
On Finding Dense Subgraphs?

Samir Khuller and Barna Saha

University of Maryland College Park
{samir,barna }@cs.umd.edu

Abstract. Given an undirected graphG = (V, E), the density of a subgraph
on vertex setS is defined asd(S) = |E(S)|

|S| , whereE(S) is the set of edges
in the subgraph induced by nodes inS. Finding subgraphs of maximum density
is a very well studied problem. One can also generalize this notion to directed
graphs. For a directed graph one notion of density given by Kannan and Vinay
[12] is as follows: given subsetsS andT of vertices, the density of the subgraph
is d(S, T) = |E(S,T)|√

|S||T |
, whereE(S, T) is the set of edges going fromS to T .

Without any size constraints, a subgraph of maximum density can be found in
polynomial time. When we require the subgraph to have a specified size, the
problem of finding a maximum density subgraph becomesNP -hard. In this paper
we focus on developing fast polynomial time algorithms for several variations of
dense subgraph problems for both directed and undirected graphs. When there
is no size bound, we extend the flow based technique for obtaining a densest
subgraph in directed graphs and also give a linear time2-approximation algorithm
for it. When a size lower bound is specified for both directed and undirected
cases, we show that the problem is NP-complete and give fast algorithms to find
subgraphs within a factor2 of the optimum density. We also show that solving
the densest subgraph problem with an upper bound on size is as hard as solving
the problem with an exact size constraint, within a constant factor.

1 Introduction

Given an undirected graphG = (V,E), the density of a subgraph on vertex setS is
defined asd(S) = |E(S)|

|S| , whereE(S) is the set of edges in the subgraph induced byS.
The problem of finding a densest subgraph of a given graphG can be solved optimally
in polynomial time, despite the fact that there are exponentially many subgraphs to
consider [16, 11]. In addition, Charikar [6] showed that we can find a 2 approximation
to the densest subgraph problem in linear time using a very simple greedy algorithm (the
greedy algorithm was previously studied by Asahiro et. al. [4]). This result is interesting
because in many applications of analyzing social networks, web graphs etc., the size
of the graph involved could be very large and so having a fast algorithm for finding
an approximately dense subgraph is extremely useful. However when there is a size
constraint specified - namely find a densest subgraph of exactlyk vertices (DkS), the
densestk subgraph problem becomesNP -hard [8, 3]. Whenk = Θ(|V |), Asahiro et.
al. [4] gave a constant factor approximation algorithm for theDkSproblem. However for

? Research supported by NSF CCF 0728839 and a Google Research Award.

generalk, the algorithm developed by Feige, Kortsarz and Peleg [8] achieves the best
approximation guarantee ofO(na), wherea < 1

3 . Khot [13] showed that there does
not exist any PTAS for theDkSproblem under a reasonable complexity assumption.
Closing the gap between the approximation factor and the hardness guarantee is an
important open problem.

Recently, Andersen and Chellapilla [2] considered two variations of the problem of
finding a densestk subgraph. The first problem, the densest at-least-k-subgraph prob-
lem (DalkS) asks for an induced subgraph of highest density among all subgraphs with
at leastk nodes. This relaxation makesDalkSsignificantly easier to approximate and
Andersen et.al. gave a fast algorithm based on Charikar’s greedy algorithm that guar-
antees a 3 approximation for theDalkSproblem. In addition, Andersen [1] showed that
this problem has a polynomial time 2 approximation, albeit with significantly higher
running time. However it was left open as to whether or not this problem isNP -
complete. The second problem studied was the densest at-most-k-subgraph problem
(DamkS), which asks for an induced subgraph of highest density among all subgraphs
with at mostk nodes. For theDamkSproblem, Andersen et.al. showed that if there
exists anα approximation forDamkS, then there is aΘ(α2) approximation for the
DkSproblem, indicating that this problem is likely to be quite difficult as well.

For directed graphs, Kannan and Vinay [12] defined a suitable notion of density
to detect highly connected subgraphs and provided aΘ(log n) approximation algo-
rithm for finding such dense components. LetG = (V,E) be a directed graph andS
andT be two subsets of nodes ofV . Density corresponding toS andT is defined as
d(S, T) = |E(S,T)|√

|S||T |
, whereE(S, T) consists of the edges going fromS to T . Charikar

[6] showed that the problem can be solved in polynomial time by solving an LP using
n2 different values of a parameter. However a max-flow based technique similar to the
one developed by Goldberg [11] for the densest subgraph problem in undirected graphs
was not known for directed graphs. It was mentioned as one of the open problems in
[6]. In addition to providing a polynomial time solution for the densest subgraph prob-
lem in directed graphs, Charikar also gave a2 approximation algorithm which runs in
O(|V |3 + |V |2|E|) time.

