On Finding Dense Subgraphs

Samir Khuller and Barna Saha

University of Maryland College Park
{samir,barna }@cs.umd.edu

Abstract. Given an undirected grapi = (V, E), the density of a subgraph
on vertex setS is defined asi(S) = ‘E(SSI)‘, where E(S) is the set of edges
in the subgraph induced by nodesdnFinding subgraphs of maximum density
is a very well studied problem. One can also generalize this notion to directed
graphs. For a directed graph one notion of density given by Kannan and Vinay
[12] is as follows: given subsets andT of vertices, the density of the subgraph

isd(S,T) = ‘5% where E(S, T) is the set of edges going fro to 7.

Without any size constraints, a subgraph of maximum density can be found in
polynomial time. When we require the subgraph to have a specified size, the
problem of finding a maximum density subgraph becoiiéshard. In this paper

we focus on developing fast polynomial time algorithms for several variations of
dense subgraph problems for both directed and undirected graphs. When there
is no size bound, we extend the flow based technique for obtaining a densest
subgraph in directed graphs and also give a linear #irapproximation algorithm

for it. When a size lower bound is specified for both directed and undirected
cases, we show that the problem is NP-complete and give fast algorithms to find
subgraphs within a factdr of the optimum density. We also show that solving

the densest subgraph problem with an upper bound on size is as hard as solving
the problem with an exact size constraint, within a constant factor.

1 Introduction

Given an undirected grapfi = (V, E), the density of a subgraph on vertex sets
defined asi(S) = 'E‘(SS‘)‘ , whereE(S) is the set of edges in the subgraph inducedby

The problem of finding a densest subgraph of a given géaphn be solved optimally

in polynomial time, despite the fact that there are exponentially many subgraphs to
consider [16, 11]. In addition, Charikar [6] showed that we can find a 2 approximation
to the densest subgraph problem in linear time using a very simple greedy algorithm (the
greedy algorithm was previously studied by Asahiro et. al. [4]). This result is interesting
because in many applications of analyzing social networks, web graphs etc., the size
of the graph involved could be very large and so having a fast algorithm for finding
an approximately dense subgraph is extremely useful. However when there is a size
constraint specified - namely find a densest subgraph of exaastiytices Dk, the
densesk subgraph problem becom@sP-hard [8, 3]. Wherk = ©(|V]), Asahiro et.

al. [4] gave a constant factor approximation algorithm forl&problem. However for

* Research supported by NSF CCF 0728839 and a Google Research Award.

generalk, the algorithm developed by Feige, Kortsarz and Peleg [8] achieves the best
approximation guarantee 6¥(n®), wherea < % Khot [13] showed that there does

not exist any PTAS for th®kS problem under a reasonable complexity assumption.
Closing the gap between the approximation factor and the hardness guarantee is an
important open problem.

Recently, Andersen and Chellapilla [2] considered two variations of the problem of
finding a densest subgraph. The first problem, the densest at-léastbgraph prob-
lem (Dalks asks for an induced subgraph of highest density among all subgraphs with
at leastk nodes. This relaxation mak&alkS significantly easier to approximate and
Andersen et.al. gave a fast algorithm based on Charikar's greedy algorithm that guar-
antees a 3 approximation for tBalkSproblem. In addition, Andersen [1] showed that
this problem has a polynomial time 2 approximation, albeit with significantly higher
running time. However it was left open as to whether or not this probled %
complete. The second problem studied was the densest atkrsostgraph problem
(Damkg, which asks for an induced subgraph of highest density among all subgraphs
with at mostk nodes. For thdamkSproblem, Andersen et.al. showed that if there
exists ana approximation forDamkS then there is @(a?) approximation for the
DkSproblem, indicating that this problem is likely to be quite difficult as well.

