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Abstract16

In this paper, we give the first constant factor approximation algorithm for capacitated knapsack17

median problem (CKnM) for hard uniform capacities, violating the budget by a factor of 1 + ε18

and capacities by a 2 + ε factor. To the best of our knowledge, no constant factor approximation19

is known for the problem even with capacity/budget/both violations. Even for the uncapacitated20

variant of the problem, the natural LP is known to have an unbounded integrality gap even after21

adding the covering inequalities to strengthen the LP. Our techniques for CKnM provide two22

types of results for the capacitated k-facility location problem. We present an O(1/ε2) factor23

approximation for the problem, violating capacities by (2+ ε). Another result is an O(1/ε) factor24

approximation, violating the capacities by a factor of at most (1+ε) using at most 2k facilities for25

a fixed ε > 0. As a by-product, a constant factor approximation algorithm for capacitated facility26

location problem with uniform capacities is presented, violating the capacities by (1 + ε) factor.27

Though constant factor results are known for the problem without violating the capacities, the28

result is interesting as it is obtained by rounding the solution to the natural LP, which is known29

to have an unbounded integrality gap without violating the capacities. Thus, we achieve the best30

possible from the natural LP for the problem. The result shows that the natural LP is not too31

bad.32
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1 Introduction36

Facility location and k-median problems are well studied in the literature. In this paper,37

we study some of their generalizations. In particular, we study capacitated variants of the38

knapsack median problem (KnM) and the k facility location problem (kFLP). Knapsack39

median problem is a generalization of the k-median problem, in which we are given a set C40

of clients with demands, a set F of facility locations and a budget B. Setting up a facility41
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23:2 Constant factor Approximation for Uniform Hard Capacitated Knapsack Median

at location i incurs cost fi (called the facility opening cost or simply the facility cost ) and42

servicing a client j by a facility i incurs cost c(i, j) (called the service cost). We assume that43

the costs are metric i.e., they satisfy the triangle inequality. The goal is to select the locations44

to install facilities, so that the total cost for setting up the facilities does not exceed B and45

the cost of servicing all the clients by the opened facilities is minimized. When fi = 1 ∀i ∈ F46

and B = k, it reduces to the k-median problem. In the capacitated version of the problem,47

we are also given a bound ui on the maximum number of clients that facility i can serve.48

Given a set of open facilities, an assignment problem is solved to determine the best way of49

servicing the clients. Thus any solution is completely determined by the set of open facilities.50

In this paper, we address the capacitated knapsack median (CKnM) problem with uniform51

capacities i.e., ui = u ∀i ∈ F and clients with unit demands. In particular, we present the52

following result:53

I Theorem 1. There is a polynomial time algorithm that approximates hard uniform capa-54

citated knapsack median problem within a constant factor violating the capacity by a factor55

of at most (2 + ε) and budget by a factor of at most (1 + ε), for every fixed ε > 0.56

Our result is nearly the best achievable from rounding the natural LP: we cannot expect57

to get rid of the violation in the budget as it would imply a constant factor integrality gap58

for the uncapacitated case which is known to have an unbounded integrality gap. Even with59

budget violation, capacity violation cannot be reduced to below 2 as it would imply less than60

2 factor capacity violation for k-median problem with k+ 1 facilities. The natural LP has an61

unbounded integrality gap for this scenario as well1 2.62

The k-facility location problem (kFLP) is a common generalization of the facility location63

problem and the k-median problem. In kFLP, we are given a bound k on the maximum64

number of facilities that can be opened (instead of a budget on the total facility opening cost)65

and the objective is to minimize the total of facility opening cost and the cost of servicing66

the clients by the opened facilities. In particular we present the following two results:67

I Theorem 2. There is a polynomial time algorithm that approximates hard uniform capa-68

citated k-facility location problem within a constant factor (O(1/ε2)) violating the capacities69

by a factor of at most (2 + ε) for every fixed ε > 0.70

I Theorem 3. There is a polynomial time algorithm that approximates hard uniform71

capacitated k-facility location problem within a constant factor (O(1/ε)) violating the capacity72

by a factor of at most (1 + ε) using at most 2k facilities for every fixed ε > 0.73

As a particular case of CkFLP, we obtain the following interesting result for the capacitated74

facility location problem (CFLP):75

I Corollary 4. There is a polynomial time algorithm that approximates hard uniform capa-76

citated facility location problem within a constant factor (O(1/ε)) violating the capacity by a77

factor of at most (1 + ε) for every fixed ε > 0.78

1 Let M be a large integer, ui = M and k = 2M − 2. There are M groups of locations; distance between
locations within a group is 0 and distance between locations in two different groups is 1. Each group has
2M − 2 facilities and 2M − 2 clients, all co-located. In an optimal LP solution each facility is opened to
an extent of 1/M thereby creating a capacity of 2M − 2 within each group. In an integer solution, if at
most k + 1 = 2M − 1 facilities are allowed to be opened then there is at least one group with only one
facility opened in it. Thus capacity in the group is M whereas the demand is 2M − 2. Thus the blowup
in capacity is (2M − 2)/M .

2 We thank Moses Charikar for providing the above example where violation in one of the parameters is
less than 2 factor and no violation in the other. The example was subsequently modified by us to allow
k + 1 facilities.
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The standard LP is known to have an unbounded integrality gap for CFLP even with79

uniform capacities. Though constant factor results are known for the problem without80

violating the capacities [2, 4], our result is interesting as it is obtained by rounding the81

solution to the natural LP. Our result shows that the natural LP is not too bad.82

1.1 Motivation and Challenges83

The natural LP for KnM is known to have an unbounded integrality gap [10] even for84

the uncapacitated case. Obtaining a constant factor approximation for the (capacitated)85

k-median (CkM) problem is still open, let alone the CKnM problem. Existing solutions86

giving constant-factor approximation for CkM violate at least one of the two (cardinality87

and capacity) constraints. Natural LP is known to have an unbounded integrality gap when88

any one of the two constraints is allowed to be violated by a factor of less than 2 without89

violating the other.90

Several results [9, 11, 6, 21, 16, 1] have been obtained for CkM that violate either the91

capacities or the cardinality by a factor of 2 or more. The techniques used for CkM cannot92

be used for CKnM as they work by transferring the opening from one facility to another93

(ensuring bounded service cost) facility thereby maintaining the cardinality within claimed94

bounds. This works well when there are no facility opening costs or the (facility opening)95

costs are uniform. For the general opening costs, this is a challenge as a facility, good for96

bounded service cost, may lead to budget violation. To the best of our knowledge, capacitated97

knapsack median problem has not been addressed earlier.98

CkFLP is NP-hard even when there is only one client and there are no facility costs [1].99

The hardness results for CkM hold for CkFLP as well. On the other hand, standard LP100

for capacitated facility location problem (CFLP) has an unbounded integrality gap, thereby101

implying that constant integrality ratio can not be obtained for CkFLP without violating102

the capacities even if k = n. Byrka et al. [6] gave an O(1/ε2) algorithm for CkFLP when103

the capacities are uniform (UCkFLP) violating the capacities by a factor of 2 + ε. They use104

randomized rounding to bound the expected cost. It can be shown that deterministic pipage105

rounding cannot be used here. The strength of our techniques is demonstrated in obtaining106

the first deterministic constant factor approximation with the same capacity violation. The107

primary source of inspiration for our result in Theorem 3 comes from its corollary.108

1.2 Related Work109

Capacitated k-median problem has been studied extensively in the literature. For the case of110

uniform capacities, several results [6, 9, 11, 21, 16] have been obtained that violate either111

the capacities or the cardinality by a factor of 2 or more. In case of non-uniform capacities,112

a (7 + ε) algorithm was given by Aardal et al. [1] violating the cardinality constraint by a113

factor of 2 as a special case of Capacitated k-FLP when the facility costs are all zero. Byrka114

et al. [6] gave an O(1/ε) approximation result violating capacities by a factor of (3 + ε).115

Li [22] broke the barrier of 2 in cardinality and gave an exp(O(1/ε2)) approximation116

using at most (1 + ε)k facilities for uniform capacities. Li gave a sophisticated algorithm117

using a novel linear program which he calls the rectangle LP. The result was extended to118

non-uniform capacities by the same author using a new LP called configuration LP [23]. The119

approximation ratio was also improved from exp(O(1/ε2)) to (O(1/ε2 log(1/ε))). Though120

the algorithm violates the cardinality only by 1 + ε, it introduces a softness bounded by a121

factor of 2. The running time of the algorithm is nO(1/ε).122

FSTTCS 2018
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Byrka et al. [8] broke the barrier of 2 in capacities and gave an O(1/ε2) approximation123

violating capacities by a factor of (1 + ε) factor for uniform capacities. The algorithm uses124

randomized rounding to round a fractional solution to the configuration LP. For non-uniform125

capacities, a similar result has been obtained by Demirci et al. [14]. The paper presents an126

O(1/ε5) approximation algorithm with capacity violation by a factor of at most (1 + ε). The127

running time of the algorithm is nO(1/ε).128

Another closely related problem to Capacitated k-median problem is the Capacitated129

k-center problem, where-in we have to minimize the maximum distance of a client to a facility.130