Densest subgraph problems have received significant attention for detecting impor-
tant substructures in massive graphs like web and different social networks. In a web
graph, hubs (resource lists) and authorities (authoritative pages) on a topic are char-
acterized by large number of links between them [15]. Finding dense subgraphs also
acts as a useful primitive for discovering communities in web and social networks, for
compressed representation of a graph and for spam detection [7, 5, 10]. Gibson et. al.
[10] provided effective heuristics based on two-level fingerprints for finding large dense
subgraphs in massive graphs. Their aim was to incorporate this step into web search en-
gine for link spam control. Dourisboure gave a scalable method for identifying small
dense communities in web graph [7]. Buehrer showed how large dense subgraphs can
be useful in web graph compression and sub-sampling a graph [5]. In all these appli-
cations the underlying graph is massive and thus fast scalable algorithms for detecting
dense subgraphs are required to be effective.

One of the main new insights in this paper is to illustrate the power of the flow based
methods [11, 16] to find dense subgraphs not only when there is no requirement on the

size of the obtained subgraph, but also for cases when there is a constraint on the size
of the obtained subgraph. Precisely our contributions are as follows:

1.1 Contributions

– For the densest subgraph problem without any size restrictions (Section 2):
• We give a max-flow based polynomial time algorithm for solving the densest

subgraph problem in directed graphs.
• We give a linear time2-approximation algorithm for the densest subgraph prob-

lem in directed graphs.
– For the densest at leastk subgraph problem (Section 3):
• We show that the densest at leastk subgraph problem is NP-Hard.
• For undirected graphs, we give a flow-based and LP based approximation al-

gorithms, for the densest at leastk subgraph problem. These run much faster
than the polynomial time approximation algorithm of Andersen and deliver the
same worst case approximation factor of 2.
• We define the notion of densest at leastk1, k2 subgraph problem for directed

graphs and give a2-approximation algorithm for it.
– Densest at mostk subgraph problem (Section 4):
• We show that approximating the densest at mostk subgraph problem is as hard

as the densestk subgraph problem within a constant factor, specifically anα
approximation forDamkS, implies a4α approximation forDkS.

2 Densest subgraph without any size restriction

In this section, first we give a max-flow based algorithm for the densest subgraph prob-
lem in directed graphs. For undirected graphs, Goldberg [11] developed a flow based
algorithm, that finds a densest subgraph in polynomial time. However, for directed
graphs, no flow based algorithm was known. Next we consider the greedy algorithm
for densest subgraph in undirected graphs proposed by Charikar [6] and develop an
extension of this algorithm to give a2 approximation algorithm for finding a densest
subgraph in directed graphs. This improves the running time fromO(|V |3 + |V |2|E|)
to O(|V | + |E|). We also give a very simple proof of2-approximation for the greedy
algorithm developed by Charikar [6] to obtain a densest subgraph in undirected graphs.

2.1 Max-flow based algorithm for finding densest subgraphs in directed graphs

For a directed graphG = (V,E), we wish to find two subsets of nodesS andT , such
thatd(S, T) = |E(S,T)|√

|S||T |
is maximized. Let us denote the optimum subsets of nodes by

S∗ andT ∗ respectively. To detect such subsets of nodes, we first guess the value of
|S∗|
|T∗| in the optimum solution. Since there are|V |2 possible values, inΘ(|V |2) time, it

is possible to guess this ratio exactly1. Let this ratio bea. We create a bipartite graph

1 If we want(1 + ε) approximation, onlyO(log |V |
ε

) guessed values suffice.

G′ = (V1, V2, E), whereV1 = V2 = V and for every directed edge(i, j) in the original
graph, we add an edge from vertexi ∈ V1 to j ∈ V2. We now wish to findS ⊆ V1 and
T ⊆ V2, such that|E(S,T)|√

|S||T |
is maximized. We also know,|S

∗|
|T∗| = a.

We add a sources and a sinkt to G′ = (V1, V2, E). We guess the value of the
optimum (maximum) density. Let our guessed value beg. The following edges with
weights are then inserted intoG′ = (V1, V2, E):

– We add an edge of weightm from sources to each vertex ofV1 andV2, where
m = |E|.

– We add an edge of weight(m + g√
a
) from each vertex ofV1 to the sinkt.

– We add an edge from each vertexj of V2 to sinkt of weightm+
√

ag−2dj , where
dj is the in-degree ofj.

