
Set Cover Revisited: Hypergraph Cover with Hard
Capacities⋆

Barna Saha1 and Samir Khuller2

1 AT&T Shannon Research Laboratory
2 University of Maryland College Park

barna@research.att.com, samir@cs.umd.edu

Abstract. In this paper, we consider generalizations of classical covering prob-
lems to handle hard capacities. In the hard capacitated set cover problem, addi-
tionally each set has a covering capacity which we are not allowed to exceed.
In other words, after picking a set, we may cover at most a specified number of
elements. Based on the classical results by Wolsey, an O(logn) approximation
follows for this problem.
Chuzhoy and Naor [FOCS 2002], first studied the special case of unweighted
vertex cover with hard capacities and developed an elegant 3 approximation for
it based on rounding a natural LP relaxation. This was subsequently improved to
a 2 approximation by Gandhi et al. [ICALP 2003]. These results are surprising in
light of the fact that for weighted vertex cover with hard capacities, the problem is
at least as hard as set cover to approximate. Hence this separates the unweighted
problem from the weighted version.
The set cover hardness precludes the possibility of a constant factor approxima-
tion for the hard-capacitated vertex cover problem on weighted graphs. However,
it was not known whether a better than logarithmic approximation is possible
on unweighted multigraphs, i.e., graphs that may contain parallel edges. Neither
the approach of Chuzhoy and Naor, nor the follow-up work of Gandhi et al. can
handle the case of multigraphs. In fact, achieving a constant factor approxima-
tion for hard-capacitated vertex cover problem on unweighted multigraphs was
posed as an open question in Chuzhoy and Naor’s work. In this paper, we resolve
this question by providing the first constant factor approximation algorithm for
the vertex cover problem with hard capacities on unweighted multigraphs. Previ-
ous works cannot handle hypergraphs which is analogous to consider set systems
where elements belong to at most f sets. In this paper, we give an O(f) approx-
imation algorithm for this problem. Further, we extend these works to consider
partial covers.

1 Introduction

Covering problems have been widely studied in computer science and operations re-
search, starting from the early work on set-cover [11, 15, 18]. In addition, the vertex

⋆ Research supported by NSF CCF-0728839, NSF CCF-0937865 and a Google Research Award.

cover problem has been extremely well studied as well – this is a special case of set
cover, where each element belongs to exactly two sets [2, 10]. Both these problems
have played a central role in the development of many important ideas in algorithms
– greedy algorithms, LP rounding, randomized algorithms, primal-dual methods, and
have been the vehicle to convey many central ideas in combinatorial optimization.

In this paper, we consider covering problems with hard capacity constraints. In other
words, if a set is chosen, it cannot cover all its elements, but there is an upper
bound on the number of elements that the set can cover. More formally, consider
a ground set of elements U = {a1, a2, . . . , an} and a collection of subsets of U ,
S = {S1, S2, . . . , Sm}. Each set S ∈ S has a positive integral capacity k(S) ∈ N
and has an upper bound (denoted by m(S)) on the number of copies. In addition, each
set can have arbitrary non-negative weight w̃ : S → R+. A solution for capacitated cov-
ering problem contains each set S ∈ S, x(S) times where x(S) = {0, 1, 2, . . . ,m(S)}
such that there is an assignment of at most x(S)k(S) elements to set S and all the ele-
ments are covered by the assignment. The goal is to minimize

∑
S∈S w̃(S)x(S). Using

Wolsey’s greedy algorithm [18], we can easily derive a O(log n) approximation for the
capacitated set cover problem with hard capacities.

Approximation algorithms for vertex cover with (soft) capacities were developed by
Guha et al [9]. In the soft capacitated covering problem there is no bound on the number
of copies of each set (vertex) that can be chosen. In [9], a primal dual algorithm was
developed to give a 2 approximation. This algorithm can be extended easily to handle
vertex cover with (soft) capacities in hypergraphs. In other words, if we have a hyper
graph with hyper edges of size at most f (set cover problem where each element belongs
to at most f sets), then we can easily get an f approximation [9]. On the other hand, the
case of hard capacities is quite difficult. In a surprising result, Chuzhoy and Naor [4]
showed that the weighted vertex cover problem with hard capacities is set-cover hard
and showed that for unweighted graphs a randomized rounding algorithm can give a
3 approximation. This was subsequently improved to a 2 approximation [7]. Vertex
cover is a special case of set cover problem where f = 2. This naturally raises the
question whether it is possible to obtain an f approximation for the unweighted set
cover problem with hard capacities, where each element belongs to at most f sets. The
approaches of [4, 7] do not extend to case when f > 2. Moreover, the results of [4, 7]
only hold for simple graphs. Obtaining a constant factor approximation algorithm for
the hard-capacitated vertex cover problem for unweighted multigraphs was posed as
an open question in [4]. In this paper, we resolve that question, and extending our
approach we also obtain an O(f)-approximation for the unweighted set cover problem
with hard capacities. Further, we also provide an O(f) approximation algorithm for
partial cover problem with hard capacities. Partial cover is a natural generalization of
covering problems where only a desired number of elements need to be covered [8].
While the works of [3, 17] extended the vertex cover with soft capacities to consider
partial cover, nothing prior to our work was known in the case of hard capacities.