A 6 factor approximation algorithm was given by Khuller and Sussmann [15] for the case of131

uniform hard capacities (5 factor for soft capacitated case). For non-uniform hard capacities,132

Cygan et al. [13] gave the first constant approximation algorithm for the problem, which was133

further improved by An et al. in [3] to 9 factor.134

Though the knapsack median problem (a.k.a. weighted W -median) is a well motivated135

problem and occurs naturally in practice, not much work has been done on the problem.136

Krishnaswamy et al. [17] showed that the integrality gap, for the uncapacitated case, holds137

even on adding the covering inequalities to strengthen the LP, and gave a 16 factor approx-138

imation that violates the budget constraint by a factor of (1 + ε). Kumar [19] strengthened139

the natural LP by obtaining a bound on the maximum distance a client can travel and gave140

first constant factor approximation without violating the budget constraint. Charikar and Li141

[12] reduced the large constant obtained by Kumar to 34 which was further improved to 32142

by Swamy [26]. Byrka et al. [7] extended the work of Swamy and applied sparsification as a143

pre-processing step to obtain a factor of 17.46. The result was further improed to 7.081(1 + ε)144

very recently by Krishnaswamy et al. [18] using iterative rounding technique, with a running145

time of nO(1/ε2).146

For CkFLP, Aardal et al. [1] extended the FPTAS for knapsack problem to give an FPTAS147

for single client CkFLP. They also extend an α− approximation algorithm for (uncapacitated)148

k-median to give a (2α+ 1)− approximation for CkFLP with uniform opening costs using at149

most 2k for non-uniform and 2k − 1 for uniform capacities. Byrka et al. [6] gave an O(1/ε2)150

factor approximation violating the capacities by a factor of (2 + ε) using dependent rounding.151

For CFLP, An, Singh and Svensson [4] gave the first LP-based constant factor approxima-152

tion by strengthening the natural LP. Other LP-based algorithms known for the problem are153

due to Byrka et al. and Levi et al. ([6, 20]). The local search technique has been particularly154

useful to deal with capacities. The approach provides 3 factor for uniform capacities [2] and155

5 factor for the non-uniform case [5].156

1.3 Our techniques157

We extend the work of Krishnaswamy et al. [17] to capacitated case. The major challenge is158

in writing the LP which opens sufficient number of facilities for us in bounded cost.159

Filtering and clustering techniques [24, 11, 20, 25, 6, 17, 1] are used to partition the set160

of facilities and demands. Routing trees are used to bound the assignment costs. Main161

contribution of this work is a new LP and an iterative rounding algorithm to obtain a solution162

with at most two fractionally opened facilities.163

High Level Ideas: We first use the filtering and clustering techniques to partition164

the set of facilities and demands. Each partition (called cluster) has sufficient opening165

(≥ 1− 1/` ≥ 1/2) for a fixed parameter ` ≥ 2 in it. An integrally open solution is obtained166

where-in some clusters have at least 1 integrally opened facility and some do not have any167

facility opened in them. To assign the demand of the cluster that cannot be satisfied locally168

within the cluster, a (directed) rooted binary routing tree is constructed, on the cluster169
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centers. If (s, t) is an edge in the routing tree then the cost of sending the unmet demand of170

the cluster centered at s to t is bounded. The edges of the tree have non-increasing costs171

as we go up the tree, with the root being at the top. Hence the cost of sending the unmet172

demand of the cluster centered at s to any node r up in the tree at a constant number of173

edges away from s is bounded.174

In order to decide which facilities to open integrally, clusters are grouped into meta-175

clusters of size (the number of clusters in it) ` so as to have at least `− 1 opening in it. The176

routing tree is used to group the clusters into meta-clusters (MCs) in a top-down greedy177

manner, i.e., starting from the root, a meta-cluster grows by including the cluster (center)178

that connects to it by the cheapest edge. A MC grows until its size reaches `. We then179

proceed to make a new MC from the tree with the remaining nodes in the same greedy180

manner. This imposes a natural directed (not necessarily binary) rooted tree structure on the181

meta-clusters with the property that the edge going out of a MC is cheaper than the edges182

inside the MC which are further cheaper than the edges coming into the MC. Out-degree of183

a MC is 1 whereas the in-degree is at most q + 1 where q is the number of clusters in a MC.184

Next, we write a new LP to open sufficient number of facilities within each cluster and185

each MC. We also give an iterative rounding algorithm to solve the LP, removing the integral186

variables and updating the constraints accordingly in each iteration until either all the187

variables are fractional or all are integral. In case all the variables are fractional, we use the188

property of extreme point solutions to claim that the number of non-integral variables is189

at most two. Thus we obtain a solution to the LP with at most two fractional openings.190

Both the fractionally opened facilities are opened integrally at a loss of additive fmax in the191

budget where fmax is the maximum facility opening cost 3.192

Finally a min-cost flow problem is solved with capacities scaled up by a factor of (2+ ε) to193

obtain an integral assignment. A feasible solution to the min-cost flow problem of bounded194

cost is obtained as follows: consider a scenario in which the demand accumulated within195

each cluster is less than u (we call such clusters as sparse). For the sake of easy exposition of196

the ideas, let each MC be of size exactly `. The LP solution opens at least `− 1 facilities197

integrally in each MC, with at least one facility in each cluster except for one cluster. If198

the cluster with unmet demand is at the root of the induced subgraph of the MC, then its199

demand cannot be met within the MC. We make sure that such a demand is served in the200

parent MC. Total demand to be served by the facilities in a MC is at most `u plus at most201

(`+ 1)u coming from the children of the MC. Thus (`− 1) facilities have to serve at most202

(2`+ 1)u demand leading to a violation of (2 +O(1/`)) in capacity. Demands have to travel203

O(`) edges upwards (at most ` within its own MC and at most ` in the parent MC), and204

hence the cost of serving them is bounded.205

The situation becomes a little tricky when there are clusters with more than u demand206

(we call such clusters as dense). One way to deal with dense clusters is to open bdemand/uc207

facilities integrally within such a cluster and assign the residual demand to one of them at208

a capacity violation of 2. But if this cluster also has to serve u units of unmet demand of209

one of its children (we will see later that a dense cluster has at most one child), the capacity210

violation could blow upto 3 in case bdemand/uc = 1. We deal with this scenario carefully.211

3 Let F ′ be the set of facilities i with fi > ε · B. Enumerate all possible subsets of F ′ of size <= 1/ε.
There are at most nO(1/ε) such sets. For each such set S, solve the LP with yi = 1 ∀ i ∈ S and
yi = 0 ∀ i ∈ F ′ \ S. The additive fmax (which comes from the fractionally opened facilities) is <= ε · B.
Choose the best solution and hence theorem 1 follows.

FSTTCS 2018



23:6 Constant factor Approximation for Uniform Hard Capacitated Knapsack Median

2 Capacitated Knapsack Median Problem212

In this section, we consider the capacitated knapsack median problem. CKnM can be213

formulated as the following integer program (IP):214

Minimize CostKnM(x, y) =
∑
j∈C

∑
i∈F c(i, j)xij215

subject to
∑
i∈F xij = 1 ∀ j ∈ C (1)216 ∑

j∈C xij ≤ u yi ∀ i ∈ F (2)217

xij ≤ yi ∀ i ∈ F , j ∈ C (3)218 ∑
i∈F fiyi ≤ B (4)219

yi, xij ∈ {0, 1} (5)220

LP-Relaxation of the problem is obtained by allowing the variables yi, xij ∈ [0, 1]. Call it221

LP1. To begin with, we guess the facility with maximum opening cost, f∗max, in the optimal222

solution and remove all the facilities with facility cost > f∗max before applying the algorithm.223

For the easy exposition of ideas, we will give a weaker result, in section 2.4, in which we224

violate capacities by a factor of 3. Most of the ideas are captured in this section.225

2.1 Simplifying the problem instance226

We first simplify the problem instance by partitioning the sets of facilities and clients into227

clusters. This is achieved using the filtering technique of Lin and Vitter [24]. For an LP228

solution ρ =< x, y > and a subset T of facilities, let size(y, T ) =
∑
i∈T yi denote the total229

extent up to which facilities are opened in T under ρ.230

Partitioning the set of facilities into clusters and sparsifying the client set :231

Let ρ∗ =< x∗, y∗ > denote the optimal LP solution. Let Ĉj denote the average connection232

cost of a client j in ρ∗ i.e., Ĉj =
∑
i∈F x

∗
ijc(i, j). Let ` ≥ 2 be a fixed parameter and ball(j)233

be the set of facilities within a distance of `Ĉj of j i.e., ball(j) = {i ∈ F : c(i, j) ≤ `Ĉj}234

(Figure 1(a)). Then, size(y∗, ball(j)) ≥ 1 − 1
` . Let Rj = `Ĉj denote the radius of ball(j).235

We identify a set C′ of clients ( Figure 1(b)) which will serve as the centers of the clusters236

using Algorithm 1. Note that ball(j′) ⊆ Nj′ and the sets Nj′ partition F . (Figure 2(b)).237

