP0 implies Cj Ø pji, but since we apply LP0 to I Õ = TSPT (I),
Cj Ø xji is equivalent to Cj Ø pji/µi (a much weaker bound than we desire).

Nevertheless, we can bypass this issue by introducing additional clusters and appropriately
defined subjobs. We formalize this with the “Augmented Total Scaled Processing Time”
(ATSPT) transformation. Conceptually, ATSPT creates n “imaginary clusters”, where each
imaginary cluster has nonzero processing time for exactly one job.

I Definition 16 (The Augmented TSPT Transformation). Let �CC and �P D be as in the
definition for TSPT. Then the Augmented TSPT Transformation is likewise a mapping

ATSPT : �CC æ �P D with (T, v, w) ‘æ (X, w) : X =
#

XT SP T (I)

D
$
.

Where D œ Rn◊n is a diagonal matrix with djj as any valid lower bound on the completion
time of job j (such as the right hand sides of constraints (1B) and (1C) of LP1).

Given that djj is a valid lower bound on the completion time of job j, it is easy to verify
that for I Õ = ATSPT (I), LP1(I Õ) is a valid relaxation of I. Because MUSSQ returns a
permutation of jobs for use in list scheduling by List-LPT, these “imaginary clusters” needn’t
be accounted for beyond the computations in MUSSQ.

6 A Reduction for Minimizing Total Weighted Lateness on Identical
Parallel Machines

The problem of minimizing total weighted lateness on a bank of identical parallel machines
is typically denoted P ||

q
wjLj , where the lateness of a job with deadline dj is Lj

.=
max {Cj ≠ dj , 0}. The reduction we o�er below shows that P ||

q
wjLj can be stated in

terms of CC||
q

wjCj at optimality. Thus while a � approximation to CC||
q

wjCj does
not imply a � approximation to P ||

q
wjLj , the reduction below nevertheless provides new

insights on the structure of P ||
q

wjLj .

I Definition 17 (Total Weighted Lateness Reduction). Let I = (p, d, w, m) denote an instance
of P ||

q
wjLj . p is the set of processing times, d is the set of deadlines, w is the set of

weights, and m is the number of identical parallel machines. Given these inputs, we transform
I œ �P ||

q
w

j

L
j

to I Õ œ �CC in the following way.
Create a total of n + 1 clusters. Cluster 0 has m machines. Job j has processing time pj

on this cluster, and |Tj0

| = 1. Clusters 1 through n each consist of a single machine. Job j

has processing time dj on cluster j, and zero on all clusters other than cluster 0 and cluster
j. Denote this problem I Õ.

We refer the reader to Figure 2 for an example output of this reduction.

I Theorem 18. Let I be an instance of P ||
q

wjLj. Let I Õ be an instance of CC||
q

wjCj

resulting from the transformation described above. Any list schedule ‡ that is optimal for I Õ

is also optimal for I.

The proof can be found in the full version of this paper.

7 Closing Remarks

We now take a moment to address a subtle issue in the concurrent cluster problem: what
price do we pay for using the same permutation on all clusters (i.e. single-‡ schedules)?

ESA 2016

234:16 Scheduling Distributed Clusters of Parallel Machines

For concurrent open shop, it has been shown ([16, 10]) that single-‡ schedules may be
assumed without loss of optimality. As is shown in Figure 4, this does not hold for concurrent
cluster scheduling in the general case. In fact, that is precisely why the strong performance
guarantees for algorithm CC-LP rely on clusters having possibly unique permutations.

Figure 4 An instance of CC||
q

C
j

(i.e. w
j

© 1) for which there does not exist a single-‡
schedule which attains the optimal objective value. In the single-‡ case, one of the jobs necessarily
becomes delayed by one time unit compared to the multi-‡ case. As a result, we see a 20% optimality
gap even when v

¸i

© 1.

Our more novel contributions came in our analysis for CC-TSPT and CC-ATSPT. First,
we could not rely on the processing time of the last task for a job to be bounded above by
the job’s completion time variable Cj in LP0(I Õ), and so we appealed to a lower bound on
Cj that was not stated in the LP itself. The need to incorporate this second bound is critical
in realizing the strength of algorithm CC-TSPT, and uncommon in LP rounding schemes.
Second, CC-ATSPT is novel in that it introduces constraints that would be redundant for
LP0(I) when I œ �P D, but become relevant when viewing LP0(I Õ) as a relaxation for
I œ �CC . This approach has potential for more broad applications since it represented
e�ective use of a limited constraint set supported by a known primal-dual algorithm.

We now take a moment to state some open problems in this area. One topic of ongoing
research is developing a factor 2 purely combinatorial algorithm for the special case of concur-
rent cluster scheduling considered in Theorem 10. In addition, it would be of broad interest
to determine the worst-case loss to optimality incurred by assuming single-permutation
schedules for CC|v © 1|

q
wjCj . The simple example above shows that an optimal single-‡

schedule can have objective 1.2 times the globally optimal objective. Meanwhile, Theorem
14 shows that there always exists a single-‡ schedule with objective no more than 3 times
the globally optimal objective. Thus, we know that the worst-case performance ratio is in
the interval [1.2, 3], but we do not know its precise value. As a matter outside of scheduling
theory, it would be valuable to survey primal-dual algorithms with roots in LP relaxations
to determine which have constraint sets that are amenable to implicit modification, as in the
fashion of CC-ATSPT.

Acknowledgments. Special thanks to Andreas Schulz for sharing some of his recent work
with us [15]. His thorough analysis of a linear program for P ||

q
wjCj drives the LP-based

results in this paper. Thanks also to Chien-Chung Hung and Leana Golubchik for sharing
[8] while it was under review, and to Ioana Bercea and Manish Purohit for their insights
on SWAG’s performance. Lastly, our sincere thanks to William Gasarch for organizing the
REU which led to this work, and to the 2015 CAAR-REU cohort for making the experience
an unforgettable one; in the words of Rick Sanchez wubalubadubdub!