The notion of capacities is also natural in the context of facility location problems, as
well as clustering problems and has been widely studied. Capacitated facility location
and k-median problems have been an active area of research [1,5,16] and frequently ap-

pear in applications involving placement of warehouses, web caches and as a subroutine
in several network design protocols. Non-metric capacitated facility location problem
is a generalization of hard-capacitated set cover problem for which Bar-Ilan et al. [1]
gave an O(log n+ logm)-approximation. In this problem, there are m facilities and n
clients; there is a cost associated for opening each facility and each client connects to
one of the open facility paying a connection cost while the number of clients that can
be assigned to an open facility remains bounded by its capacity. When, the connection
costs are either 0 or ∞, we get the set cover problem with hard capacities.

In several set cover applications, an element only belongs to a few sets. This is espe-
cially true in the context of scheduling. One such example is the work of Khuller, Li
and Saha [12] where they study a scheduling algorithm to allocate jobs to machines in
data centers such that the minimum number of machines are activated. The goal is to
minimize the energy to run machines while maintaining the makespan (maximum sum
of processing times on any machine). In data centers, each data is replicated a small
number of times (typically 3 copies). Thus a job needed to access specific data can be
run on one of a small number of machines. In [12], a (lnn+1) approximation algorithm
is provided that violates the makespan by a factor of 2. However, it does not consider
the fact that each job can be scheduled only on f (here f ≈ 3) machines. Incorporating
this, and in addition, considering that jobs have some fixed processing time, we obtain
the hard-capacitated set cover problem with elements belonging to at most f sets. The
scheduling model of [6] can also be seen as a hard-capacitated set covering instance
with multiple capacity constraints.

Our algorithms for the hard-capacitated versions of both vertex cover and set cover are
based on rounding linear programming (LP) relaxations. In the following subsection,
we outline the main reasons why the previous approaches fail and provide a sketch of
our algorithms.

1.1 Our Approach and Contributions

The works of [4, 7] cannot handle the hard-capacitated vertex cover problem on multi-
graphs, neither do their approaches extend to hypergraphs or set systems with elements
belonging to at most f sets. The algorithms in both of these works are based on LP
rounding and involve three major steps. First, they pick all vertices with fractional val-
ues above a desired threshold. Next, a randomized rounding step is performed to choose
some additional vertices. If even after step two, there are edges with unsatisfied frac-
tional coverage, an alteration step is performed, in which vertices are chosen as long
as all the edges are not fractionally fully covered maintaining the capacity constraints.
Finally, the fractional edge assignment variables are rounded through a flow computa-
tion. While, the expected cost of selecting vertices in the first two steps can be easily
bounded within a small factor of the optimal LP cost, the main crux of the argument re-
lies in showing that with high probability the alteration cost can also be charged within
a small factor of the cost incurred in the first two steps. When the graph does not contain
any parallel edge, the random variables required to prove such a statement are all in-
dependent and thus strong concentration inequalities can be employed for the analysis.

However, the presence of parallel edges (or having hypergraphs) make these random
variables positively correlated. This hinders the application of required concentration
inequalities and the analysis breaks down.

We utilize the LP-structure to decompose the problem into two simpler instances. In-
stead of consolidating the variables corresponding to sets (vertices), we modify the
variables associated with assignment of elements (edges) to sets (vertices). Viewing the
LP solution as a bipartite graph between elements and sets, the graph is decomposed
into a forest (H1) and an additional subgraph (H2) such that elements entirely covered
by either one of these can be rounded without much loss in the approximation. There
may be elements that are partially covered (fractionally) by sets in both H1 and H2.
We further modify the remaining fractional solution to recast the capacitated covering
problem on these unsatisfied elements as a multiset multicover (MM) problem without
any capacity constraints.

We show that the partially rounded solution is feasible for the natural linear pro-
gramming relaxation for MM. However the natural LP relaxation for MM has an un-
bounded integrality gap. Using a stronger LP relaxation, it is possible to give logn-
approximation algorithm for MM [14], but our fractional solution may not be feasible
for such stronger relaxations. Moreover, a log n approximation for MM is not sufficient
for our purpose. Instead, we show that it is possible to charge the cost of the obtained
solution to a constant factor of LP cost for MM and the number of elements in the set
system, and this suffices to ensure a constant approximation. Our algorithm for MM
follows the paradigm of grouping and scaling used for column restricted (each set has
same multiplicity for all elements) packing and covering problems [13]. However, our
set system is not column restricted. We still can group the elements into small and big
based on the extent of coverage these elements get from sets with relatively lower or
higher multiplicities compared to their demands. By scaling the fractional variables and
doing randomized rounding, we can satisfy the requirements of small elements, but
big elements may still have residual demands left. Satisfying the requirements of big
elements need a further step of careful rounding. Details are described in Section 2.2.

Our main contributions are as follows.

– We obtain an O(1) approximation algorithm for the vertex cover problem with hard
capacities on unweighted multigraphs for the unit multiplicity case, i.e., when all
m(v) = 1.

– We show an O(f)-approximation algorithm for the unweighted set cover problem
with hard capacities where each element belongs to at most f sets.
As a corollary, we obtain an O(1) approximation for the hard-capacitated vertex
cover problem on unweighted multigraphs for arbitrary multiplicities.

– We consider partial covering problem with hard capacities. We give O(1) approx-
imation for partial vertex cover with hard capacities and O(f) approximation for
partial set cover problem with hard capacities.