Algorithm 1 Cluster Formation
1: C′ ← ∅, S ← C, ctr(j) = ∅ ∀j ∈ S.
2: while S 6= ∅ do
3: Pick j′ ∈ S with the smallest radius Rj′ in S, breaking ties arbitrarily.
4: S ← S \ {j′}, C′ ← C′ ∪ {j′}
5: while ∃j ∈ S: c(j′, j) ≤ 2`Ĉj do
6: S ← S \ {j}, ctr(j) = j′

7: end while
8: end while
9: ∀j′ ∈ C′: let Nj′ = {i ∈ F | ∀k′ ∈ C′ : j′ 6= k′ ⇒ c(i, j′) < c(i, k′)}

Partitioning the demands: Let li denote the total demand of clients in C serviced238

by facility i i.e., li =
∑
j∈C x

∗
ij and, dj′ =

∑
i∈Nj′

li for j′ ∈ C′. Move the demand dj′239

to the center j′ of the cluster (Figures 1-(b) and 2-(a)). For j ∈ C, let Aρ∗(j,Nj′) denote240

the total extent upto which j is served by the facilities in Nj′ . Then, we can also write241

dj′ =
∑
j∈C Aρ∗(j,Nj′). Thus, after this step, unit demand of any j ∈ C, is distributed to242

centers of all the clusters whose facilities serve j. In particular, it takes care of the demand243

of the clients that were removed during sparsification. Each cluster center is then responsible244

for the portion of demand of j ∈ C served by the facilities in its cluster.245
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(a) (b)

Figure 1 (a) The balls around the clients. (b) Reduced set of clients and assignment by LP
solution.

(a) (b)

Figure 2 (a) Partitioning of demand. (b) Partition of F .

The cost of moving the demand dj′ to j′ is bounded by 2(` + 1)LPopt as shown in246

Corollary 6. Also, any two cluster centers j′ and k′ satisfy the separation property: c(j′, k′) >247

2` max{Ĉj′ , Ĉk′}. In addition, they satisfy Lemmas (5), (7) and (8).248

I Lemma 5. Let j′ ∈ C′ and i ∈ Nj′ then, (i) For k′ ∈ C′, c(j′, k′) ≤ 2c(i, k′), (ii) For249

j ∈ C \ C′, c(j′, j) ≤ 2c(i, j) + 2`Ĉj and (iii) For j ∈ C, c(i, j′) ≤ c(i, j) + 2`Ĉj.250

Proof. i) By triangle inequality, c(j′, k′) ≤ c(i, j′)+c(i, k′). Since i ∈ Nj′ ⇒ c(i, j′) ≤ c(i, k′)251

and hence c(j′, k′) ≤ 2c(i, k′).252

(ii) Since j /∈ C′, there exist a client k′ ∈ C′ such that ctr(j) = k′ and c(j, k′) ≤ 2`Ĉj .253

Also, If k′ = j′ then c(i, j′) = c(i, k′) else c(i, j′) ≤ c(i, k′) because i ∈ Nj′ and not Nk′ . Then,254

by triangle inequality, c(i, k′) ≤ c(i, j) + c(j, k′) ≤ c(i, j) + 2`Ĉj = c(i, j) + 2Rj . Therefore,255

c(j′, j) ≤ c(i, j′) + c(i, j) ≤ 2c(i, j) + 2Rj .256

(iii) Consider two cases: j ∈ C′ and j /∈ C′. In the first case, c(i, j′) ≤ c(i, j) because257

i ∈ Nj′ and not Nj and hence c(i, j′) ≤ c(i, j) + 2`Ĉj . In the latter case, by triangle258

inequality we have, c(i, j′) ≤ c(i, j) + c(j′, j). Since j /∈ C′ ⇒ c(j′, j) ≤ 2`Ĉj . Thus,259

c(i, j′) ≤ c(i, j) + 2`Ĉj . J260

I Corollary 6.
∑
j∈C

∑
j′∈C′ c(j′, j)Aρ∗(j,Nj′) ≤ 2(`+ 1)LPopt.261

FSTTCS 2018
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I Lemma 7. Let j ∈ C \ C′ and j′ ∈ C′ such that c(j′, j) ≤ Rj′ , then Rj′ ≤ 2Rj.262

Proof. Suppose, if possible, Rj′ > 2Rj . Let ctr(j) = k′. Then, c(j, k′) ≤ 2Rj . And,263

c(k′, j′) ≤ c(k′, j) + c(j, j′) ≤ 2Rj + Rj′ < 2Rj′ = 2`Ĉj′ , which is a contradiction to264

separation property. J265

I Lemma 8.
∑
j′∈C′ dj′

∑
i∈F c(i, j′)x∗ij′ ≤ 3

∑
j∈C

∑
i∈F c(i, j)x∗ij = 3LPopt.266

Proof.
∑
j′∈C′ dj′

∑
i∈F c(i, j′)x∗ij′ =

∑
j′∈C′

(∑
j∈C Aρ∗(j,Nj′)

)
Ĉj′267

=
∑
j′∈C′

(∑
j∈C:c(j′,j)≤Rj′

Aρ∗(j,Nj′)Ĉj′ +
∑
j∈C:c(j′,j)>Rj′

Aρ∗(j,Nj′)Ĉj′
)

268

Second term in the sum on RHS < 1
`

∑
j′∈C′

∑
j∈C:c(j′,j)>Rj′

Aρ∗(j,Nj′)c(j′, j)269

≤ 1
`

∑
j∈C

∑
j′∈C′:c(j′,j)>Rj′

∑
i∈Nj′

x∗ij(2c(i, j) + 2`Ĉj) as c(j′, j) ≤ 2c(i, j) + 2`Ĉj by270

Lemma 5271

≤
∑
j∈C

∑
j′∈C′:c(j′,j)>Rj′

∑
i∈Nj′

x∗ij(c(i, j) + 2Ĉj). Thus the claim follows. J272

Let CS be the set of cluster centers j′ ∈ C′ for which dj′ < u and CD be the set of273

remaining centers in C′. The clusters centered at j′ ∈ CS are called sparse and those centered274

at j′ ∈ CD dense. For j′ ∈ CD, sufficient facilities are opened in Nj′ so that its entire demand275

is served within the cluster itself and we say that j′ is self-sufficient. Unfortunately, the276

same claim cannot be made for the sparse clusters i.e., we cannot guarantee to open even277

one facility in each sparse cluster (since dj′ < u, we need only one facility in each sparse278

cluster j′). Thus, in the next section, we define a routing tree that is used to route the unmet279

demand of a cluster to another cluster in bounded cost.280

2.2 Constructing the Binary Routing Tree281

First, we define a dependency graph G = (V,E), similar to the one defined by Krishnaswamy282

et al [17], on cluster centers, i.e., V = C′. For brevity of notation, we use j′ to refer to the283

node corresponding to cluster center j′ as well as to refer to the cluster center j′ itself. For284

j′ ∈ CS , let η(j′) be the nearest other cluster center in C′ of j′ i.e., η(j′) = k′( 6= j′) ∈ C′ : k′′ ∈285

C′ ⇒ c(j′, k′) ≤ c(j′, k′′) and for j′ ∈ CD, η(j′) = j′. The dependency graph consists of286

directed edges c(j′, η(j′)). Each connected component of the graph is a tree except possibly287

for a 2-cycle at the root. We remove any edge arbitrarily from the two cycle. The resulting288

graph is then a forest. Note that, there is at most one dense cluster in a component and if289

present, it must be the root of the tree. The following lemma will be useful to bound the290

cost of sending the unserved demand of j′ ∈ CS to η(j′).291

I Lemma 9.
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)x∗ij′ + c(j′, η(j′))(1−
∑
i∈Nj′

x∗ij′)) ≤ 6LPopt.292

Proof. The second term of LHS =
∑
j′∈CS

dj′
(∑

i/∈Nj′
c(j′, η(j′))x∗ij′

)
293

≤
∑
j′∈CS

dj′
(∑

k′∈C′:k′ 6=j′
∑
i∈Nk′

c(j′, k′)x∗ij′
)

294

≤
∑
j′∈CS

dj′
(∑

k′∈C′:k′ 6=j′
∑
i∈Nk′

2c(i, j′)x∗ij′
)
. J295

Unfortunately, the in-degree of a node in a tree may be unbounded and hence arbitrarily296

large amount of demand may accumulate at a cluster center, which may further lead to297

unbounded capacity violation at the facilities in its cluster.298

Bounding the in-degree of a node in the dependency graph: We convert the299

dependency graph G into another graph G′ where-in the in-degree of each node is bounded300

by 2 with in-degree of the root being 1. This is done as follows (Figure 3(a)-(b)): let T be301

a tree in G. T is converted into a binary tree using the standard procedure after sorting302
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(a) (b) (c)

Figure 3 (a) A Tree T of unbounded in-degree. a < b < d < h , a < c < g , b < e. (b) A Binary
Tree T ′ where each node has in-degree at most 2. (c) Formation of meta-clusters for ` = 3.