For directed graphs, Kannan and Vinay [12] defined a suitable notion of density
to detect highly connected subgraphs and provide#d(lagn) approximation algo-
rithm for finding such dense components. et= (V, E') be a directed graph ans
andT be two subsets of nodes bf. Density corresponding t§ andT is defined as

_ BT i i i
d(s,T) = S whereE (S, T) consists of the edges going frashto 7. Charikar

[6] showed that the problem can be solved in polynomial time by solving an LP using
n? different values of a parameter. However a max-flow based technique similar to the
one developed by Goldberg [11] for the densest subgraph problem in undirected graphs
was not known for directed graphs. It was mentioned as one of the open problems in
[6]. In addition to providing a polynomial time solution for the densest subgraph prob-
lem in directed graphs, Charikar also gave approximation algorithm which runs in
O(|V]? + |V]| E|) time.

Densest subgraph problems have received significant attention for detecting impor-
tant substructures in massive graphs like web and different social networks. In a web
graph, hubs (resource lists) and authorities (authoritative pages) on a topic are char-
acterized by large number of links between them [15]. Finding dense subgraphs also
acts as a useful primitive for discovering communities in web and social networks, for
compressed representation of a graph and for spam detection [7, 5, 10]. Gibson et. al.
[10] provided effective heuristics based on two-level fingerprints for finding large dense
subgraphs in massive graphs. Their aim was to incorporate this step into web search en-
gine for link spam control. Dourisboure gave a scalable method for identifying small
dense communities in web graph [7]. Buehrer showed how large dense subgraphs can
be useful in web graph compression and sub-sampling a graph [5]. In all these appli-
cations the underlying graph is massive and thus fast scalable algorithms for detecting
dense subgraphs are required to be effective.

One of the main new insights in this paper is to illustrate the power of the flow based
methods [11, 16] to find dense subgraphs not only when there is no requirement on the

size of the obtained subgraph, but also for cases when there is a constraint on the size
of the obtained subgraph. Precisely our contributions are as follows:

1.1 Contributions

— For the densest subgraph problem without any size restrictions (Section 2):

e We give a max-flow based polynomial time algorithm for solving the densest
subgraph problem in directed graphs.

¢ We give a linear tim@-approximation algorithm for the densest subgraph prob-
lem in directed graphs.

— For the densest at ledssubgraph problem (Section 3):

e We show that the densest at leastubgraph problem is NP-Hard.

e For undirected graphs, we give a flow-based and LP based approximation al-
gorithms, for the densest at ledssubgraph problem. These run much faster
than the polynomial time approximation algorithm of Andersen and deliver the
same worst case approximation factor of 2.

e We define the notion of densest at leastk, subgraph problem for directed
graphs and give a-approximation algorithm for it.

— Densest at mogt subgraph problem (Section 4):

o \We show that approximating the densest at mhagibgraph problem is as hard
as the densedgt subgraph problem within a constant factor, specificallyxan
approximation foDamkS implies a4a. approximation folDkS

2 Densest subgraph without any size restriction

In this section, first we give a max-flow based algorithm for the densest subgraph prob-
lem in directed graphs. For undirected graphs, Goldberg [11] developed a flow based
algorithm, that finds a densest subgraph in polynomial time. However, for directed
graphs, no flow based algorithm was known. Next we consider the greedy algorithm
for densest subgraph in undirected graphs proposed by Charikar [6] and develop an
extension of this algorithm to give Zaapproximation algorithm for finding a densest
subgraph in directed graphs. This improves the running time togpi | + |V|?|E|)

to O(|V| + |E|). We also give a very simple proof @fapproximation for the greedy
algorithm developed by Charikar [6] to obtain a densest subgraph in undirected graphs.