In the following section, we describe a constant factor approximation algorithm for the
hard-capacitated vertex cover problem on multigraphs with unit multiplicity (m(v) =

1, ∀v ∈ V(G)). The algorithm and the analysis contain the main technical ingredients
which are later used to obtain O(f) approximation algorithms for the set cover and
partial cover problems with hard capacities and arbitrary multiplicities.

2 Vertex Cover on Multigraphs with Hard Capacities

We start with the following linear programming relaxation for hard-capacitated vertex
cover with unit multiplicities.

minimize
∑
v∈V

x(v) (LPVC)

subject to

y(e, u) + y(e, v) = 1 ∀ e = (u, v) ∈ E, (1)

y(e, v) ≤ x(v), y(e, u) ≤ x(u) ∀e = (u, v) ∈ E, (2)∑
e=(u,v)

y(e, v) ≤ k(v)x(v) ∀v ∈ V, (3)

0 ≤ x(v), y(e, v), y(e, u) ≤ 1 ∀ v ∈ V, ∀e = (u, v) ∈ E. (4)

Here x(v) is an indicator variable, which is 1 if vertex v is chosen and 0 otherwise. Vari-
ables y(e, u) and y(e, v) are associated with edge e = (u, v). y(e, u) = 1 (y(e, v) = 1
) indicates edge e is assigned to vertex u (v). Constraints (1) ensure each edge is cov-
ered by at least one of its end-vertices. Constraints (2) imply an edge cannot be covered
by a vertex v, if v is not chosen in the solution. The total number of edges covered by
a vertex v is at most k(v) if v is chosen and 0 otherwise (constraints (3)). We relax the
variables x(v), y(e, v) to take value in [0, 1] in order to obtain the desired LP-relaxation.
The optimal solution of LPVC denoted by LPVC(OPT) clearly is a lower bound on the
actual optimal cost OPT.

2.1 Rounding Algorithm

Let (x∗, y∗) denote an optimal fractional solution of LPVC. We create a bipartite graph
H = (A,B,E(H)), where A represents the vertices of G, B represents the edges of G 3

and the links E(H) correspond to the (e, v) variables e ∈ B, v ∈ A with non-zero y∗

value 4. Each v ∈ A(H) is assigned a weight of x∗(v). Each link (e, v) is assigned a
weight of y∗(e, v). We now modify the link weights in a suitable manner to decompose
the link sets of H into two graphs H1 and H2. Special structures of H1 and H2 make
rounding relatively simpler on them.

– H1 is a forest. For each node v ∈ A(H1) and link (e, v) ∈ E(H1), y∗(e, v) < x∗(v).

3 We often refer a vertex in B(H) by edge-vertex to indicate it belongs to E(G).
4 in order to avoid confusion between edges of G with edges of H, we refer to edges of H by

links

– In H2, if (e, v) ∈ E(H2), then weight of link (e, v) is equal to the weight of v. Thus,
for each node v ∈ A(H2) and link (e, v) ∈ E(H2), y∗(e, v) = x∗(v).

A moment’s reflection shows the usefulness of such a property, essentially, in H2,
we can ignore the hard capacity constraints altogether.

The decomposition procedure is based on iteratively breaking cycles. We now explain
the rounding algorithms on each of H1 and H2.

Rounding on H2.

We discard all isolated vertices from H2. Let η ≥ 2 be the desired approximation factor.
We select all vertices in A(H2) with value of x∗ at least 1

η . Let us denote the chosen
vertices by D. Then,

D = {v | v ∈ A(H2), x
∗(v) ≥ 1

η
}.

For every edge-vertex e = (u, v) ∈ B(H2), if v (or u) is in D, and (e, v) ∈ E(H2) (or
(e, u) ∈ E(H2)), then we set y∗(e, v) = 1 (or y∗(e, u) = 1). That is, we assign e to v,
if the link (e, v) is in E(H2) and v is in D, else if u ∈ D and (e, u) ∈ E(H2), the edge e
is assigned to u.

Observation 1 From constraints (3),
∑

e=(u,v) y(e, v) ≤ x(v)k(v). Therefore,∑
e=(u,v)

y(e,v)
x(v) ≤ k(v), and hence in H2, after the assignment of edges to vertices

in D, all vertices maintain their capacity.

In fact, in H2, capacity constraints become irrelevant. Whenever, we decide to pick a
vertex in A(H2), we can immediately cover all the links in E(H2) incident on it.

All edges with both links in E(H2) get covered at this stage. In addition, if e ∈ B(H2)
has only one link (e, v) ∈ E(H2), but x∗(v) = y∗(e, v) ≥ 1

η , then since v ∈ D, e gets
covered. Therefore, the uncovered edges after this step either have no link in E(H2) or
are fractionally covered to an extent less than 1

η in H2.

Rounding on H1.

H1 is a forest; edge-vertices in H1 either have both or one link in E(H1). While the
vertices of H1 and H2 may overlap, the link sets are disjoint. Edge-vertices in B(H1)
with only one link in H1 are called dangling edges. We root H1 arbitrarily to some
node of A(H1). This naturally defines a parent-child relationship. Figure (1a) depicts
the structure of H1. Dangling edges are shown by dashed lines.

Rounding edges with both links in H1.

Algorithm (1) describes the procedure to assign edge-vertices that have both links in
E(H1).