the children of node j′ from left to right in non-decreasing order of distance from j′ i.e.,303

for each child k′ (except for the nearest child) of j′, add an edge to its left sibling with304

weight 2c(k′, η(k′)) and remove the edge (k′, j′). There is no change in the outgoing edge305

of the leftmost child of j′. Let ψ(j′) be the parent of node j′ in G′. Its easy to see that306

c(j′, ψ(j′)) ≤ 2c(j′, η(j′)). Henceforth whenever we refer to distances, we mean the new307

edge weights. Hence, we have the following:308 ∑
j′∈CS

dj′
( ∑
i∈Nj′

c(i, j′)x∗ij′ + c(j′, ψ(j′))(1−
∑
i∈Nj′

x∗ij′)
)
≤ 12LPopt (6)309

2.3 Constructing the Meta-clusters310

If we could ensure that for every j′ ∈ CS for which no facility is opened in Nj′ , a facility is311

opened in ψ(j′), we are done (with 3 factor loss in capacities). But we do not know how to312

do that. However, for every such cluster center j′, we will identify a set of centers which313

will be able to take care of the demand of j′ and each one of them is within a distance of314

O(`)c(j′, ψ(j′)) from j′.315

We exploit the following observation to make groups of ` clusters: each cluster has316

facilities opened in it to an extent of at least (1− 1/`). Hence, every collection of ` clusters,317

has at least `− 1 facilities opened in it. Thus, we make groups (called meta-clusters), each318

consisting of ` clusters, if possible. For every tree T in G′, MCs are formed by processing the319

nodes of T in a top-down greedy manner starting from the root as described in Algorithm 2.320

(Also see Figure 3(c)). There may be some MCs of size less than `, towards the leaves of the321

tree.322

Let Gr denote a MC with r being the root cluster of it. With a slight abuse of notation,323

we will use Gr to denote the collection of centers of the clusters in it as well as the set of324

clusters themselves. Let H(Gr) denote the subgraph of T induced by the nodes in Gr. H(Gr)325

is clearly a tree. We say that Gr is responsible for serving the demand in its clusters.326

With the guarantee of only ` − 1 opening amongst ` clusters, there may be a cluster327

with no facility opened in it. If this cluster happens to be a sparse cluster at the root, its328

demand cannot be served within the MC. Thus we define a (routing) tree structure on MCs329

as follows: a tree consists of MCs as nodes and there is an edge from a MC Gr to another330
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Algorithm 2 Meta-cluster Formation
1: Meta-cluster(Tree T )
2: N ← set of nodes in T .
3: while there are non-grouped nodes in N do
4: Pick a topmost non-grouped node, say k of N : form a new MC, Gk.
5: while Gk has fewer than ` nodes do
6: If N = ∅ then break and stop.
7: Let j = argminu∈N {c(u, v) : (u, v) ∈ T , v ∈ Gk}, set Gk = Gk ∪ {j}. N ← N \ {j}.
8: end while
9: end while

MC Gs if there is a directed edge from root r of Gr to some node s′ ∈ Gs, Gs is then called331

the parent meta-cluster of Gr, Gr a child meta-cluster of Gs and the edge (r, s′) is called332

the connecting edge of the child MC Gr. If Gr is a root MC, add an edge to itself with cost333

c(r, ψ(r)). This edge is then called the connecting edge of Gr. Note that the cost of any334

edge in Gs is less than the cost of the connecting edge of Gr which is further less than the335

cost of any edge in Gr. Further, a dense cluster, if present, is always the root cluster of a336

root MC. We guarantee that the unmet demand of a MC is served in its parent MC.337

2.4 3-factor capacity violation338

In this section, we present the main contribution of our work. Inspired by the LP of339

Krishnaswamy et al. [17], we formulate a new LP and present an iterative rounding algorithm340

to obtain a solution with at most two fractionally opened facilities. Such a solution is called341

pseudo-integral solution. Modifying the LP of Krishnaswamy et al. [17] and obtaining a342

feasible solution of bounded cost for the capacitated scenario is non-trivial. The rounding343

algorithm is also non-trivial.344

2.4.1 Formulating the new LP and obtaining a pseudo-integral solution345

Sparse clusters have the nice property that they need to take care of small demand (< u346

each) and dense clusters have the nice property that the total opening within each cluster is347

at least 1. These properties are exploited to define a new LP that opens sufficient number of348

facilities in each MC such that the opened facilities are well spread out amongst the clusters349

(we make sure that at most 1 (sparse) cluster has no facility opened in it) and demand of350

a dense cluster is satisfied within the cluster itself. We then present an iterative rounding351

algorithm that provides us with a solution having at most two fractionally opened facilities.352

Let δr be the number of dense clusters and σr be the number of sparse clusters in a353

MC Gr. With at least 1 − 1/` opening in each sparse cluster, observing the fact that354

σr ≤ `, we have at least σr(1 − 1/`) ≥ σr − 1 total opening in σr sparse clusters of355

Gr. Also, at least bdjd
/uc opening is there in a dense cluster centered at jd in Gr. Let356

αr = max{0, σr − 1}. LP is defined so as to open at least bdjd
/uc+ αr facilities in Gr. Let357

τ(j′) = {i ∈ Nj′ : c(i, j′) ≤ c(j′, ψ(j′))} if j′ ∈ CS (recall that ψ(j′) is the parent of j′ in358

binary tree) and τ(j′) = Nj′ if j′ ∈ CD. Also, let Sr = Gr ∩ CS and sr = αr for all MCs Gr,359

F̃ = F , B̃ = B, rj′ = bdj′/uc ∀j′ ∈ CD and τ̂(j′) = τ(j′) ∀j′ ∈ C′. These sets are updated as360

we go from one iteration to the next iteration in our rounding algorithm, thereby giving a new361

(reduced) LP in each iteration. Let wi denote whether facility i is opened in the solution or362

not. We now write an LP, called LP2 with the objective of minimising the following function:363
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CostKM(w) =
∑
j′∈CS

dj′ [
∑
i∈Nj′

c(i, j′)wi + c(j′, ψ(j′))(1−
∑
i∈Nj′

wi)] + u
∑
j′∈CD

∑
i∈Nj′

c(i, j′)wi364

s.t.
∑
i∈τ̂(j′) wi ≤ 1 ∀ j′ ∈ CS (7)365 ∑
i∈τ̂(j′) wi = rj′ ∀ j′ ∈ CD (8)366 ∑

j′∈Sr

∑
i∈τ̂(j′) wi ≥ sr ∀ r : Gr is a MC (9)367 ∑

i∈F̃ fiwi ≤ B̃ (10)368

0 ≤ wi ≤ 1 ∀ i ∈ F̃ (11)369

Constraints (8) and (9) ensure that sufficient number of facilities are opened in a meta-370

cluster. Constraints (7) and (8) ensure that the opened facilities are well spread out amongst371

the clusters as no more than 1 and bdj′

u c facilities are opened in a sparse and dense cluster372

respectively. Constraint (8) also ensures that at least bdj′

u c facilities are opened in a dense373

cluster. This requirement is essential to make sure that the demand of a dense cluster is374

served within the cluster only. Hence, equality in constraint (8) is important.375

I Lemma 10. A feasible solution w′ to LP2 can be obtained such that CostKM(w′) ≤376

(2`+ 13)LPopt.377

Proof. Refer to Appendix 5.1. J378

For a vector w ∈ R|F| and F ′ ⊆ F , let wF ′ denote the vector ‘w restricted to F ′’. Also,379

let s =< sr >, S =< Sr > and R =< rj′ >j′∈CD
. Algorithm 3 presents an iterative rounding380

algorithm that solves LP2 and returns a pseudo-integral solution w̃. A sparse cluster is381

removed from the scenario for the next iteration as and when a facility is integrally opened382

in it (lines 11, 12). In a dense cluster centered at j′, the number of facilities to be opened by383

the LP (rj′) is decremented by the number of integrally opened facilities in it (line 15) at384

every iteration and the cluster is removed when it becomes 0 (line 16). Similar treatment is385

done for Gr ∩ CS (line 12, 14)386

I Lemma 11. The solution w̃ given by Iterative Rounding Algorithm satisfies the following: i)387

w̃ is feasible, ii) w̃ has at most two fractional facilities and iii) CostKM(w̃) ≤ (2`+13)LPopt.388

Proof. Refer to Appendix 5.2. J389

2.4.2 Obtaining an integrally open solution390

The two fractionally opened facilities obtained in Section 2.4.1, if any, are opened integrally391

at a loss of additive fmax in the budget. Let ŵ denote the solution obtained. Next lemma392

shows that ŵ has sufficient number of facilities opened in each MC to serve the demand the393

MC is responsible for, except possibly for u units. Lemma (12) presents the assignments394

done within a MC and discusses their impact on the capacity and the cost bounds.395

I Lemma 12. Consider a meta-cluster Gr. Suppose the capacities are scaled up by a factor396

of max{3, 2 + 4
`−1} for ` ≥ 2. Then, i) the dense cluster in Gr (if any) is self-sufficient i.e.,397

its demand can be completely assigned within the cluster itself at a loss of at most factor 2 in398

cost. ii) There is at most one cluster with no facility opened in it and it is a sparse cluster.399

iii) Any (cluster) center responsible for the unserved demand of j′ ∈ C′ is an ancestor of j′400

in H(Gr). iv) At most u units of demand in Gr remain un-assigned and it must be in the401

root cluster of Gr. Such a MC cannot be a root MC. v) Let βr = bdjd
/uc+ max{0, σr − 1},402

where jd is the center of the dense root cluster (if any) in Gr. Then, at least βr facilities403

FSTTCS 2018



23:12 Constant factor Approximation for Uniform Hard Capacitated Knapsack Median

Algorithm 3 Obtaining a pseudo-integral solution
1: pseudo-integral(F̃ , B̃, s, S, τ̂(), R)
2: w̃F

i = 0 ∀i ∈ F
3: while F̃ 6= ∅ do
4: Compute an extreme point solution w̃F̃ to LP2.
5: F̃0 ← {i ∈ F̃ : w̃F̃

i = 0}, F̃1 ← {i ∈ F̃ : w̃F̃
i = 1}.