2.1 Max-flow based algorithm for finding densest subgraphs in directed graphs

For a directed grapty = (V, E), we wish to find two subsets of nod8sandT’, such

thatd(S,T') = % is maximized. Let us denote the optimum subsets of nodes by

S* andT™ respectively. To detect such subsets of nodes, we first guess the value of
“i“ in the optimum solution. Since there di€|? possible values, i®(|V|?) time, it
is possible to guess this ratio exaétlyet this ratio bea. We create a bipartite graph

1 If we want(1 + ¢) approximation, onlyO (*611) guessed values suffice.

G' = (W4, Vs, E), whereV; =V, = V and for every directed eddg, ;) in the original
graph, we add an edge from vertex V; toj € V5. We now wish to findS C V; and
T C Va, such thatZ3:0 is maximized. We also kno

VISIT]

We add a source and a sinkt to G’ = (V1, Va, E). We guess the value of the
optimum (maximum) density. Let our guessed valuegh&he following edges with
weights are then inserted int®' = (11, V5, E):

‘—(L.

— We add an edge of weight from sources to each vertex o¥; and Vs, where
= |E].
- We add an edge of weiglitn +) from each vertex of/; to the sink:.
— We add an edge from each verlﬁ&f V5 to sinkt of weightm + /ag — 2d;, where
d; is the in-degree of.
— All the edges going fron¥; to V5 are given weigh®. For each edge going froiiry
to V5, a reverse edge of weightis added.

Now consider a-t min-cut in this weighted graph. Since the dut}, {¢, V1, V2}
has weightn(|V1] +|V2]), the min-cut value is< m(|V1| + |Vz|). Now consider the cut
{5,8 CWV, T C Vo} {t,(V1\S) C V1, (Vo \T) C V1 }. The number of edges crossing
the cut s,

MW—Mwam+m+%WHZm+ﬁrwm-}jz
ieT ieT,jeVi—8,
(J,9)EE(G)
—MMHWW+MJ+WME2WSH
1| |E(S,T)] |E(S,T)
m(Vi| + [Val) + J(g mhf)+ﬂw(w¢>

Let us denote the optimum density valuedypr. If ¢ < dopr, then there exists
S andT (corresponding to the optimum solution), such that b(ojh— %li?l) and

(g - E(S’T)) are negative. Thereforg andT are nonempty. If the guessed valye-

ITVa
dopr, letif possibleS andT be non-empty. Let in this returned solutiqt% =0b. We

have,
1| 1ES.T)] (BT
w&g|ww)+ww<g ﬂf)

- VT (o~ 4570 VTG (5- 457)

_ Vb vay o
—V&ﬂ(ﬁf+¢>g w@ﬂ) (1)

Now, % + % > 2 Vrealsa,b and we haveg > dopr > d(S,T). Hence

the value of (1) is> 0. Thus if S andT are non-empty, then this cut has value

m(|V1| + |Vz]). Hence ifg > dopr, min-cutis({s}, {t, V1, Va}). If the guessed value

g = dopr, then we get a cut of the same cost as the trivial min-cut, even by having
andT corresponding t&* andT™* respectively. We can always ensure that we obtain

a min-cut, which has the biggest size on the source side. Thus when the guessed value
is correct, the optimum subse$sandT" are obtained from the subsets of vertices of

V1 andV; that belong to the side of the cut that containg he algorithm detects the
correct value ofy using a binary search, similar to Goldberg’s algorithm for finding

a densest subgraph in undirected graphs [11]. Also it is easy to verify that, when the
correct value ofy is guessed, we have= «a. Using a parametric max-flow algorithm

[9], the total time required is same as one flow computation within a constant factor.

2.2 2 approximation algorithm for the densest subgraph problem in undirected
and directed graphs

We first consider Charikar’s greedy algorithm [6] for densest subgraphs in undirected
graphs. The greedy algorithm at each step chooses a vertex of minimum degree, deletes
it and proceeds fofn — 1) steps, wheréV’| = n. At every step the density of the
remaining subgraph is calculated and finally the one with maximum density is returned.