We first select a collection of D′ vertices from A(H1) \D with x∗ value at least 1
η . Any

edge-vertex in B(H1) that has a child vertex chosen in D′ gets assigned to its child. For

Edges with both end-points in ��

Edges with one end point in ��

Original vertices

Dangling Edges

Fig 1a. Structure of ��, dangling edges are colored black and

connected by dashed lines, edges with both end-points in ��		

are colored white and connected by solid lines.

………………………………………………………

…

Nodes in ��	 that have not been selected in �

Fig 1b. Structure of �1		after the edges with two

end points in �1		have been assigned.

Algorithm 1 Assigning edges with two links in H1

1: let D′ = {v ∈ A(H1) | x∗(v) ≥ 1
η
}, select all the vertices in D′.

2: for each edge-vertex e with two links in H1 do
3: if the child vertex of e is selected in D′ then
4: assign e to the selected child vertex.
5: end if
6: end for
7: let T(v) denote the set of unassigned children edge-vertices incident on v ∈ A(H1) with

both links in H1.
8: select any t(v) = ⌈

∑
e=(u,v)∈T(v) y

∗(e, u)⌉ vertices from the children of the edge-vertices
in T(v), and assign the corresponding t(v) edge-vertices in T(v) to these selected children
vertices. If v′ is a newly selected vertex in this step and there are edges that have links incident
on v′ in E(H2), then assign those edges to v′ as well.

9: assign the remaining edge-vertices from T(v) to v.

each vertex v ∈ A(H1), we use T(v) to denote the set of children edge-vertices that are
not assigned in step (4). We select t(v) = ⌈

∑
e=(u,v)∈T(v) y

∗(e, u)⌉ vertices from the
children of the edge-vertices in T(v). We assign the corresponding t(v) edge-vertices
in T(v) to these newly selected children vertices. Rest of the edges in T(v) are assigned
to v.

Rounding dangling edges, i.e., with one link in H1.

After Algorithm 1 finishes, let L(v) denote the set of unassigned dangling edge-vertices
connected to v, and let l(v) =

∑
e=(u,v),e∈L(v) y

∗(e, u). L(v) are the leaf edge-vertices
of H1. We first prove a lemma that shows after the edge-assignment in Algorithm 1, we
still can safely assign at least |L(v)| − ⌈l(v)⌉ edges from L(v) to v without violating
its capacity. We show the residual capacity of v after assigning edges from E(H2) is at
least as high as 1 + |T(v)| − ⌈t(v)⌉ + |L(v)| − ⌈l(v)⌉. The number of edges assigned
to v from Algorithm 1 is at most 1+ |T(v)| − ⌈t(v)⌉ and hence the following lemma is
established.

Lemma 1. Each vertex v ∈ A(H1) can be assigned |L(v)| − ⌈l(v)⌉ leaf edges-vertices
without violating its capacity.

The edge-vertices in L(v) are leaves of H1, they are connected to v and have their other
link in E(H2). We first pick one vertex from A(H2) such that it covers at least one edge
from L(v). Let us denote this vertex by h2(v) and let it cover p2(v) ≥ 1 parallel edges
(v, h2(v)). If l(v) ≤ p2(v), then following Lemma 1, the rest of the edge-vertices of
L(v) can be assigned to v, and we do so.

If l(v) > p2(v). Let R(v) denote the vertices of A(H2) \ h2(v) that are end-points
of edges in L(v). If we pick enough vertices from R(v) such that they cover at least
l′(v) = l(v)− p2(v) + 1 leaf-edges, then again from Lemma 1, rest of the edges from
L(v) can be assigned to v.

We scale up all the x∗ variables of
∪

v∈A(H1)
R(v) by a factor of 1

1− 1
η

. We also scale

up the corresponding y∗ link variables by a factor of 1
1− 1

η

. Let (x̄, ȳ) denote the scaled

up variables. Then,
∑

e=(u,v)∈
L(v)\(v,h2(v))

ȳ(e, u) = (l(v)−p2(v)x∗(h2(v)))

(1− 1
η)

≥ (l(v)− p2(v)
η)

(1− 1
η)

>

l(v) − p2(v) + 1 = l′(v), where the last inequality follows from the fact that l(v) >
p2(v) ≥ 1. We let l′(v) = 0, if l(v) ≤ p2(v). We now have the following multi-set
multi-cover problem (MM).

For each v ∈ A(H1) with l′(v) > 0, we create an element a(v). For each vertex
u ∈

∪
v∈A(H1)

R(v), we create a multi-set S(u). If there are d(v, u) leaf edge-vertices
in L(v) \ (v, h2(v)) incident upon u, then we include a(v) in S(u), d(v, u) times . Each
element a(v) has a requirement of r(a(v)) = ⌊l′(v)⌋. The goal is to pick minimum num-
ber of sets such that each element a(v) is covered ⌊l′(v)⌋ times counting multiplicities.

Note that, since the original graph is a multigraph, d(v, u) can be greater than 1.

Lemma 2. If we set z(S(u)) = x̄u, ∀u ∈
∪

v∈A(H1)
R(v), then z is a feasible fractional

solution for the above stated multi-set multi-cover problem.

As described in Section 1.1, existing approaches are not sufficient to obtain an inte-
gral solution for the above MM problem that will ensure a constant approximation.
We instead, obtain an algorithm where the total number of sets picked is close to
s+

∑
u∈

∪
v∈A(H1) R(v)

x̄u, where s is the number of vertices in A(H1) with l′(v) > 0. In
Section 2.2, we prove the following theorem.