6: if |F̃0|= 0 and |F̃1|= 0 then
7: Return w̃F . \∗ exit when all variables are fractionally opened∗\
8: else
9: For all MCs Gr{
10: while ∃j′ ∈ Sr such that constraint (7) is tight over F̃1 i.e.,

∑
i∈τ̂(j′)∩F̃1

w̃F̃
i = 1 do

11: Remove the constraint corresponding to j′ from (7). \∗ a facility in τ(j′) has been opened∗\
12: set Sr = Sr \ {j′}, sr = max{0, sr − 1}. \∗ delete the contribution of j′ in constraint (9)∗\
13: end while
14: If sr = 0, remove the constraint corresponding to Sr from (9). \∗ σr − 1 facilities have been

opened in Gr ∩ CS ∗\
15: If ∃j′ ∈ Gr ∩ CD, set rj′ ← rj′ − |τ̂(j′) ∩ F̃1|. \∗ decrement rj′ by the number of integrally

opened facilities in τ̂(j′) ∗\
16: If rj′ = 0, remove the constraint corresponding to j′ from (8). \∗ bdj′/uc facilities have been

integrally opened in τ(j′) ∗\ }
17: end if
18: F̃ ← F̃ \ (F̃0 ∪ F̃1), B̃ ← B̃ −

∑
i∈F̃1

fiw̃
F̃
i , τ̂(j′)← τ̂(j′) \ (F̃1 ∪ F̃0) ∀j′ ∈ C′.

19: end while
20: Return w̃F

are opened in Gr. (vi) Total distance traveled by demand dj′ of j′( 6= r) ∈ Gr to reach the404

centers of the clusters in which they are served is bounded by dj′c(j′, ψ(j′)).405

Proof. Refer to Appendix 5.3. J406

Lemma (13) deals with the remaining demand that we fail to assign within a MC.407

Such demand is assigned in the parent MC. Lemma (13) discusses the cost bound for such408

assignments and the impact of the demand coming onto Gr from the children MCs along409

with the demand within Gr on capacity.410

I Lemma 13. Consider a meta-cluster Gr. The demand of Gr and the demand coming onto411

Gr from the children meta-clusters can be assigned to the facilities opened in Gr such that:412

i) capacities are violated at most by a factor of max{3, 2 + 4
`−1} for ` ≥ 2. ii) Total distance413

traveled by demand dj′ of j′ ∈ C′ to reach the centers of the clusters in which they are served414

is bounded by `dj′c(j′, ψ(j′)).415

Proof. Refer to Appendix 5.4. J416

Choosing ` ≥ 2 such that 2+ 4
(`−1) = 3⇒ ` = 5. Lemma (14) bounds the cost of assigning417

the demands collected at the centers to the facilities opened in their respective clusters.418

I Lemma 14. The cost of assigning the demands collected at the centers to the facilities419

opened in their respective clusters is bounded by O(1)LPopt.420

Proof. The proof follows from the observation that if dj′ is served by a facility in τ(j′′), j′′ ∈421

CS then c(j′′, i) ≤ c(j′′, ψ(j′′)) ≤ c(j′, ψ(j′)). This was the motivation to define τ(j′) the422

way it was, while defining LP2. For details, refer to Appendix 5.5. J423
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2.5 (2 + ε) factor capacity violation424

There is only one scenario in which we violate the capacities by a factor of 3 in the previous425

section. In all other scenarios capacities scaled up by a factor of (2 + ε) are sufficient even426

to accommodate the demand of the children MCs. Consider this special scenario. Let jd427

be the center of the dense cluster and js be its only child (sparse) cluster in the routing428

tree. Further let, djd
= 1.99u and djs

= .99u. Then, we must have a total opening of more429

than 2 in the clusters of jd and js taken together whereas LP2 opens only 1. In such a430

scenario, if we treat js with jd instead of considering it with the remaining sparse clusters431

of Gr, we can open 2 facilities in τ(jd) ∪ τ(js) and they have to serve a total demand of at432

most 4u (1.99u+ .99u+ at most u of the remaining sparse clusters) within the MC, thereby433

violating the capacities by a factor of at most 2. On the other hand, if djd
= 1.01u and434

djs = .98u, then we cannot guarantee to open 2 facilities in τ(jd) ∪ τ(js). In this case, if we435

treated js with jd and only 1 facility is opened in τ(jd) ∪ τ(js), it will have to serve a total436

demand of (close to) 3u (1.01u+ .98u+ at most u of the remaining sparse clusters) leading to437

violation of 3 in capacity. Note that first case corresponds to the scenario when the residual438

demand of jd (viz. .99u here) is large (close to u) and the second case corresponds to the439

scenario when the residual demand of jd (viz. .01u here) is small (close to 0). In the first440

case we treat js with jd whereas in the second case, we treat it with the remaining sparse441

clusters. In Section 2.4, one can imagine that a MC Gr is partitioned into G1
r and G2

r where442

G1
r contained only the dense cluster of Gr and G2

r contained all the sparse clusters of Gr.443

We modify the partitions as follows: let res(jd) = djd
/u − bdjd

/uc: (i) if res(jd) < ε: set444

G1
r = Gr ∩CD, G2

r = Gr ∩CS , γr = bdjd
/uc, σ′r = σr. (This is same as above.) (ii) otherwise,445

ε ≤ res(jd) < 1: set G1
r = (Gr ∩ CD) ∪ {js}, G2

r = (Gr ∩ CS) \ {js}, γr = bdjd
/uc+ |{js}| 4,446

σ′r = max{0, σr − 1}.447

We modify our LP accordingly so as to open at least γr facilities in G1
r and αr =448

max{0, σ′r−1} facilities in G2
r. Let S1

r = G1
r, s

1
r = γr and S2

r = G2
r, s

2
r = αr, τ̂(j′) = τ(j′) ∀j′.449

For j′ ∈ CD, let rj′ = bdj′/uc. Also, let F̃ = F and B̃ = B. Let wi denote whether facility i450

is opened in the solution or not. LP2 is modified as follows:451

LP3 : Min. CostKM(w)452

subject to
∑
i∈τ̂(j′) wi ≤ 1 ∀ j′ ∈ CS (12)453 ∑

j′∈S1
r

∑
i∈τ̂(j′) wi ≥ s1

r ∀ G1
r : s1

r 6= 0 (13)454 ∑
j′∈S2

r

∑
i∈τ̂(j′) wi ≥ s2

r ∀ G2
r : s2

r 6= 0 (14)455 ∑
i∈F̃ fiwi ≤ B̃ (15)456

0 ≤ wi ≤ 1 ∀i ∈ F̃ (16)457

I Lemma 15. A feasible solution w′ to LP3 can be obtained such that CostKM(w′) ≤458

(2`+ 13)LPopt.459

Proof. Proof is similar to the proof of Lemma (10). J460

Algorithm 3 can be modified to obtain Algorithm 4 as follows: whenever a constraint461

corresponding to (12) gets tight over integrally opened facilities, it is removed from S1
r or S2

r462

wherever it belongs, in the same manner as line 12 of Algorithm 3.463

4 In case a component of dependency graph consists of a singleton dense cluster, js may not exist. This
case causes no problem even if res(jd) is large as it must be a leaf MC in this case.
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Algorithm 4 Obtaining a pseudo-integral solution
1: pseudo-integral(F̃ , B̃, s1, s2, S1, S2, τ̂(), R′ )
2: w̃F

i = 0 ∀i ∈ F
3: while F̃ 6= ∅ do
4: Compute an extreme point solution w̃F̃ to LP3.
5: F̃0 ← {i ∈ F̃ : w̃F̃

i = 0}, F̃1 ← {i ∈ F̃ : w̃F̃
i = 1}.