R. Murray, S. Khuller, and M. Chao 234:17

References
1 Inc Amazon Web Services. AWS Lambda - Serverless Compute, 2016 (accessed April 3,

2016). URL: https://aws.amazon.com/lambda/.
2 Nikhil Bansal and Subhash Khot. Inapproximability of Hypergraph Vertex Cover and Ap-

plications to Scheduling Problems. Automata, Languages and Programming, 6198:250–261,
2010. URL: http://link.springer.com/10.1007/978-3-642-14165-2, doi:10.1007/

978-3-642-14165-2.
3 Zhi-Long Chen and Nicholas G. Hall. Supply chain scheduling: Assembly systems. Working

paper., 2000. doi:10.1007/978-3-8349-8667-2.
4 Naveen Garg, Amit Kumar, and Vinayaka Pandit. Order Scheduling Models: Hardness and

Algorithms. FSTTCS 2007: Foundations of Software Technology and Theoretical Computer
Science, 4855:96–107, 2007. doi:10.1007/978-3-540-77050-3_8.

5 Teofilo Gonzalez, Oscar Ibarra, and Sartaj Sahni. Bounds for LPT Schedules on Uniform
Processors. SIAM Journal on Computing, 6(1):155–166, 1977.

6 Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Optim-
ization and approximation in deterministic sequencing and scheduling: a survey. Annals of
discrete mathematics, 5:287–326, 1979.

7 Mohammad Hajjat, Shankaranarayanan P N, David Maltz, Sanjay Rao, and Kunwadee
Sripanidkulchai. Dealer : Application-aware Request Splitting for Interactive Cloud Ap-
plications. CoNEXT 2012, pages 157–168, 2012.

8 Chien-Chun Hung, Leana Golubchik, and Minlan Yu. Scheduling jobs across geo-
distributed datacenters. In Proceedings of the Sixth ACM Symposium on Cloud Computing,
pages 111–124. ACM, 2015.

9 J. Y T Leung, Haibing Li, and Michael Pinedo. Scheduling orders for multiple product types
to minimize total weighted completion time. Discrete Applied Mathematics, 155(8):945–970,
2007. doi:10.1016/j.dam.2006.09.012.

10 Monaldo Mastrolilli, Maurice Queyranne, Andreas S. Schulz, Ola Svensson, and Nelson A.
Uhan. Minimizing the sum of weighted completion times in a concurrent open shop. Op-
erations Research Letters, 38(5):390–395, 2010. doi:10.1016/j.orl.2010.04.011.

11 Microsoft. Azure Service Fabric, 2016 (accessed April 3, 2016). URL: https://azure.

microsoft.com/en-us/services/service-fabric/.
12 Riley Murray, Megan Chao, and Samir Khuller. Scheduling distributed clusters of parallel

machines [full version]. An extended version of the paper published in ESA 2016 under
the same name., 2016. URL: http://www.cs.umd.edu/users/samir/grant/ESA2016Full.

pdf.
13 Maurice Queyranne. Structure of a simple scheduling polyhedron. Mathematical Program-

ming, 58(1-3):263–285, 1993. doi:10.1007/BF01581271.
14 Andreas S. Schulz. Polytopes and scheduling. PhD Thesis, 1996.
15 Andreas S Schulz. From linear programming relaxations to approximation algorithms for

scheduling problems : A tour d ’ horizon. Working paper; available upon request., 2012.
16 C. Sriskandarajah and E. Wagneur. Openshops with jobs overlap. European Journal of

Operations Research, 71:366–378, 1993.
17 Qiang Zhang, Weiwei Wu, and Minming Li. Resource Scheduling with Supply Constraint

and Linear Cost. COCOA 2012 Conference, 2012. arXiv:9780201398298, doi:10.1007/

3-540-68339-9_34.

ESA 2016

https://aws.amazon.com/lambda/
http://link.springer.com/10.1007/978-3-642-14165-2
http://dx.doi.org/10.1007/978-3-642-14165-2
http://dx.doi.org/10.1007/978-3-642-14165-2
http://dx.doi.org/10.1007/978-3-8349-8667-2
http://dx.doi.org/10.1007/978-3-540-77050-3_8
http://dx.doi.org/10.1016/j.dam.2006.09.012
http://dx.doi.org/10.1016/j.orl.2010.04.011
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
http://www.cs.umd.edu/users/samir/grant/ESA2016Full.pdf
http://www.cs.umd.edu/users/samir/grant/ESA2016Full.pdf
http://dx.doi.org/10.1007/BF01581271
http://arxiv.org/abs/9780201398298
http://dx.doi.org/10.1007/3-540-68339-9_34
http://dx.doi.org/10.1007/3-540-68339-9_34

	Introduction
	Formal Problem Statement
	Example Problem Instances

	Related Work
	Paper Outline & Algorithmic Results

	The Core Linear Program
	Statement of LP1
	Proof of LP1's Validity
	Theoretical Complexity of LP1

	List Scheduling from Permutations
	An LP-based Algorithm
	CC-LP for Uniform Machines
	CC-LP for Identical Machines

	Combinatorial Algorithms
	A Degenerate Case for SWAG
	CC-TSPT : A Fast 2 + R Approximation
	CC-TSPT with Unit Tasks and Identical Machines
	CC-ATSPT : Augmenting the LP Relaxation

	A Reduction for Minimizing Total Weighted Lateness on Identical Parallel Machines
	Closing Remarks