Theorem 3. Given any feasible fractional solution x̄ with cost F for multi-set multi-
cover problem with N elements, there is a polynomial time randomized rounding algo-
rithm that rounds the fractional solution to a feasible integral solution with expected
cost at most 21N + 32F .

The algorithm for assigning the leaf edge-vertices in L(v) is given in Algorithm (2).

Since, each vertex v ∈ A(H1) covers at most |L(v)| − ⌈l(v)⌉ leaf edge-vertices, by
Lemma 1 the capacity of all the vertices in H1 are maintained. We now proceed to
analyze the cost.

Algorithm 2 Assigning edges with only one link in H1

1: for each vertex v ∈ A(H1) with |L(v)| ≥ 1 do
2: select the vertex h2(v) that covers at least one edge-vertex from L(v) and assign the

corresponding edge-vertices to h2(v).
3: end for
4: for each vertex v ∈ A(H1) with l(v) ≤ p2(v) do
5: assign all the remaining edge-vertices (at most |L(v)| − ⌈l(v)⌉) to v
6: end for
7: for each vertex v ∈ A(H1) with l′(v) > 1 do
8: scale up the x∗ variables in

∪
v∈A(H1)

R(v) by a factor of 1

1− 1
η

and denote it by x̄.

9: end for
10: create the MM instance ({(a(v), d(v))}, {S(u)}), and round the fractional solution x̄ to

obtain an integral solution.
11: for each u such that S(u) is chosen by MM algorithm do
12: select u and assign all the leaf-edges incident on u to it.
13: end for
14: for each v ∈ A(H1) with l′(v) > 1 do
15: assign all the remaining leaf edge-vertices of L(v) (at most |L(v)| − ⌈l(v)⌉) to it.
16: end for

Theorem 2. There exists a polynomial time algorithm achieving an approximation fac-
tor of 34 for the hard-capacitated vertex cover problem with unit multiplicity on un-
weighted multigraphs.

2.2 Proof of Theorem 3

In the multi-set multi-cover problem (MM), we are given a ground set of N elements
U and a collection of multi-sets S of U , S = {S1, S2, . . . , SM}. Each multi-set S ∈ S
contains M(S, e) copies of element a ∈ U . Each element a has a demand of r(a) and
needs to be covered r(a) times. The objective is to minimize the number of chosen
sets that satisfy the demands of all the elements. Here we propose a new algorithm that
proves Theorem 3.

The following is a linear program relaxation for MM.

min
∑
S∈S

x(S)

∑
a∈S

M(a, S)x(S) ≥ r(a) ∀ a ∈ U

0 ≤ x(S) ≤ 1 ∀S ∈ S

2.3 Rounding Algorithm for MM

Let x∗ denote the LP optimal solution. The rounding algorithm has several steps.

Step 1. Selecting sets with high fractional value. First, we pick all sets S ∈ S
such that x∗(S) ≥ α > 0, where 1

α is the desired approximation factor. De-
note the chosen sets by H. Each element a now has a residual requirement of
r(a) −

∑
a∈S,S∈H M(S, a). Clearly the fractional solution x∗ projected on the sets

S \ H is a feasible solution for the residual problem. For each element a ∈ U , let
r̄(a) = r(a)−

∑
a∈S,S∈H M(S, a) be the residual requirement. For some β > 0 (to be

set later), let y(S) = βx∗(S), for each S ∈ S \ H. We have for all elements a ∈ U ,∑
a∈S,S∈S\H M(S, a)y(S) ≥ βr̄(a).

Note that after this step, we have a fractional solution with cost

|H|+
∑

S∈S\H

y(S) ≤ 1

α

∑
S∈H

x∗(S) + β
∑

S∈S\H

x∗(S).

For notational simplicity, we denote C = S\H. Next, we proceed to round the variables
y(S) for S ∈ C.

Step 2. Rounding into powers of 2. For each multiplicity M(S, a), ∀S ∈ C, a ∈ U ,
we round it to the highest power of 2 lesser than or equal to M(S, a) and denote it by
M1(S, a). For each requirement r̄(a), ∀a ∈ U , consider the lowest power of 2 greater
than or equal to r̄(a) and denote it by r̄1(a). Clearly, if

∑
a∈S,S∈C M(S, a)y(S) ≥

βr̄(a), then
∑

a∈S,S∈C M
1(S, a)4y(S) ≥ βr̄1(a). We denote y1 = 4y.

Step 3. Division into small and big elements. First, for each element if there is a
set that completely satisfies its requirement, we pick the set. We continue the pro-
cess as long as no more element can be covered entirely by a single set. Thus after
this procedure, for all elements a, and for all sets S, M1(S, a) < r̄1(a) and hence
M1(S, a) ≤ r̄1(a)

2 . Now for each element a, we divide the sets in C containing a into
big sets (Big(a)) and small sets (Small(a)). A set S ∈ C is said to be a big set for a, if
M1(S, a) ≥ 1

18 lnn r̄
1(a), otherwise it is called a small set, i.e.,

Big(a) = {S ∈ C |M1(S, a) ≥ 1

18 lnn
r̄1(a)}

Small(a) = {S ∈ C |M1(S, a) <
1

18 lnn
r̄1(a)}

Now, we decompose elements into big and small. An element is small if it is covered to
an extent of r̄1(a) by the sets in Small(a). Else, the element is covered at least to an
extent of (β − 1)r̄1(a) by the sets in Big(a) and we call it a big element. This follows
from the inequality

∑
a∈S,S∈C∩Big(a)

M1(S, a)y1(S) +
∑

a∈S,S∈C∩Small(a)

M1(S, a)y1(S) ≥ βr̄1(a).