6: if |F̃0|= 0 and |F̃1|= 0 then
7: Return w̃F .
8: else
9: For all MCs Gr{
10: while ∃j′ ∈ Gr ∩ CS such that constraint (12) is tight over F̃1 i.e.,

∑
i∈τ̂(j′)∩F̃1

w̃F̃
i = 1 do

11: Remove the constraint corresponding to j′ from (12). \∗ a facility in τ(j′) has been opened∗\
12: If j′ ∈ S1

r , set S1
r = S1

r \ {j′}, s1
r = max{0, s1

r − 1}. \∗ delete the contribution of j′ in
constraint (13) ∗\

13: If j′ ∈ S2
r , set S2

r = S2
r \{j′}, s2

r = max{0, s2
r−1}.\∗ delete the contribution of j′ in constraint

(14) ∗\
14: If s2

r = 0, remove the constraint corresponding to the MC from (14).\∗ αr facilities have been
opened in Gr ∩ CS ∗\

15: end while
16: If ∃j′ ∈ Gr ∩ CD, set s1

r = s1
r − |τ̂(j′)∩ F̃1|. \∗ decrement s1

r by the number of integrally opened
facilities in τ̂(j′) ∗\

17: If s1
r = 0, remove the constraint corresponding to the MC from (13). \∗ γr facilities have been

opened in G1
r ∗\

18: end if
19: F̃ ← F̃ \ (F̃0 ∪ F̃1), B̃ ← B̃ −

∑
i∈F̃1

fiw̃
F̃
i , τ̂(j′)← τ̂(j′) \ (F̃1 ∪ F̃0) ∀j′ ∈ C′.

20: end while
21: Return w̃F .

I Lemma 16. The solution w̃ given by Iterative Rounding Algorithm satisfies the following: i)464

w̃ is feasible, ii) w̃ has at most two fractional facilities and iii) CostKM(w̃) ≤ (2`+13)LPopt.465

Proof. Proof is similar to the proof of Lemma (11). J466

The two fractionally opened facilities, if any, are opened integrally as in Section 2.4.2 at467

a loss of additive fmax in the budget. Let ŵ denote the integrally open solution.468

In the next lemma, we show that ŵ has sufficient number of facilities opened in each MC469

to serve the demand the MC is responsible for, except possibly for u units. Let M be the set470

of all meta clusters and M1 be the set of meta clusters, each consisting of exactly one dense471

and one sparse cluster. MCs in M1 need special treatment and will be considered separately.472

Lemma (17) presents the assignments done within a MC and discusses their impact on the473

capacity and the cost bounds.474

I Lemma 17. Consider a meta-cluster Gr. Suppose the capacities are scaled up by a factor475

of 2 + ε for ` ≥ 1/ε. Then, (i) G1
r is self-sufficient i.e., its demand can be completely assigned476

within the cluster itself. (ii) There are at most two clusters, one in G1
r and one in G2

r, with477

no facility opened in them and these clusters are sparse. (iii) Any (cluster) center responsible478

for the unserved demand of j′ is an ancestor of j′ in H(Gr). (iv) At most u units of demand479

in Gr remain un-assigned and it must be in the root cluster of Gr. Such a MC cannot be a480

root MC. (v) For Gr ∈M \M1, let βr = bdjd
/uc+ max{0, σr − 1}, where jd is the center of481

the dense root cluster in Gr. Then, at least βr facilities are opened in Gr. (vi) For Gr ∈M1,482

let βr = bdjd
/uc if res(jd) < ε and = bdjd

/uc + 1 otherwise. Then, at least βr facilities483

are opened in Gr. (vii) Total distance traveled by demand dj′ of j′( 6= r) ∈ Gr to reach the484

centers of the clusters in which they are served is bounded by 2dj′c(j′, ψ(j′)).485

Proof. Refer to Appendix 5.6. J486
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Lemma (18) deals with the remaining demand that we fail to assign within the MC.487

Such demand is assigned in the parent MC. Lemma (18) discusses the cost bound for such488

assignments and the impact of the demand coming onto Gr from the children MCs along489

with the demand within Gr on capacity.490

I Lemma 18. Consider a meta-cluster Gr. The demand of Gr and the demand coming onto491

Gr from the children meta-clusters can be assigned to the facilities opened in Gr such that:492

(i) capacities are violated at most by a factor of (2 + 4
`−1) for ` ≥ 1/ε and, (ii) Total distance493

traveled by demand dj′ of j′ ∈ C′ to reach the centers of the clusters in which they are served494

is bounded by `dj′c(j′, ψ(j′)).495

Proof. Proof is similar to the proof of Lemma (13). J496

I Lemma 19. The cost of assigning the demands collected at the centers to the facilities497

opened in their respective clusters is bounded by (2 + ε)(2`+ 1)LPopt.498

Proof. Proof is similar to the proof of Lemma (14). J499

3 Capacitated k Facility Location Problem500

Standard LP-Relaxation of the CkFLP can be found in Aardal et al. [1]. When fi = 0,501

the problem reduces to the k-median problem and when k = |F| it reduces to the facility502

location problem. Our techniques for CKnM provide similar results for CkFLP in a straight503

forward manner i.e., O(1/ε2) factor approximation, violating the capacities by a factor of504

(2 + ε) and cardinality by plus 1. The violation of cardinality can be avoided by opening505

the facility with larger opening integrally while converting a pseudo integral solution into an506

integrally open solution. Thus, we obtain Theorem 2.507

Proof of Theorem 3: Let ρ∗ =< x∗, y∗ > denote the optimal LP solution. For sparse508

clusters, we open the cheapest facility i∗ in ball(j), close all facilities in the cluster and shift509

their demands to i∗. Let ρ̂ =< x̂, ŷ > be the solution so obtained. It is easy to see that we510

loose at most a factor of 2 in cardinality, and CostkFLP (x̂, ŷ) is within O(1)LPopt.511

To handle dense clusters, we introduce the notion of cluster instances. For each cluster512

center j′ ∈ CD, let bfj′ =
∑
i∈Nj′

fiy
∗
i and bcj′ =

∑
i∈Nj′

∑
j∈C x

∗
ij [c(i, j) + 4Ĉj ]. We define513

a cluster instance Sj′(j′, Nj′ , dj′ , bcj′ , b
f
j′) as follows: Minimize CostCI(z) =

∑
i∈Nj′

(fi +514

uc(i, j′))zi s.t. u
∑

i∈Nj′
zi ≥ dj′ and zi ∈ [0, 1]. It can be shown that zi =

∑
j∈C x

∗
ij/u =515

li/u ≤ y∗i ∀i ∈ Nj′ is a feasible solution with cost at most bfj′ + bcj′ . An almost integral516

solution z′ is obtained by arranging the fractionally opened facilities in z in non-decreasing517

order of fi + c(i, j′)u and greedily transferring the total opening size(z, Nj′) to them. Let518

l′i = z′iu. For a fixed ε > 0, an integrally open solution ẑ and assignment l̂ (possibly fractional)519

is obtained as follows: let i1 be the fractionally opened facility, if any. If z′i1 < ε, close i1 and520

shift its demand to another integrally opened facility at a loss of factor (1 + ε) in its capacity.521

Else (z′i1 ≥ ε), open i1, at a loss of factor 2 in cardinality and 1/ε in facility cost. The522

solution ẑ satisfies the following: l̂i ≤ (1 + ε)ẑiu ∀i ∈ Nj′ ,
∑
i∈Nj′

ẑi ≤ 2
∑
i∈Nj′

z′i ∀j′ ∈ CD523

and CostCI(ẑ) ≤ max{1/ε, 1 + ε}CostCI(ẑ).524

4 Conclusion525

In this work, we presented the first constant factor approximation algorithm for uniform hard526

capacitated knapsack median problem violating the budget by a factor of (1 + ε) and capacity527
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by (2 + ε). Two variety of results were presented for capacitated k-facility location problem528

with a trade-off between capacity and cardinality violation: an O(1/ε2) factor approximation529

violating capacities by (2 + ε) and a O(1/ε) factor approximation, violating the capacity by a530

factor of at most (1 + ε) using at most 2k facilities. As a by-product, we also gave a constant531

factor approximation for uniform capacitated facility location at a loss of (1 + ε) in capacity532

from the natural LP. The result shows that the natural LP is not too bad.533

It would be interesting to see if the capacity violation can be reduced to (1 + ε) using the534

techniques of Byrka et al. [8]. Avoiding violation of budget will require strengthening the LP535

in a non-trivial way. Another direction for future work would be to extend our results to536

non-uniform capacities. Conflicting requirement of facility costs and capacities makes the537

problem challenging.538
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5 Appendix619