Algorithm 2.1: DENSESFSUBGRAPHG = (V, E))

n—|V]|,H, — G
fori=nto2
d {Letv be a vertex inH; of minimum degree
H;_y — H; — {U}
return (H;, which has the maximum density amoffjs,i = 1,2, ..,n)

We show that the above greedy algoritidensest-Subgrapachieves an approx-
imation factor of2 for undirected networks. This is not a new result. However our
proof is simpler than the one given by Charikar. For directed graphs, Charikar devel-
oped a different greedy algorithm, that has a significantly higher time-complexity of
O(|V|® + |[V|?|E|). We show that the algorithi@ensest-Subgraph-Directgghich is
a generalization of the algorithidensest-Subgrapbietects a subgraph, with density
within a factor of2 of the optimum for directed graphs. This reduces the time complex-
ity from O(|V|? + |V|?|E|) to O(|V| + | E]).

Theorem 1. The greedy algorithrDensest-Subgraptachieves &-approximation for
the densest subgraph problem in undirected networks.

Proof. Letdppr = \. Observe that in an optimum solution, every vertex has degree

A. Otherwise removing a vertex of degree), will give a subgraph with higher density.
Consider the iteration of the greedy algorithm when the first vertex of the optimum
solution is removed. At this stage all the vertices in the remaining subgraph have degree
>). If the number of vertices in the subgraphsisthen the total number of edges is

> As/2, and the density i& \/2. Since the greedy algorithm returns the subgraph with
the highest density over all the iterations, it always returns a subgraph with density at
least1 of the optimum. O

With a little work, one can make examples showing that the bound of 2 is tight for
Charikar’s algorithm (details omitted).

We now consider the case of directed graphs. In a directed graph, for each vertex
we count its in-degree and out-degree separatelyvlié a vertex with minimum in-
degree and, be a vertex with minimum out-degree. Then we sajhas minimum
degree, if the in-degree af is at most the out-degree of, elsev, is said to have
the minimum degree. In the first case, the vertex with minimum degree belongs to the
category IN. In the second case, it belongs to the category OUT. The greedy algorithm
for directed graphs deletes the vertex with minimum degree and then depending on
whether it is of category IN or OUT, either deletes all the incoming edges or all the
outgoing edges incident on that vertex, respectively. If the vertex becomes a singleton,
the vertex is deleted. To compute the density of the remaining graph after an iteration
of Densest-Subgraph-Directeany vertex that has nonzero out-degree is counted in the
S side and all the vertices with non-zero in-degree are counted ifi gide. Therefore
the same vertex might appear bothdrand7" and will be counted once i and once
in T. We denote the optimum solution i§*, 7).

Algorithm 2.2: DENSESFSUBGRAPHDIRECTED(G = (V, E))

n « |V|, Hap < G,i «+ 2n

while H; # ()

Letv be a vertex inH; of minimum degree

if category() = IN
then Delete all the incoming edges incident on
else Delete all the outgoing edges incidenton

if v has no edges incident ortiten Deletev

Call the new grapti; 1,7 «— i —1

return (H; which has the maximum density amoffjs)

Define); = | B(S*, T*)| (1 1 ﬁ) and\, = |B(S*,T%)| (1 1 Is—ll)

Lemma 1. In an optimal solution, each vertex ifi*, has out-degree> A\, and each
vertex inT* has in-degree> \;.

Proof. Suppose if possiblejv € S* with out-degree< \,. Removev from S*. The

density of the remaining subgraph}s% = dopr, Which is not possible.
Similarly, every vertex € T* has degree> \;. O

Theorem 2. The greedy algorithnbensest-Subgraph-Directedichieves & approx-
imation for the densest subgraph problem in directed networks.

Proof. Consider the iteration of the greedy algorithm, when the verticéstiave out-
degree>)\, and the vertices iff" have in-degree> ;. Let us call the set of ver-
tices on the side of andT by S’ and T’ respectively. Then the number of edges,

E' > |8'|\o, and alsoE’ > |T’|);. Hence, the density(S’, T") > % =
VAo). Substituting the values of, and \; from Lemma 1, we geti(S’,7")? >

\E(S*,T%))? (1 . J1- ﬁ) (1 —J1- ﬁ) Now putting| $*| = L and|T*| =

1 we getd(S’,T’) > |E(S*,T%)| \/(1—cos0)(1—cosa) _ __dopr > dOQPT' 0

sinZ o’ = \/\S* [T sinfsina QCOS%COS% -

3 Densest at leask subgraph problem

For undirected graphs, thRalkS algorithm tries to find a subgraph of highest den-
sity among all subgraphs, that have sizek. We prove that thédalkS problem is
NP-complete. and develop two algorithms; a combinatorial algorithm and one based
on solving a linear programming formulation of tB&lkS problem. Each algorithm
achieves an approximation factor @f Finally we consider th®alkS problem in di-
rected graphs, and give2aapproximation algorithm for the problem.