– All the edges going fromV1 to V2 are given weight0. For each edge going fromV1

to V2, a reverse edge of weight2 is added.

Now consider as-t min-cut in this weighted graph. Since the cut{s}, {t, V1, V2}
has weightm(|V1|+ |V2|), the min-cut value is≤ m(|V1|+ |V2|). Now consider the cut
{s, S ⊆ V1, T ⊆ V2},{t, (V1 \S) ⊆ V1, (V2 \T) ⊆ V2}. The number of edges crossing
the cut is,

m(|V1| − |S|+ |V2| − |T |) + (m +
g√
a
)|S|+

∑
i∈T

(m +
√

ag − 2di) +
∑

i∈T,j∈V1−S,
(j,i)∈E(G)

2

= m(|V1|+ |V2|) + |S| g√
a

+ |T |
√

ag − 2|E(S, T)|

= m(|V1|+ |V2|) +
|S|√

a

(
g − |E(S, T)|

|S|/
√

a

)
+ |T |

√
a

(
g − |E(S, T)|

|T |
√

a

)
Let us denote the optimum density value bydOPT . If g < dOPT , then there exists

S andT (corresponding to the optimum solution), such that both
(
g − |E(S,T)|

|S|/
√

a

)
and(

g − E(S,T)
|T |

√
a

)
are negative. ThereforeS andT are nonempty. If the guessed valueg >

dOPT , let if possibleS andT be non-empty. Let in this returned solution,|S|
|T | = b. We

have,

|S|√
a

(
g − |E(S, T)|

|S|/
√

a

)
+ |T |

√
a

(
g − E(S, T)

|T |
√

a

)
=
√
|S||T |

√
b√
a

(
g − d(S, T)√

b/
√

a

)
+
√
|S||T |

√
a√
b

(
g − d(S, T)
√

a/
√

b

)
=
√
|S||T |

((√
b√
a

+
√

a√
b

)
g − 2d(S, T)

)
(1)

Now,
(√

b√
a

+
√

a√
b

)
≥ 2 ∀ realsa, b and we have,g > dOPT ≥ d(S, T). Hence

the value of (1) is> 0. Thus if S and T are non-empty, then this cut has value>

m(|V1|+ |V2|). Hence ifg > dOPT , min-cut is({s}, {t, V1, V2}). If the guessed value
g = dOPT , then we get a cut of the same cost as the trivial min-cut, even by havingS
andT corresponding toS∗ andT ∗ respectively. We can always ensure that we obtain
a min-cut, which has the biggest size on the source side. Thus when the guessed value
is correct, the optimum subsetsS andT are obtained from the subsets of vertices of
V1 andV2 that belong to the side of the cut that containss. The algorithm detects the
correct value ofg using a binary search, similar to Goldberg’s algorithm for finding
a densest subgraph in undirected graphs [11]. Also it is easy to verify that, when the
correct value ofg is guessed, we haveb = a. Using a parametric max-flow algorithm
[9], the total time required is same as one flow computation within a constant factor.

2.2 2 approximation algorithm for the densest subgraph problem in undirected
and directed graphs

We first consider Charikar’s greedy algorithm [6] for densest subgraphs in undirected
graphs. The greedy algorithm at each step chooses a vertex of minimum degree, deletes
it and proceeds for(n − 1) steps, where|V | = n. At every step the density of the
remaining subgraph is calculated and finally the one with maximum density is returned.

Algorithm 2.1: DENSEST-SUBGRAPH(G = (V,E))

n← |V |,Hn ← G
for i = n to 2

do
{

Let v be a vertex inHi of minimum degree
Hi−1 ← Hi − {v}

return (Hj , which has the maximum density amongH ′
is, i = 1, 2, .., n)

We show that the above greedy algorithmDensest-Subgraphachieves an approx-
imation factor of2 for undirected networks. This is not a new result. However our
proof is simpler than the one given by Charikar. For directed graphs, Charikar devel-
oped a different greedy algorithm, that has a significantly higher time-complexity of
O(|V |3 + |V |2|E|). We show that the algorithmDensest-Subgraph-Directed, which is
a generalization of the algorithmDensest-Subgraphdetects a subgraph, with density
within a factor of2 of the optimum for directed graphs. This reduces the time complex-
ity from O(|V |3 + |V |2|E|) to O(|V |+ |E|).

Theorem 1. The greedy algorithmDensest-Subgraphachieves a2-approximation for
the densest subgraph problem in undirected networks.