5.1 Proof of Lemma 10620

Define a feasible solution to the LP2 as follows: let j′ ∈ CD, i ∈ τ(j′), set w′i = li
dj′
bdj′/uc =621

li
u
bdj′/uc
dj′/u

≤ li
u ≤ y∗i . For j′ ∈ CS , we set w′i = min{x∗ij′ , y∗i } = x∗ij′ ≤ y∗i for i ∈ τ(j′) and622

w′i = 0 for i ∈ Nj′ \ τ(j′). We will next show that the solution is feasible.623

For j′ ∈ CS ,
∑

i∈τ(j′)

w′i ≤
∑
i∈Nj′

w′i =
∑
i∈Nj′

x∗ij′ ≤ 1.624

Next, let j′ ∈ CD, then
∑

i∈τ(j′)

w′i =
∑
i∈Nj′

li
u
bdj′/uc
dj′/u

= bdj′/uc as
∑
i∈Nj′

li = dj′ . Note that625

∑
i∈τ(j′)

w′i ≥ 1 as dj′ ≥ u.626

For a meta-cluster Gr, we have
∑
j′∈Gr

∑
i∈τ(j′)

w′i =
∑

j′∈Gr∩CS

∑
i∈τ(j′)

x∗ij′ ≥
∑

j′∈Gr∩CS

(1 −627

1/l) = max{0, σr − 1} = αr.628

Since for each i ∈ F we have w′i ≤ y∗i ⇒
∑
i∈F

fiw
′
i ≤

∑
i∈F

fiy
∗
i ≤ B.629

Next, consider the objective function. For j′ ∈ CD, we have
∑

i∈τ(j′)

u c(i, j′)w′i =630

u
∑
i∈Nj′

c(i, j′)(
∑
j∈C x

∗
ij

u ) =
∑
i∈Nj′

∑
j∈C

c(i, j′)x∗ij ≤
∑
i∈Nj′

∑
j∈C

(
c(i, j) + 2`Ĉj

)
x∗ij . Summing631

over all j′ ∈ CD we get,
∑
j′∈CD

∑
i∈Nj′

∑
j∈C

x∗ij [c(i, j) + 2`Ĉj ] ≤ (2`+ 1)LPopt.632

Now consider the part of objective function for CS .
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)w′i +633

c(j′, ψ(j′))(1 −
∑
i∈Nj′

w′i)) =
∑
j′∈CS

dj′(
∑
i∈τ(j′) c(i, j′)w′i +

∑
i∈Nj′\τ(j′) c(i, j′)w′i +634

c(j′, ψ(j′))(1−
∑
i∈τ(j′) w

′
i−
∑
i∈Nj′\τ(j′) w

′
i)) =

∑
j′∈CS

dj′(
∑
i∈τ(j′) c(i, j′)x∗ij′+c(j′, ψ(j′))(1−635 ∑

i∈τ(j′) x
∗
ij′))636

<
∑
j′∈CS

dj′(
∑
i∈τ(j′) c(i, j′)x∗ij′+c(j′, ψ(j′))(1−

∑
i∈τ(j′) x

∗
ij′))+

∑
j′∈CS

dj′(
∑
i∈Nj′\τ(j′) (c(i, j′)−637

c(j′, ψ(j′)))x∗ij′) as c(i, j′) > c(j′, ψ(j′)) ∀i ∈ Nj′ \ τ(j′)638

=
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)x∗ij′ + c(j′, ψ(j′))(1−
∑
i∈Nj′

x∗ij′)). Thus, by equation (6),639

we get
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)w′i + c(j′, ψ(j′))(1−
∑
i∈Nj′

w′i)) ≤ 12LPopt.640

Thus, the solution w′ is feasible and CostKM(w′),641 ∑
j′∈CS

dj′

 ∑
i∈Nj′

c(i, j′)w′i + c(j′, ψ(j′))

1−
∑
i∈Nj′

w′i

 + u
∑
j′∈CD

∑
i∈Nj′

c(i, j′)w′i ≤ (2` +642

13)LPopt.643

5.2 Proof of Lemma 11644

i) We will prove the claim by induction. Let LP (t) denote the LP at the beginning of the645

tth iteration and w̃(t) denote the solution at the end of the tth iteration. We will show646

that if w̃(t) is a feasible solution to LP2, then w̃(t+1) is also a feasible solution to LP2.647

Since w̃(1) is feasible (extreme point solution), the feasibility of the solution follows. Let648

F̃ (t), B̃(t), s(t), S(t), τ̂()(t), R(t) denote the values at the beginning of the tth iteration. Then,649

w̃
(t+1)
i = w̃

(t)
i ∀i ∈ F \ F̃ (t+1).650
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Consider a constraint that was not present in LP (t+1). In any iteration, we remove a651

constraint only when none of the facilities in its corresponding clusters is fractionally opened.652

That is all the facilities in τ(j′) appearing on the left hand side of a constraint are integral.653

Thus w̃(t+1)
i = w̃

(t)
i for all such facilities. Hence if they are satisfied by w̃(t) then they are654

satisfied by w̃(t+1). So, we consider only those constraints that were present in LP (t+1). For655

j′ ∈ CS , since τ̂(j′)(t+1) = τ(j′) \ F̃ (t)
0 ∀t, therefore,

∑
i∈τ̂(j′)(t+1) w̃

(t+1)
i =

∑
i∈τ(j′) w̃

(t+1)
i ∀t.656

Thus, we will omit (t) and use τ() instead of τ̂() for brevity of notation.657

Consider constraints (7) that were not removed in tth iteration. Since τ(j′) ⊆ F̃ (t+1) for658

j′ ∈ CS , the feasibility of the constraint follows as w̃(t+1) is an extreme point solution of the659

reduced LP over the set F̃ (t+1).660

Next, consider constraints (8). Let F (t)
1 denote the set of facilities that are opened661

integrally in w̃(t) i.e., w̃(t)
i = 1 ∀i ∈ F (t)

1 then the corresponding constraint in LP (t+1) is662 ∑
i∈τ(j′)\F(t)

1
wi = bdj′

u c − |F
(t)
1 |. Since w̃(t+1) is an extreme point solution of LP (t+1), it663

satisfies this constraint i.e.,
∑
i∈τ̂(j′)\F(t)

1
w̃

(t+1)
i = bdj′

u c − |F
(t)
1 |. Since w(t+1)

i = w
(t)
i =664

1 ∀i ∈ F (t)
1 , adding F (t)

1 on both the sides, we get the desired feasibility.665

Consider constraints (9). Since w̃(t) is feasible for LP2, we have,
∑
j′∈Gr∩CS

∑
i∈τ(j′) w̃

(t)
i ≥666

αr and since w̃(t+1) is feasible for LP (t+1), we have
∑
j′∈S(t+1)

r

∑
i∈τ(j′) w̃

(t+1)
i ≥ s(t+1)

r . Then,667 ∑
j′∈Gr∩CS

∑
i∈τ(j′) w̃

(t+1)
i =

∑
j′∈(Gr∩CS)\S(t+1)

r

∑
i∈τ(j′) w̃

(t+1)
i +

∑
j′∈S(t+1)

r

∑
i∈τ(j′) w̃

(t+1)
i668

≥
∑
j′∈(Gr∩CS)\S(t+1)

r

∑
i∈τ(j′) w̃

(t)
i + s

(t+1)
r =

∑
j′∈(Gr∩CS)\S(t+1)

r
1 + s

(t+1)
r (as these clusters669

must have been removed as they got tight) = |(Gr ∩ CS) \ S(t+1)
r |+ s

(t+1)
r = αr670

Next, consider constraint (10). Since w̃(t) is feasible for LP2, we have
∑
i∈F fiw̃

(t)
i ≤ B671

and since w̃(t+1) is feasible for LP (t+1), we have
∑
i∈F̃(t+1) fiw̃

(t+1)
i ≤ B̃(t+1). Also, we672

have w(t+1)
i = w

(t)
i ∀i ∈ F \ F̃ (t+1). Consider

∑
i∈F fiw̃

(t+1)
i =

∑
i∈F\F̃(t+1) fiw̃

(t+1)
i +673 ∑

i∈F̃(t+1) fiw̃
(t+1)
i ≤

∑
i∈F\F̃(t+1) fiw̃

(t)
i +B̃(t+1). And since B̃(t+1) = B−

∑
i∈F\F̃(t+1) fiw̃

(t)
i ,674

we have
∑
i∈F fiw̃

(t+1)
i ≤ B. Thus, the solution w̃(t+1) is feasible.675

ii) Consider the last iteration of the algorithm. The iteration ends either at step (3− 4)676

or at step (9 − 10). In the former case, the solution clearly has no fractionally opened677

facility. Suppose we are in the latter case. Let the linearly independent tight constraints678

corresponding to (7), (8) and (9) be denoted as X , Y and Z respectively. Let A and B be set679

of variables corresponding to some constraint in X and Z respectively such that A ∩B 6= ∅.680

Then, A ⊆ B. Imagine deleting A from B and subtracting 1 from sr. Repeat the process681

with another such constraint in X until there is no more constraint in X whose variable set682

has a non-empty intersection with B. At this point, sr ≥ 1 and the number of variables in B683

is at least 2. Number of variables in any set corresponding to a tight constraint in X (or Y)684

is also at least 2. Thus, the total number of variables is at least 2|X |+ 2|Y|+ 2|Z| and the685

number of tight constraints is at most |X |+ |Y|+ |Z|+ 1. Thus, we get |X |+ |Y|+ |Z| ≤ 1686

and hence there at most two (fractional) variables.687

iii) Note that no facility is opened in Nj′ \ τ(j′) : j′ ∈ CS for if i ∈ Nj′ \ τ(j′) : j′ ∈ CS is688

opened, then it can be shut down and the demand dj′w̃i, can be shipped to ψ(j′), decreasing689

the cost as c(j′, ψ(j′)) < c(i, j′). Then, the claim follows as we compute extreme point690

solution in step (7) in the first iteration and the cost never increases in subsequent calls.691

5.3 Proof of Lemma 12692

(i) Let jd ∈ CD ∩ Gr. Total demand djd
of jd can be distributed to the opened facilities693