Theorem 3. DalkSis NP-Hard.

Proof. We reduce the densestsubgraph problem (this problem A P-hard [8, 3]) to
densest at leagtsubgraph problem. The entire proof can be found in [14]. ad

We develop two algorithms fddalkSthat both achieve an approximation factor of
2. We note that Andersen [1] propose@ approximation algorithm, that requires
max-flow computations. Even using the parametric flow computation [9] the running
time is within a constant factor of? flow computations. Whereas our first algorithm
uses at mostraz(1, (k — v)) flow computations using parametric flow algorithm and
in general much less than that. Herés the size of the densest subgraph without any
size constraint. The second algorithm is based on a linear programming formulation for
DalkSand requires only a single solution of a LP.

3.1 Algorithm 1: Densest at leask subgraph

Let H* denote the optimum subgraph anddétbe the optimum density. The algorithm
starts with the original grapti asGq, and Dg as{. In thesth iteration, the algorithm
finds the densest subgraph from G;_; without any size constraint. [V (D;_1)| +

|V (H;)| > k, the algorithm stops. Otherwise the algorithm adfjgo D;_; to obtain
D;. All the edges and the vertices &f; are removed fronG,;_;. For every vertex
v € G;—1 \ H;, if v hasl edges to the vertices iff;, then inG; a self loop of weight

[is added ta. The algorithm then continues with;. When the algorithm stops, each
subgraphD; is padded with arbitrary vertices to make their siz& he algorithm then
returns theD; with maximum density.

Algorithm 3.1: DENSESTAT LEAST-K(G, k)

Dy —0,Gyg — G,i 1
while |V(D;)| < k
H; — maximum-density-subgrapf¥; ;)
do { D; +— D;_1UH;
G; = ShrinKGi_l,H,’)7i —i1+1
for each D;
do Add an arbitrary set ofnaz(k — |V (D;)|,0) vertices to it to formD/,
return (D’, which has the maximum density among thgs)

We prove that algorithrDensest At least-&chieves an approximation factor f

Theorem 4. The algorithmDensest At least-kachieves an approximation factor Bf
for the DalkS problem.

Proof. If the number of iterations is 1, theH; is the maximum density subgraph of
the original graph whose size Js k. ThereforeH* = H; and the algorithm returns it.
Otherwise, say the algorithm iterates for 2 rounds. There can be two cases:
Case 1:There exists & < I suchthatE(Dy_1) N E(H*) < % andE(Dy)N
B(H*) > 240,
Case 2:There exists no sudh < [.
E(H")

For case 2, we have for any < | — 1, E(D;) N E(H*) < =5—. Therefore,

E(G;,)NE(H") > % ConsidetV’ = V(G;) N V(H*). The density of the sub-
graph induced by’ in G is > E(G"l){;,| H) > 2?/(5;3) = d* /2. Hence the density of
H; mustbe> d*/2. Soin case 1, for eagh< [, the density of{; is > d* /2. Therefore

!’
& SV V()|
2

the total number of edges in the subgrdphis >
is > d*/2 and it has> k vertices.

For case 1, the subgragh,, has at leasE(H*)/2 edges and sinc€(Dy) < k,
the density oD}, is > 4.