Proof. Let dOPT = λ. Observe that in an optimum solution, every vertex has degree≥
λ. Otherwise removing a vertex of degree< λ, will give a subgraph with higher density.
Consider the iteration of the greedy algorithm when the first vertex of the optimum
solution is removed. At this stage all the vertices in the remaining subgraph have degree
≥ λ. If the number of vertices in the subgraph iss, then the total number of edges is
≥ λs/2, and the density is≥ λ/2. Since the greedy algorithm returns the subgraph with
the highest density over all the iterations, it always returns a subgraph with density at
least12 of the optimum. ut

With a little work, one can make examples showing that the bound of 2 is tight for
Charikar’s algorithm (details omitted).

We now consider the case of directed graphs. In a directed graph, for each vertex
we count its in-degree and out-degree separately. Letvi be a vertex with minimum in-
degree andvo be a vertex with minimum out-degree. Then we sayvi has minimum
degree, if the in-degree ofvi is at most the out-degree ofvo, elsevo is said to have
the minimum degree. In the first case, the vertex with minimum degree belongs to the
category IN. In the second case, it belongs to the category OUT. The greedy algorithm
for directed graphs deletes the vertex with minimum degree and then depending on
whether it is of category IN or OUT, either deletes all the incoming edges or all the
outgoing edges incident on that vertex, respectively. If the vertex becomes a singleton,
the vertex is deleted. To compute the density of the remaining graph after an iteration
of Densest-Subgraph-Directed, any vertex that has nonzero out-degree is counted in the
S side and all the vertices with non-zero in-degree are counted in theT side. Therefore
the same vertex might appear both inS andT and will be counted once inS and once
in T . We denote the optimum solution by(S∗, T ∗).

Algorithm 2.2: DENSEST-SUBGRAPH-DIRECTED(G = (V,E))

n← |V |,H2n ← G, i← 2n
while Hi 6= ∅

do



Let v be a vertex inHi of minimum degree
if category(v) = IN

then Delete all the incoming edges incident onv
else Delete all the outgoing edges incident onv

if v has no edges incident on itthen Deletev
Call the new graphHi−1, i← i− 1

return (Hj which has the maximum density amongH ′
is)

Defineλi = |E(S∗, T ∗)|
(
1−

√
1− 1

|T∗|

)
andλo = |E(S∗, T ∗)|

(
1−

√
1− 1

|S∗|

)
.

Lemma 1. In an optimal solution, each vertex inS∗, has out-degree≥ λo and each
vertex inT ∗ has in-degree≥ λi.

Proof. Suppose if possible,∃v ∈ S∗ with out-degree< λo. Removev from S∗. The
density of the remaining subgraph is> E(S∗,T∗)−λo√

(|S∗|−1)|T∗|
= dOPT , which is not possible.

Similarly, every vertexv ∈ T ∗ has degree≥ λi. ut

Theorem 2. The greedy algorithmDensest-Subgraph-Directedachieves a2 approx-
imation for the densest subgraph problem in directed networks.

Proof. Consider the iteration of the greedy algorithm, when the vertices inS have out-
degree≥ λo and the vertices inT have in-degree≥ λi. Let us call the set of ver-
tices on the side ofS andT by S′ andT ′ respectively. Then the number of edges,

E′ ≥ |S′|λo, and alsoE′ ≥ |T ′|λi. Hence, the densityd(S′, T ′) ≥
√

|S′|λo|T ′|λi

|S′||T ′| =
√

λoλi. Substituting the values ofλo and λi from Lemma 1, we getd(S′, T ′)2 ≥

|E(S∗, T ∗)|2
(
1−

√
1− 1

|S∗|

)(
1−

√
1− 1

|T∗|

)
. Now putting|S∗| = 1

sin2 θ
and|T ∗| =

1
sin2 α

, we getd(S′, T ′) ≥ |E(S∗,T∗)|√
|S∗||T∗|

√
(1−cosθ)(1−cosα)

sinθsinα = dOP T

2cos θ
2 cos α

2
≥ dOP T

2 . ut

3 Densest at leastk subgraph problem

For undirected graphs, theDalkS algorithm tries to find a subgraph of highest den-
sity among all subgraphs, that have size≥ k. We prove that theDalkS problem is
NP-complete. and develop two algorithms; a combinatorial algorithm and one based
on solving a linear programming formulation of theDalkS problem. Each algorithm
achieves an approximation factor of2. Finally we consider theDalkSproblem in di-
rected graphs, and give a2-approximation algorithm for the problem.

Theorem 3. DalkS is NP-Hard.