Therefore, either the sets in Small(a) cover a to an extent of r̄1(a), or the sets in
Big(a) cover a to an extent of (β − 1)r̄1(a). Let β1 = β − 1. In the first case, we refer
a as a small element, otherwise it is a big element.

Step 4. Covering small elements. We employ simple independent randomized round-
ing for covering small elements. We pick each set S ∈ C with probability γy1S , for some
γ ≥ 2.

Lemma 3. All small elements are covered in Step 4 with probability at least(
1− 1

n1/3

)
.

Step 5. Covering big elements. This is the most crucial ingredient in the algorithm. For
each big element, we consider only the big sets containing it. For each such big element
and big set we have 1

18 lnnr
1
a < M1(S, a) ≤ r1a

2 . Since, multiplicities are powers of 2,
there are at most l = ln lnn + 3 different values of multiplicities of the sets for each
element a.

Let T a
1 , T

a
2 , . . . T

a
l denote the collection of these sets with multiplicities

r̄1(a)
2 , r̄1(a)

22 , . . . , r̄1(a)
2l

respectively. That is, T a
i = {S ∈ Big(a) | M(S, a) = r̄1(a)

2i }.
Set β1 ≥ 3.

For each i = 1, 2, . . . , l, if
∑

S∈Ta
i
y1(S) > i and the number of sets that have been

picked from T a
i in Step 4 is less than

∑
S∈Ta

i
y1(S)

(β1−2) , pick new sets from T a
i such that the

total number of chosen sets from T a
i is

⌈∑
S∈Ta

i
y1(S)

(β1−2)

⌉
.

We now show that each big element gets covered the required number of times and the
total cost is bounded by a constant factor of the optimal cost.

Lemma 4. Each big element a is covered r(a) times by the chosen sets.

Lemma 5. The expected number of sets selected in Step 4 is at most 21n’, where n′ are
the number of big elements that are not covered after Step 5.

Theorem 3. The algorithm returns a solution with expected cost at most 21N + 32F ,
where F =

∑
S x∗(S), and covers all the elements with probability at least 1− 1

n1/3 .

This completes the description of the O(1) approximation algorithm for hard-
capacitated vertex cover problem on multigraphs with unit multiplicities. We have not

tried to optimize the constants of our approach, but reducing the approximation ratio
to 2 or 3 may require significant new ideas. Theorem 3 is also crucially used to ob-
tain an O(f)-approximation algorithm for the set cover and partial cover problem with
arbitrary multiplicities. The results for set cover and partial cover problem appear in
Appendix 5 and 6.

References

1. Judit Bar-Ilan, Guy Kortsarz, and David Peleg. Generalized submodular cover problems and
applications. Theor. Comput. Sci., 250:179–200, January 2001.

2. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex
cover problem. Annals of Discrete Mathematics, 25:27–45, 1985.

3. Reuven Bar-Yehuda, Guy Flysher, Julián Mestre, and Dror Rawitz. Approximation of partial
capacitated vertex cover. In ESA, pages 335–346, 2007.

4. Julia Chuzhoy and Joseph (Seffi) Naor. Covering problems with hard capacities. SIAM J.
Comput., 36(2):498–515, 2006.

5. Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform capacities. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, SODA
’05, pages 952–958, 2005.

6. Erik D. Demaine and Morteza Zadimoghaddam. Scheduling to minimize power consumption
using submodular functions. In Proceedings of the 22nd ACM symposium on Parallelism in
algorithms and architectures, SPAA ’10, pages 21–29, 2010.

7. Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and Aravind Srinivasan. An
improved approximation algorithm for vertex cover with hard capacities. J. Comput. Syst.
Sci., 72:16–33, February 2006.

8. Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approximation algorithms for partial
covering problems. J. Algorithms, 53(1):55–84, 2004.

9. Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or. Capacitated vertex covering.
Journal of Algorithms, 48(1):257 – 270, 2003.

10. Dorit S. Hochbaum. Approximation algorithms for the set covering and vertex cover prob-
lems. Siam Journal on Computing, 11:555–556, 1982.

11. David S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst.
Sci., 9:256–278, 1974.

12. Samir Khuller, Jian Li, and Barna Saha. Energy efficient scheduling via partial shutdown. In
SODA, pages 1360–1372, 2010.

13. Stavros G. Kolliopoulos. Approximating covering integer programs with multiplicity con-
straints. Discrete Appl. Math., 129:461–473, 2003.

14. Stavros G. Kolliopoulos and Neal E. Young. Tight approximation results for general covering
integer programs. In IEEE Symposium on Foundations of Computer Science, pages 522–528,
2001.

15. László Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13(4):383 – 390, 1975.

16. Mohammad Mahdian and Martin Pal. Universal facility location. In in Proc. of European
Symposium of Algorithms 03, pages 409–421, 2003.

17. Julián Mestre. A primal-dual approximation algorithm for partial vertex cover: Making ed-
ucated guesses. In APPROX-RANDOM, pages 182–191, 2005.

18. Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2:385–393, 1982.