Since the algorithm returns the subgraphwith maximum density among all the
Dis, the returned subgraph has density at léas2. O

, or the density o),/

There are example of graphs (see the extended version [14]) over which the approx-
imation factor of% is tight for algorithmDensest At least-Subgraph

3.2 Algorithm 2: Densest at leask subgraph

Next we give a LP based solution for tialkS problem. Define a variable; ; for
every edgdi, j) € E(G) and a variabley; for every vertex; € V(G). Consider now
the following LP:

maximize Zx” (2)
ij

T 5 S Y; 7v(7’7j) € E(G)’ Ti,5 S Yj 7V(Z,j) € E(G)
1
dovi=1 yi < 7 Vi€ V(G) w2 0,¥(i) € B(G),Yi € V(G)

Herel > k is the size of the optimum solution of tli@alkS problem. Since there
can ben — k + 1 possible sizes of the optimum solution, we can guess this value,
putting different values fot. In Section 3.3 we show that by first running the algorithm
Densest-Subgrapnd then solving one single LP, we can guarant2@pproximation.

Lemma 2. The optimum solution of LP (2) is greater than or equal to the optimum
value of DalkS

Proof. Let the optimum solution foDalkSbe obtained for a subgragti havingl > k
vertices and density. Consider a solution for the above LP, where each of the variables
y; corresponding to the vertices &f have valueli. All the variablex; ; corresponding

to the induced edges @&f have value%. The solution is feasible, since it satisfies all the
constraints of LP (2). The value of the objective function of the LE:i(sl,j)eH xij =

EH) % = \. Therefore the optimum value of the LPxs\ O

Lemma 3. If the value of the optimum solution of LP (2))sa subgraph of size k&
with density> \/2 can be constructed from that solution of LP (2).

The proof can be found in the extended version [14]. The key idea is to show that
there exists a value of € [0, 1], such that if we consider the subgraph induced by the
vertices withy value> r, then either it has density A/2 and size> k, or its size is
< k, but it has more than half the number of edges the optimum solution has. In the
later case, we can add arbitrary vertices to increase the size of the subgkaph to

Theorem 5. If the value of the optimum solution of LP (2))isa subsetS of vertices
can be computed from the optimum solution of LP (2), such that

d(G(S)) > A and |S| > k

Proof. Consider every possible subgraph by setting y; for all distinct values ofy;.

By Lemma 3, there exists a valueobuch thatS(r)| > k and llg((:))ll > v/2, wherev
is an optimum solution of the LP. By Lemma 2 > A and hence the proof. O

The integrality gap of LP 2 is at least Also the approximation factor of is tight
(see the extended version [14]).

3.3 Reducing the number of LP solutions

To reduce the number of LP solutions, we first run the algoritemsest-Subgraph
consider the solutions over all the iterations that have vertices and obtain the one
with maximum density. We call this modified algoritibensest-Subgragh.. We com-
pare the obtained subgraph fraensest-Subgraph. with the solution returned by the
LP based algorithm with = k. The final solution is the one which has higher density.
When the optimum solution fdbalkShas exactly: vertices, Theorem 5 guarantees
that we obtain & approximation. Otherwise, the optimum subgraph has sizg.
In this situation, the following lemma shows that the solution returnedégsest-
Subgraph ;. has density at Iea%t of the optimum solution obalkS Therefore using
only a single solution of LP 2 along with the linear time algoritBensest-Subgragh:,
we can guaranteenapproximate solution faDalkS

Lemma 4. If the optimum subgraph obalkS problem has size- k, thenDensest-
Subgraph.; returns a2 approximate solution.

Proof. Let the optimum density ba. Since the size of the optimum solutionsk,
if there exists any vertex in the optimum solution with degteg, then removing that
we would get higher density and the size of the subgraph still remxaihsHence all
the vertices in the optimum solution has degree. Now from Theorem 1, we get the
required claim. ad

3.4 Densest at leask subgraph problem for directed graphs

Given a directed graplés = (V, E') and integersk,, k2, thedensest at least k directed
subgraphalLkD§ problem finds two subsets of nodeand7" containing at leask;
andk. vertices respectively for whick 2L is maximized.

VISIIT]

In this section we give & approximation algorithm for thBaLkDSproblem. Since
there are two parameterk;, ko; we refer to this problem bylensest at leasts, ko
problemfrom now on.