Proof. We reduce the densestk subgraph problem (this problem isNP -hard [8, 3]) to
densest at leastk subgraph problem. The entire proof can be found in [14]. ut

We develop two algorithms forDalkSthat both achieve an approximation factor of
2. We note that Andersen [1] proposed a2 approximation algorithm, that requiresn3

max-flow computations. Even using the parametric flow computation [9] the running
time is within a constant factor ofn2 flow computations. Whereas our first algorithm
uses at mostmax(1, (k − γ)) flow computations using parametric flow algorithm and
in general much less than that. Hereγ is the size of the densest subgraph without any
size constraint. The second algorithm is based on a linear programming formulation for
DalkSand requires only a single solution of a LP.

3.1 Algorithm 1: Densest at leastk subgraph

Let H∗ denote the optimum subgraph and letd∗ be the optimum density. The algorithm
starts with the original graphG asG0, andD0 as∅. In theith iteration, the algorithm
finds the densest subgraphHi from Gi−1 without any size constraint. If|V (Di−1)| +
|V (Hi)| ≥ k, the algorithm stops. Otherwise the algorithm addsHi to Di−1 to obtain
Di. All the edges and the vertices ofHi are removed fromGi−1. For every vertex
v ∈ Gi−1 \Hi, if v hasl edges to the vertices inHi, then inGi a self loop of weight
l is added tov. The algorithm then continues withGi. When the algorithm stops, each
subgraphDi is padded with arbitrary vertices to make their sizek. The algorithm then
returns theDj with maximum density.

Algorithm 3.1: DENSESTAT LEAST-K(G, k)

D0 ← ∅, G0 ← G, i← 1
while |V (Di)| < k

do

Hi ← maximum-density-subgraph(Gi−1)
Di ← Di−1 ∪Hi

Gi = shrink(Gi−1,Hi), i← i + 1
for eachDi

do Add an arbitrary set ofmax(k − |V (Di)|, 0) vertices to it to formD′
i

return (D′
j , which has the maximum density among theD′

is)

We prove that algorithmDensest At least-kachieves an approximation factor of2.

Theorem 4. The algorithmDensest At least-kachieves an approximation factor of2
for theDalkSproblem.

Proof. If the number of iterations is 1, thenH1 is the maximum density subgraph of
the original graph whose size is≥ k. ThereforeH∗ = H1 and the algorithm returns it.
Otherwise, say the algorithm iterates forl ≥ 2 rounds. There can be two cases:

Case 1:There exists al′ < l such thatE(Dl′−1)∩E(H∗) ≤ E(H∗)
2 andE(Dl′)∩

E(H∗) ≥ E(H∗)
2 .

Case 2:There exists no suchl′ ≤ l.
For case 2, we have for anyj ≤ l − 1, E(Dj) ∩ E(H∗) ≤ E(H∗)

2 . Therefore,

E(Gj) ∩ E(H∗) ≥ E(H∗)
2 . ConsiderV ′ = V (Gj) ∩ V (H∗). The density of the sub-

graph induced byV ′ in Gj is≥ E(Gj)∩E(H∗)
|V ′| ≥ E(H∗)

2V (H∗) = d∗/2. Hence the density of
Hl must be≥ d∗/2. So in case 1, for eachj ≤ l, the density ofHj is≥ d∗/2. Therefore

the total number of edges in the subgraphDl is≥ d∗
Pl′

j=1 |V (Hj)|
2 , or the density ofDl′

is≥ d∗/2 and it has≥ k vertices.
For case 1, the subgraphDl′ has at leastE(H∗)/2 edges and sinceV (Dl′) ≤ k,

the density ofD′
l′ is≥ d∗

2 .
Since the algorithm returns the subgraphD′

j with maximum density among all the
D′

is, the returned subgraph has density at leastd∗/2. ut

There are example of graphs (see the extended version [14]) over which the approx-
imation factor of12 is tight for algorithmDensest At least-k Subgraph.

3.2 Algorithm 2: Densest at leastk subgraph

Next we give a LP based solution for theDalkS problem. Define a variablexi,j for
every edge(i, j) ∈ E(G) and a variableyi for every vertexi ∈ V (G). Consider now
the following LP:

maximize
∑
i,j

xi,j (2)

xi,j ≤ yi ,∀(i, j) ∈ E(G); xi,j ≤ yj ,∀(i, j) ∈ E(G)

∑
i

yi = 1; yi ≤
1
l

,∀i ∈ V (G); xi,j , yi ≥ 0 ,∀(i, j) ∈ E(G),∀i ∈ V (G)

Herel ≥ k is the size of the optimum solution of theDalkSproblem. Since there
can ben − k + 1 possible sizes of the optimum solution, we can guess this value,
putting different values forl. In Section 3.3 we show that by first running the algorithm
Densest-Subgraphand then solving one single LP, we can guarantee a2-approximation.