(≥ bdjd
/uc) at a loss of factor 2 in capacity and cost both, as djd

/u− bdjd
/uc < 1 ≤ bdjd

/uc.694
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For σr = 0, (ii) - (v) hold vacuously. So, let σr ≥ 1 (ii) LP2 opens αr = max{0, σr − 1}695

facilities in Gr ∩ CS . Constraint (7) ensures that at most one facility is opened in each sparse696

cluster. Thus, there is at most one cluster in Gr ∩ CS with no facility opened in it. (iii) &697

(iv) Let j′ ∈ Gr ∩ CS such that no facility is opened in τ(j′). If j′ is not the root of Gr or Gr698

is a root MC, then LP2 must have opened a facility in τ(ψ(j′)). Demand of j′ is assigned699

to this facility at a loss of maximum 2 factor in capacity if ψ(j′) ∈ CS and 3 if ψ(j′) ∈ CD:700

dψ(j′) = 1.99u and dj′ = .99u. Otherwise (if j′ is the root of Gr and Gr is not a root MC),701

at most u units of demand of Gr remain unassigned within Gr. (v) holds asbdjd
/uc facilities702

are opened in the cluster centered at jd and αr = max{0, σr − 1} facilities are opened in703

Gr ∩ CS by constraints (8) and (9) respectively. (vi) Since the demand dj′ of j′ ∈ Gr is704

served either within its own cluster or in the cluster centered at ψ(j′), total distance traveled705

by demand dj′ of j′ to reach the centers of the clusters in which they are served is bounded706

by dj′c(j′, ψ(j′)).707

5.4 Proof of Lemma 13708

After assigning the demands of the clusters within Gr as explained in Lemma (12), demand709

coming from all the children meta-clusters are distributed proportionately to facilities within710

Gr utilizing the remaining capacities. Next, we will show that this can be done within the711

claimed capacity bound.712

(i) Let Gr be a non leaf meta-cluster with a dense cluster j′ ∈ CD at the root, if any.713

Also, let tr be the total number of clusters in Gr, i.e., tr = δr + σr. The total demand to714

be served in Gr is at most u(bdj′/uc+ 1 + σr) + u(tr + 1) ≤ (βr + 2)u+ (tr + 1)u whereas715

the total available capacity is at least βru by Lemma (12). Thus, the capacity violation is716

bounded by (βr+2)u+(tr+1)u
βru

≤ (βr+2)u+(βr+2)u
βru

= 2 + 4/βr ≤ 2 + 4/(`− 1) (as bdj′/uc ≥ δr717

we have βr ≥ σr − 1 + δr = tr − 1 = `− 1 for a non-leaf MC).718

The capacity violation of factor 3 can happen in the case when no facility is opened in719

τ(j′) for j′ ∈ CS and ψ(j′) ∈ CD as explained in Lemma (12).720

Leaf meta-clusters may have length less than l but they do not have any demand coming721

onto them from the children meta-cluster, thus capacity violation is bounded as explained in722

Lemma (12).723

(ii) Let j′ belongs to a MC Gr such that its demand is not served within Gr. Then, j′724

must be the root of Gr and its demand is served by facilities in clusters of the parent MC,725

say Gs. Since the edges in Gs are no costlier than the connecting edge (j′, ψ(j′)) of Gr and726

there are at most `− 1 edges in Gs, the total distance traveled by demand dj′ of j′ to reach727

the centers of the clusters in which they are served is bounded by `dj′c(j′, ψ(j′)).728

5.5 Proof of Lemma 14729

Let j′ ∈ C′. Let λ(j′) be the set of centers j′′ such that facilities in τ(j′′) serve the demand730

of j′. Note that if some facility is opened in τ(j′), then λ(j′) is {j′} itself and if no facility is731

opened in τ(j′), then λ(j′) = {j′′ : ∃i ∈ τ(j′′) such that demand of j′ is served by i as per732

the assignments done in Lemmas (12) and (13)}.733

The cost of assigning a part of the demand dj′ to a facility opened in λ(j′)∩CS is bounded734

differently from the part assigned to facilities in λ(j′) ∩ CD.735

Let j′′ ∈ CS ∩ λ(j′), i ∈ τ(j′′). Then, c(j′′, i) ≤ c(j′′, ψ(j′′)) ≤ c(j′, ψ(j′)). Last736

inequality follows as: either j′′ is above j′ in the same MC (say Gr) (by Lemma (12.3)) or737

j′′ is in the parent MC (say Gs) of Gr. In the first case, the edge (j′′, ψ(j′′)) is either in Gr738

or is the connecting edge of Gr. The inequality follows as edge costs are non-increasing as739
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we go up the tree. In the latter case, edge (j′′, ψ(j′′)) is either in Gs or it is the connecting740

edge of Gs: in either case, c(j′′, ψ(j′′)) ≤ c(j′, ψ(j′)) as the connecting edge of Gs is no741

costlier than the edges in Gs which are no costlier than the connecting edge of Gr (possibly742

c(j′, ψ(j′))) which are no costlier than the edges in Gr. Summing over all j′, j′′ ∈ CS , we743

see that this cost is bounded by O(1)LPopt.744

Next, let j′′ ∈ CD ∩λ(j′), i ∈ Nj′′ . Further, let gi be the total demand served by a facility745

i. Since gi ≤ 3u, the cost of transporting 3u units of demand from j′′ to i is 3uŵic(i, j′′).746

Summing it over all i ∈ Nj′′ , j′′ ∈ CD, and then over all j′ ∈ C′, we get that the total cost747

for CD is bounded by O(1)LPopt.748

5.6 Proof of Lemma 17749

(i) Let jd ∈ CD ∩ G1
r. Consider the case when res(jd) < ε. The total demand (bdjd

/uc +750

res(jd))u ≤ (bdjd
/uc+ ε)u of G1

r can be distributed to the opened facilities (≥ bdjd
/uc) at a751

loss of factor 2 in capacity as bdjd
/uc ≥ 1.752

When ε ≤ res(jd) < 1, the demand of G1
r is at most (bdjd

/uc + res(jd) + 1)u ≤753

(bdjd
/uc+ 2)u. The available opening is bdjd

/uc+ 1. Thus, the capacity violation is at most754

(bdjd
/uc+ 2)u/(bdjd

/uc+ 1)u < 2 as bdjd
/uc ≥ 1. Hence G1

r is self-sufficient.755

For σr = 0, (ii) - (vi) hold vacuously. Thus, now onwards we assume that σr ≥ 1 (ii) LP2756

opens max{0, σ′r − 1} facilities in G2
r where σ′r is the number of clusters in G2

r. Constraint757

(12) ensures that at most one facility is opened in each cluster. Thus, there is at most one758

cluster in G2
r with no facility opened in it and it is a sparse cluster. Next consider G1

r with a759

sparse cluster in it, i.e., G1
r = {jd, js}, it is possible that all the γr facilities are opened in760

τ(jd) and no facility is opened in τ(js). Thus, there are at most two clusters with no facility761

opened in them and these clusters are sparse. (iii) & (iv) Let j′ ∈ G2
r such that no facility is762

opened in τ(j′). If ψ(j′) ∈ G2
r, then LP2 must have opened a facility in τ(ψ(j′)). Demand763

of j′ is assigned to this facility at a loss of maximum 2 factor in capacity. If ψ(j′) /∈ G2
r764

then either G1
r is empty or ψ(j′) ∈ G1

r. In the former case j′ must be the root of Gr and Gr765

cannot be the root MC. Clearly, at most u units of demand of Gr remain unassigned within766

Gr. In the latter case i.e., ψ(j′) ∈ G1
r, then ψ(j′) is either jd or js. We will next show that767

demand of j′ will be absorbed in τ(jd) ∪ τ(js) in the claimed bounds along with claims (v)768

and (vi) of the lemma.769

1. res(jd) < ε, we have G1
r = {jd}, γr = bdjd

/uc, G2
r = Gr ∩ CS , σ′r = σr, and βr =770

bdjd
/uc+ σr − 1. In this case, j′ = js and ψ(j′) = jd. LP2 must have opened at least771

bdjd
/uc ≥ 1 facilities in τ(jd) Total demand (bdjd

/uc+ res(jd) + 1))u of jd and j′ can772

be distributed to the facilities opened in τ(jd) (≥ bdjd
/uc) at a loss of factor 2 + ε in773

capacity, as res(jd) < ε and 1 ≤ bdjd
/uc.774

2. ε ≤ res(jd) < 1, we have G1
r = {jd, js}, γr = bdjd

/uc + 1, G2
r = Gr ∩ CS \ {js},775

σ′r = σr − 1 and βr = bdjd
/uc+ σr − 1 if σr ≥ 2 and = bdjd

/uc+ 1 if σr = 1. In this case,776

ψ(j′) = js. In the worst case, no facility is opened in τ(js). LP2 must have opened at777

least bdjd
/uc+1 ≥ 2 facilities in τ(jd)∪τ(js). Total demand (bdjd

/uc+res(jd)+1+1))u778

of jd, js and j′ can be distributed to the facilities opened in τ(jd) ∪ τ(js) (≥ bdjd
/uc+ 1)779

at a loss of factor 2 in capacity, as bdjd
/uc+ 1 ≥ 2.780

(vii) Clearly, c(j′, jd) ≤ 2c(j′, ψ(j′)). (2) above also handles the case when no facility is781

opened in a sparse cluster in G1
r.782
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