3.5 Densest at leasky, ko directed subgraph problem

Let S*,T* represent the optimum solution BaLkDSandd* represent the value of
the density corresponding 15, 7. Let the ratio:ii“ bea. Since the possible values
of a can be, wherei > k;,j > ks andi,j < |V|, we can guess the value of We

run the max-flow based algorithm of Section 2.1 (maximum-directed-density-subgraph)
with the chosem to obtain the densest directed subgraph without any size constraints.
Instead of shrinking and removing the vertices and the edges in the densest directed
subgraph, as in algorithensest At least-for DalkS we only remove the edges and
maintain the vertices. We continue this procedure for the same chaiceofil at some

round both the sizes ¢f andT thus obtained excedd andk, respectively. Let5; and

T; be the partial subsets of vertices obtained up toitheound. We append arbitrary
verticesA and B to S; andT; to form S/ andT respectively, such thab;| > k; and

|T}| > ko. The algorithm returns’, 77, such thatd(S?, T;) is maximum over all the
iterations.

Algorithm 3.2: DENSESTAT LEAST-kq, ko(G, k1, k2, a)

SO — (Z),TO — @,GO — G,i —1
while |Si_1| < kjor ITi—1| < ko
H,;(S,T) «— maximum-directed-density-subgragh_1, a)
Si — Si—l U Hl(S)
T, — T,—1 UH(T)
G; = shrinkG;_1,H;),i —i+1
for each S;, T;
d { Add arbitrarymax (ki — |S;],0) vertices toS; to form S,
Add arbitrarymax (ke — |T3|, 0) vertices tdl; to form T
return (5%, T7) which has maximum density among the/, 7})s

do

Theorem 6. Algorithm Densest At leastk;, k; achieves an approximation factor »f
for the DaLkDSproblem.

Proof. For a chosem:, algorithm Densest At least,, ko returns subset#/;(S) and
H,;(T) at iterationi, such thag% = a. Suppose up tb th iteration,| S}, | < k; and
|T7,| < kao. Let|Si, 41| > k1, but up tolsth iteration,|T;,| < k. At iterationiy + 1,
|T7,+1] > k2. Now we consider the following cases,

Case L:|E(S;,,T1,)| > |E(S*,T%)|/2.

Case 2:|E(Si,, T1,) E(S*,T%)| < |E(S*,T%)|/2.

Case 3:3l',1; <’ <ly, such thal E(S;,, T;/)| > |E(S*,T*)|/2 and
|E(Sy—1,Tv—1)| < |E(S*,T7)|/2.

These three cases are mutually exclusive and exhaustive. When case 1 occurs, we
can append arbitrary vertices &, and7;, to make their sizes respectively and
E(S1,,T1,) E(S*,T%)
VISLITIT = 24/1s#||T|
tion I at least half of the edges of the optimum are still not covered. Since no ver-
tices are ever deleted, choice 8f and7* maintains the ratim and returns a den-

k2. In that case = d*/2. When case 2 occurs, at itera-

sity which is at leasty. Then we haveyi = 1,2, ..,1,, ZHELHD) > d o
|Hi (S)||Hq(T)|
we have,E(H;(S) > /|Hi(S)||H;(T)|% = v/a|H;(T)|% . Hence by sum-

mlng over the |terat|on$to lo+1we getE(SIQH,TbH) > f212“|H()% >
E(S
T 4 a|Ti,41] = 4 /Ti,+1]|S.+1]- Hence we have Sty Tigen) _ BSty1.Tigs1) >

N1,] /1Sl Ty 1]
2

2

When case 3 occurs, we have agdin= 1,2, ..,l’, LHE D) > & Now
| H; (S)||1Hi(T)|
following the same analysis as in cas gVHTT")I > 4% Since|S;,| = |Sy| might be
l/ l/

much larger thark,, the analysis as in case 1 cannot guarantee a 2-approximation. Let
X1 = Uiy Hi(S)| = [Sv] andXy = Y0, |Hi(S)]. Similarly Yi = |U;_, Hi(T)| =
[Ty ande = Zi 1|H()|. We haveY, = %2 > X1 > bo— f, Also we have,