Lemma 2. The optimum solution of LP (2) is greater than or equal to the optimum
value ofDalkS.

Proof. Let the optimum solution forDalkSbe obtained for a subgraphH havingl ≥ k
vertices and densityλ. Consider a solution for the above LP, where each of the variables
yi corresponding to the vertices ofH have value1

l . All the variablexi,j corresponding
to the induced edges ofH have value1l . The solution is feasible, since it satisfies all the
constraints of LP (2). The value of the objective function of the LP is

∑
(i,j)∈H xi,j =

E(H)
l = E(H)

V (H) = λ. Therefore the optimum value of the LP is≥ λ ut

Lemma 3. If the value of the optimum solution of LP (2) isλ, a subgraph of size≥ k
with density≥ λ/2 can be constructed from that solution of LP (2).

The proof can be found in the extended version [14]. The key idea is to show that
there exists a value ofr ∈ [0, 1], such that if we consider the subgraph induced by the
vertices withy value≥ r, then either it has density≥ λ/2 and size≥ k, or its size is
< k, but it has more than half the number of edges the optimum solution has. In the
later case, we can add arbitrary vertices to increase the size of the subgraph tok.

Theorem 5. If the value of the optimum solution of LP (2) isλ, a subsetS of vertices
can be computed from the optimum solution of LP (2), such that

d(G(S)) ≥ λ and |S| ≥ k

Proof. Consider every possible subgraph by settingr = yi for all distinct values ofyi.
By Lemma 3, there exists a value ofr such that|S(r)| ≥ k and |E(r)|

|S(r)| ≥ v/2, wherev

is an optimum solution of the LP. By Lemma 2 ,v ≥ λ and hence the proof. ut

The integrality gap of LP 2 is at least5
4 . Also the approximation factor of12 is tight

(see the extended version [14]).

3.3 Reducing the number of LP solutions

To reduce the number of LP solutions, we first run the algorithmDensest-Subgraph,
consider the solutions over all the iterations that have> k vertices and obtain the one
with maximum density. We call this modified algorithmDensest-Subgraph>k. We com-
pare the obtained subgraph fromDensest-Subgraph>k with the solution returned by the
LP based algorithm withl = k. The final solution is the one which has higher density.

When the optimum solution forDalkShas exactlyk vertices, Theorem 5 guarantees
that we obtain a2 approximation. Otherwise, the optimum subgraph has size> k.
In this situation, the following lemma shows that the solution returned byDensest-
Subgraph>k has density at least12 of the optimum solution ofDalkS. Therefore using
only a single solution of LP 2 along with the linear time algorithmDensest-Subgraph>k,
we can guarantee a2 approximate solution forDalkS.

Lemma 4. If the optimum subgraph ofDalkS problem has size> k, thenDensest-
Subgraph>k returns a2 approximate solution.

Proof. Let the optimum density beλ. Since the size of the optimum solution is> k,
if there exists any vertex in the optimum solution with degree< λ, then removing that
we would get higher density and the size of the subgraph still remains≥ k. Hence all
the vertices in the optimum solution has degree≥ λ. Now from Theorem 1, we get the
required claim. ut

3.4 Densest at leastk subgraph problem for directed graphs

Given a directed graphG = (V,E) and integersk1, k2, thedensest at least k directed
subgraph (DaLkDS) problem finds two subsets of nodesS andT containing at leastk1

andk2 vertices respectively for whichE(S,T)√
|S||T |

is maximized.

In this section we give a2 approximation algorithm for theDaLkDSproblem. Since
there are two parameters,k1, k2; we refer to this problem bydensest at least-k1, k2

problemfrom now on.

3.5 Densest at leastk1, k2 directed subgraph problem

Let S∗, T ∗ represent the optimum solution ofDaLkDSandd∗ represent the value of
the density corresponding toS∗, T ∗. Let the ratio|S

∗|
|T∗| bea. Since the possible values

of a can bei
j , wherei ≥ k1, j ≥ k2 andi, j ≤ |V |, we can guess the value ofa. We

run the max-flow based algorithm of Section 2.1 (maximum-directed-density-subgraph)
with the chosena to obtain the densest directed subgraph without any size constraints.
Instead of shrinking and removing the vertices and the edges in the densest directed
subgraph, as in algorithmDensest At least-k for DalkS, we only remove the edges and
maintain the vertices. We continue this procedure for the same choice ofa, until at some
round both the sizes ofS andT thus obtained exceedk1 andk2 respectively. LetSi and
Ti be the partial subsets of vertices obtained up to theith round. We append arbitrary
verticesA andB to Si andTi to form S′

i andT ′
i respectively, such that|S′

i| ≥ k1 and
|T ′

i | ≥ k2. The algorithm returnsS′
j , T

′
j , such thatd(S′

j , T
′
j) is maximum over all the

iterations.