APPENDIX
The omitted proofs and descriptions of the algorithms are given here.

3 Vertex Cover on Multigraphs with Hard Capacities

3.1 Decomposition to H1 and H2

H1 and H2 contain the same set of vertices as H. We start by setting E(H1) = E(H)
and E(H2) = ∅. We remove all links and vertices from H1 with weight 0. Further,
for any link (e, v), if y∗(e, v) = x∗(v), we move (e, v) from H1 to H2. Therefore,
after this initial stage, for all links (e, v) ∈ E(H1), y∗(e, v) < x∗(v) and for all links
(e′, v′) ∈ E(H2), y∗(e′, v′) = x∗(v′).

While there is a cycle C = (v1, e1, v2, e2, . . . , vl, el, vl+1 = v1) in H1, we select an
ϵ > 0, and set y∗(vi, ei) = y∗(vi, ei) + ϵ and y∗(vi+1, ei) = y∗(vi+1, ei) − ϵ for
i = 1, 2, . . . , l. The choice of ϵ is such that after modification, all link weights sat-
isfy constraints (2) and (4), and at least one of them is tight. That is, for at least one
ej ∈ C, either y∗(vj , ej) = x∗(vj) or y∗(vj+1, ej) = x∗(vj+1) or y∗(vj , ej) = 0 or
y∗(vj+1, ej) = 0. We can always find such an ϵ > 0. New y∗ is a feasible solution
for LPVC. We move all links (e′, v′) that satisfy y∗(e′, v′) = x∗(v′) to H2, and drop
any link whose weight becomes 0. Any isolated node is dropped as well. Choice of ϵ
guarantees that at least one link from H1 is either dropped or moved; so the cycle is
broken.

Proceeding in this fashion, after at most |E(H1)| steps, we get H1 and H2 such that

– H1 is a forest and for each node v ∈ A(H1) and link (e, v) ∈ E(H1), y∗(e, v) <
x∗(v).

– In H2, for each node v ∈ A(H2) and link (e, v) ∈ E(H2), y∗(e, v) = x∗(v).

Since, x∗ does not change, objective function value of LPVC remains unchanged in the
process.

3.2 Proof of Lemma [1]

Lemma. Each vertex v ∈ A(H1) can be assigned |L(v)| − ⌈l(v)⌉ leaf edges-vertices
without violating its capacity.

Proof. Suppose, v belongs to H2 as well and is selected in H2. Then,∑
(e,v)∈E(H2)

x∗
v +

∑
(e,v)∈H1

y∗(e, v) ≤ k(v)x∗(v).

Thus, ∑
(e,v)∈E(H1)

y∗(e, v) = (k(v)− |{(e, v) ∈ E(H2), ∀e}|)x∗(v).

Now, (k(v)− |{(e, v) ∈ E(H2),∀e}|) is an integer, and we denote it by k′(v).

Let us assume v ∈ D′ first. Let the fractional value of the link connecting v to its parent
edge-vertex in H1 be b. The capacity of v is k′(v) ≥ ⌈b+ |T(v)|− t(v)+ |L(v)|− l(v)⌉.
The number of edges assigned to v is 1 + |T(v)| − ⌈t(v)⌉+ |L(v)| − ⌈l(v)⌉.

If t(v) and l(v) are both integers, then clearly 1 + |T(v)| − ⌈t(v)⌉+ |L(v)| − ⌈l(v)⌉ <
k′(v).

If t(v) is an integer, but l(v) is not an integer, then k′(v) ≥ |T(v)| − t(v) + |L(v)| −
⌊l(v)⌋ which is again at least the number of edges assigned to v. Similarly, the capacity
constraint holds when l(v) is an integer, but t(v) is not.

If l(v) and t(v) are both non-integers, then ⌈t(v)⌉+⌈l(v)⌉ > ⌊l(v) + t(v)⌋+1. Capacity
k′(v) ≥ |T(v)| + |L(v)| − ⌊t(v) + l(v)⌋, and the number of edges assigned to v is at
most 1 + |T(v)| − ⌈t(v)⌉ + |L(v)| − ⌈l(v)⌉ ≤ |T(v)| + |L(v)| − ⌊t(v) + l(v)⌋. Thus,
in all cases, the capacity constraint of v is maintained.

If v /∈ D′, then |L(v)| = 0, because otherwise leaf edge-vertices are assigned to v at
least to an extent of 1 − 1

η > 1
η . Therefore, x∗(v) > 1

η , leading to a contradiction.
Hence, |L(v)| must be 0. In this case, at most one parent edge-vertex can be assigned to
v, hence its capacity constraint is maintained.

3.3 Proof of Lemma [2]

Lemma. If we set z(S(u)) = x̄u, ∀u ∈
∪

v∈A(H1)
R(v)}, then z is a feasible fractional

solution for the above stated multi-set multi-cover problem

Proof. Consider any element a(v). The total fractional coverage of element a(v) from
z is∑
S(u)∋a(v)

d(v, u)z(S(u)) =
∑

u∈
∪

v∈A(H1) R(v)

x̄u =
∑

e=(u,v)∈
L(v)\(v,h2(v))

ȳ(e, u)

> l(v)− p2(v) + 1 (from Equation ??)
= l′(v) > r(a(v)),

3.4 Proof of Theorem [2]

Theorem. There exists a polynomial time algorithm achieving an approximation fac-
tor of 34 for the hard-capacitated vertex cover problem with unit multiplicity on un-
weighted multigraphs.