B(X1,%1) & ogo B _ ECGLY) 5 EGGM) 5 yrd > .We add
e = NEA Vixi Tl 22 =
arbitrary vertices tdr; to make its size equal th.. Hence,% > /TS
l/

Also E%> = X > Xl Y1> > /[X2]4 > /]5]]4 . Multiplying we get,

;E/(Issli\;“ > /ISLIIT} 42, or we have B8y 10 4 O

\/7 = 2

For a particular value af, using parametric max-flow, algorithBensest At least-
k1, ko requires time of a single flow computation within a constant factor. However
there aréV|? possible choices af. An algorithm that does not need to guess the value
of a, like Densest- Subgraph-Directeid needed to reduce the time complexity, which
is still open. Here we note that a LP based solution for this problem can be designed in
the line of LP based algorithm f@alkS(details omitted).

4 Densest at mosk subgraph problem

Densest at most subgraph problemamk§ tries to find a subgraph of highest den-
sity, whose size is at moét Andersen et. al. [2] showed that anapproximation for
DamkSimplies a©(a?) approximation for the densektsubgraph problem. We prove
that approximatindpamkSis as hard as thBkSproblem, within a constant factor. Pre-
cisely we prove the following theorem:

Theorem 7. An o approximation algorithm foDamkSimplies anda approximation
algorithm for the densest k subgraph problem

The proof can be found in an extended version [14].

5 Conclusion

In this paper, we have discussed different variations of the densest subgraph problems
with and without size constraints. We have considered hardness issues related to these
problems and have developed fast algorithms for them for both undirected and directed
networks. All these problems can be generalized to weighted setting, with same time-
complexity or sometimes with only lag |V| increase in running time. An interesting

open question will be to design linear time algorithm with an approximation factor bet-
ter than2 for densest subgraph without any size constraint or to improve the approxima-
tion factor for DalkS problem. Obtaining faster algorithms fdensest at leaskr, k2
subgraphproblem, or removing the requirement of guessinig it or in the flow graph
construction of maximum density directed subgraph will also be useful.

References

1. R. Andersen. Finding large and small dense subgra@bRR abs/cs/0702032, 2007.
2. R. Andersen and K. Chellapilla. Finding dense subgraphs with size boungAWh’09
pages 25-36, 2009.
3. Y. Asahiro, R. Hassin, and K Iwama. Complexity of finding dense subgré&psstete Appl.
Math,, 121(1-3):15-26, 2002.
4. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. In
SWAT '96 pages 136-148, 1996.
5. G.Buehrerand K. Chellapilla. A scalable pattern mining approach to web graph compression
with communities. INWSDM '08 pages 95-106, 2008.
6. M Charikar. Greedy approximation algorithms for finding dense components in a graph. In
APPROX pages 84-95, 2000.
7. Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification of dense commu-
nities in the web. I'WWW '07 pages 461-470, 2007.
8. U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph proBlgorithmica 29:410—
421, 1997.
9. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applicationsSIAM J. Compuf.18(1):30-55, 1989.
10. D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive graphs.
In VLDB '05, pages 721-732, 2005.
11. A.V. Goldberg. Finding a maximum density subgraph. Technical report, 1984.
12. R. Kannan and V. Vinay. Analyzing the structure of large graphs. Technical report, 1999.
13. S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM J. Comput.36(4):1025-1071, 2006.
14. S. Khuller and B. Saha. On finding dense subgrapttp://www.cs.umd.edtdsamir/grant
/ICALPQ9.pdf 2009.
15. J. M. Kleinberg. Authoritative sources in a hyperlinked environm@nACM, 46(5):604—
632, 1999.
16. E.LawlerCombinatorial optimization - networks and matraid#olt, Rinehart and Winston,
New York, 1976.