Algorithm 3.2: DENSESTAT LEAST-k1, k2(G, k1, k2, a)

S0 ← ∅, T0 ← ∅, G0 ← G, i← 1
while |Si−1| < k1 or |Ti−1| < k2

do


Hi(S, T)← maximum-directed-density-subgraph(Gi−1, a)
Si ← Si−1 ∪Hi(S)
Ti ← Ti−1 ∪Hi(T)
Gi = shrink(Gi−1,Hi), i← i + 1

for eachSi, Ti

do
{

Add arbitrarymax(k1 − |Si|, 0) vertices toSi to formS′
i

Add arbitrarymax(k2 − |Ti|, 0) vertices toTi to formT ′
i

return (S′
j , T

′
j) which has maximum density among the(S′

i, T
′
i)s

Theorem 6. AlgorithmDensest At least-k1, k2 achieves an approximation factor of2
for theDaLkDSproblem.

Proof. For a chosena, algorithmDensest At least-k1, k2 returns subsetsHi(S) and
Hi(T) at iterationi, such that|Hi(S)|

|Hi(T)| = a. Suppose up tol1th iteration,|Sl1 | < k1 and
|Tl1 | < k2. Let |Sl1+1| ≥ k1, but up tol2th iteration,|Tl2 | < k2. At iteration l2 + 1,
|Tl2+1| ≥ k2. Now we consider the following cases,

Case 1:|E(Sl1 , Tl1)| ≥ |E(S∗, T ∗)|/2.
Case 2:|E(Sl2 , Tl2)

⋂
E(S∗, T ∗)| ≤ |E(S∗, T ∗)|/2.

Case 3:∃l′, l1 < l′ ≤ l2, such that|E(Sl′ , Tl′)| > |E(S∗, T ∗)|/2 and
|E(Sl′−1, Tl′−1)| ≤ |E(S∗, T ∗)|/2.

These three cases are mutually exclusive and exhaustive. When case 1 occurs, we
can append arbitrary vertices toSl1 andTl1 to make their sizes respectivelyk1 and

k2. In that case
E(S′

l1
,T ′

l1
)√

|S′
l1
||T ′

l1
| ≥

E(S∗,T∗)

2
√
|S∗||T∗|

= d∗/2. When case 2 occurs, at itera-

tion l2 at least half of the edges of the optimum are still not covered. Since no ver-
tices are ever deleted, choice ofS∗ andT ∗ maintains the ratioa and returns a den-
sity which is at leastd

∗

2 . Then we have∀i = 1, 2, .., l2, E(Hi(S),Hi(T))√
|Hi(S)||Hi(T)|

≥ d∗

2 , or

we have,E(Hi(S),Hi(T)) ≥
√
|Hi(S)||Hi(T)|d

∗

2 =
√

a|Hi(T)|d
∗

2 . Hence by sum-

ming over the iterations1 to l2 +1 we get,E(Sl2+1, Tl2+1) ≥
√

a
∑l2+1

i=1 |Hi(T)|d
∗

2 ≥
d∗

2

√
a|Tl2+1| = d∗

2

√
|Tl2+1||Sl2+1|. Hence we have,

E(S′
l2+1,T ′

l2+1)√
|S′

l2+1||T
′
l2+1|

= E(Sl2+1,Tl2+1)√
|Sl2+1||Tl2+1|

≥
d∗

2 .

When case 3 occurs, we have again∀i = 1, 2, .., l′, E(Hi(S),Hi(T))√
|Hi(S)||Hi(T)|

≥ d∗

2 . Now

following the same analysis as in case 2,E(Sl′ ,Tl′)√
|Sl′ ||Tl′ |

≥ d∗

2 . Since|S′
l′ | = |Sl′ | might be

much larger thank1, the analysis as in case 1 cannot guarantee a 2-approximation. Let

X1 = |
⋃l′

i=1 Hi(S)| = |Sl′ | andX2 =
∑l′

i=1|Hi(S)|. SimilarlyY1 = |
⋃l′

i=1 Hi(T)| =
|Tl′ | andY2 =

∑l′

i=1|Hi(T)|. We haveY2 = X2
a ≥

X1
a ≥

k1
a = k2. Also we have,

E(X1,Y1)√
|X2||Y2|

≥ d∗

2 . So E(X1,Y1)√
|S′

l′ |
= E(X1,Y1)√

|X1|
≥ E(X1,Y1)√

|X2|
≥
√

Y2
d∗

2 ≥
√

k2
d∗

2 . We add

arbitrary vertices toY1 to make its size equal tok2. Hence,E(X1,Y1)√
|S′

l′ |
≥
√
|T ′

l′ |
d∗

2 .

Also E(X1,Y1)√
|T ′

l′ |
= E(X1,Y1)√

k2
≥ E(X1,Y1)√

|Y2|
≥
√
|X2|d

∗

2 ≥
√
|S′

l′ |
d∗

2 . Multiplying we get,

E(S′
l′ ,T

′
l′)

2

√
|S′

l′ ||T
′
l′ |
≥
√
|S′

l′ ||T ′
l′ |

d∗2

4 , or we have,
E(S′

l′ ,T
′
l′)√

|S′
l′ ||T

′
l′ |
≥ d∗

2 . ut

For a particular value ofa, using parametric max-flow, algorithmDensest At least-
k1, k2 requires time of a single flow computation within a constant factor. However
there are|V |2 possible choices ofa. An algorithm that does not need to guess the value
of a, like Densest- Subgraph-Directed, is needed to reduce the time complexity, which
is still open. Here we note that a LP based solution for this problem can be designed in
the line of LP based algorithm forDalkS(details omitted).

4 Densest at mostk subgraph problem

Densest at mostk subgraph problem (DamkS) tries to find a subgraph of highest den-
sity, whose size is at mostk. Andersen et. al. [2] showed that anα approximation for
DamkSimplies aΘ(α2) approximation for the densestk subgraph problem. We prove
that approximatingDamkSis as hard as theDkSproblem, within a constant factor. Pre-
cisely we prove the following theorem:

Theorem 7. An α approximation algorithm forDamkSimplies an4α approximation
algorithm for the densest k subgraph problem

The proof can be found in an extended version [14].

5 Conclusion

In this paper, we have discussed different variations of the densest subgraph problems
with and without size constraints. We have considered hardness issues related to these
problems and have developed fast algorithms for them for both undirected and directed
networks. All these problems can be generalized to weighted setting, with same time-
complexity or sometimes with only alog |V | increase in running time. An interesting
open question will be to design linear time algorithm with an approximation factor bet-
ter than2 for densest subgraph without any size constraint or to improve the approxima-
tion factor forDalkSproblem. Obtaining faster algorithms fordensest at lease-k1, k2

subgraphproblem, or removing the requirement of guessinga in it or in the flow graph
construction of maximum density directed subgraph will also be useful.

References

1. R. Andersen. Finding large and small dense subgraphs.CoRR, abs/cs/0702032, 2007.
2. R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. InWAW ’09,

pages 25–36, 2009.
3. Y. Asahiro, R. Hassin, and K Iwama. Complexity of finding dense subgraphs.Discrete Appl.

Math., 121(1-3):15–26, 2002.
4. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. In

SWAT ’96, pages 136–148, 1996.
5. G. Buehrer and K. Chellapilla. A scalable pattern mining approach to web graph compression

with communities. InWSDM ’08, pages 95–106, 2008.
6. M Charikar. Greedy approximation algorithms for finding dense components in a graph. In

APPROX, pages 84–95, 2000.
7. Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification of dense commu-

nities in the web. InWWW ’07, pages 461–470, 2007.
8. U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem.Algorithmica, 29:410–

421, 1997.
9. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm

and applications.SIAM J. Comput., 18(1):30–55, 1989.
10. D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive graphs.

In VLDB ’05, pages 721–732, 2005.
11. A. V. Goldberg. Finding a maximum density subgraph. Technical report, 1984.
12. R. Kannan and V. Vinay. Analyzing the structure of large graphs. Technical report, 1999.
13. S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique.

SIAM J. Comput., 36(4):1025–1071, 2006.
14. S. Khuller and B. Saha. On finding dense subgraphs.http://www.cs.umd.edu/∼samir/grant

/ICALP09.pdf, 2009.
15. J. M. Kleinberg. Authoritative sources in a hyperlinked environment.J. ACM, 46(5):604–

632, 1999.
16. E. Lawler.Combinatorial optimization - networks and matroids. Holt, Rinehart and Winston,

New York, 1976.