Proof. The capacities of all the vertices in H1 and H2 are maintained. The cost paid
while rounding the vertices in H2 is

η
∑
u∈D

x∗(u). (5)

From H1, vertices are chosen in two phases. First, for selecting vertices in D′, we pay
at most

η
∑

v∈D′/Ds.t.L(v)=0 and T(v)=0

x∗(v) +
1(

1− 1
η

) ∑
v∈D′/Ds.t.L(v)≥1 or T(v)≥1

x∗(v). (6)

Vertices with |L(v)| ≥ 1 must have fractional value at least
(
1− 1

η

)
. Vertices with

|T(v)| ≥ 1, also must have fractional value at least 1 − 1
η , since none of its children

edge-vertices were assigned in step (4) of Algorithm (1). The number of vertices picked
in step (8) of Algorithm 1 is at most

|{v ∈ D′s.t.|T(v)| ≥ 1}|+
∑

v∈A(H1)\D′∪D

x∗(v) ≤ 1(
1− 1

η

) ∑
v∈D′s.t.T(v)≥1

x∗(v)+
∑

v∈A(H1)∪A(H2)\D′∪D

x∗(v).

(7)

In Algorithm 2, we further select some vertices from A(H2). Let R =∪
v∈A(H1)

s.t.|L(v)|≥1

{R(v) ∪ h2(v)}. The cost paid for selecting vertices from R while

rounding on H1 is at most s for selecting the vertices h2(v) for all v and 21s +
32
∑

u∈
∪

v∈A(H1)
s.t.l′(v)>1

R(v) x̄(u) from Theorem 3. Therefore, the cost paid for selecting

vertices from H2 while rounding on H1 is at most

22s+
32

1− 1
η

∑
u∈

∪
v∈A(H1)

s.t.l′(v)>1

R(v)

x∗(u) ≤ 22(
1− 1

η

) ∑
v∈D′s.t.|L(v)|≥1

x∗(v)+
32

1− 1
η

∑
v∈A(H1)∪A(H2)\D∪D′

x∗(v).

(8)

Therefore, the total cost from Equation (5), (6), (7) and (8) is at most

η
∑

v∈D∪D′

s.t.x∗(v)<1− 1
η

x∗(v)+
23(

1− 1
η

) ∑
v∈D′∪D

s.t.x∗(v)≥1− 1
η

x∗(v)+

 32(
1− 1

η

) + 1

 ∑
v∈A(H1)∪A(H2)

\D∪D′

x∗(v)

Setting η = 34, we thus obtain a 34-approximation.

4 Omitted Proofs of Theorem [3]

4.1 Proof of Lemma [3]

Lemma. All small elements are covered in Step 4 with probability at least
(
1− 1

n1/3

)
.

Proof. Consider a small element a and define random variable Xa
S for each small set

S ∈ Small(a) as follows:

Xa
S = M1(a, S), if S is picked
= 0, otherwise

Then Xa =
∑

S∈Small(a) X
a
S denotes the number of times a is covered by the sets

in Small(a). We have E
[
Xa
]
= γr̄1a. Xa is a sum of independent random variables,

where each random variable Xa
S takes values between [0, 1

18 lnn r̄
1(a)]. We apply the

following version of the Chernoff-Hoeffding inequality.

Theorem 4 (The Chernoff-Hoeffding Bound). Given n independent random vari-
ables X1, X2, . . . , Xn each taking values between 0 and 1, if X =

∑n
i=1 Xi and

E
[
X
]
= µ then for any δ > 0

Pr {X < (1− δ)µ} ≤ e−µδ2/2,

where e is the base of the natural logarithm.

We define Za
S =

Xa
S

r̄1(a)
18 lnn

. Then Za
S ∈ [0, 1]. We apply the Chernoff-Hoeffding bound to∑

S∈Small(a) Z
a
S . We have E

[∑
S∈Small(a) Z

a
S

]
= γ18 log n.

Pr

 ∑
S∈Small(a)

Za
S < 18 log n

 = Pr
{
Xa

S < r̄1(a)
}

≤ e−γ18 log n
(1− 1

γ
)2

2 <
1

n4/3

Thus by union bound, all small elements are covered the required number of times with
probability at least

(
1− 1

n1/3

)
.

4.2 Proof of Lemma [4]

Lemma. Each big element a is covered r(a) times by the chosen sets.

Proof. Consider a big element a that is not covered after Step 4. Clearly, there is no set
in S such that M(S, a) > r̄1(a)

2 . Now, a must satisfy the following inequality∑
S∈Big(a)

M(a, S)y1(S) ≥ β1r̄
1(a),

and thus it also satisfies the inequality below

l∑
i=1

r̄1(a)

2i

∑
S∈Ta

i

y1(S) ≥ β1r̄
1(a).

Call Ra
i =

∑
S∈Ta

i
y1(S), for i = 1, 2, . . . , l. We pick at least ⌈Ra

i /(β1− 2)⌉ sets from
T a
i unless Ra

i ≤ i. If for all i, Ra
i > i, then taking β1 ≥ 3, element a is covered at least

to an extent of
∑l

i=1
r̄1(a)
2i Ra

i /(β1 − 2) = β1

β1−2 r̄
1(a) > 3r̄1(a). Otherwise, there are

some i, for which Ra
i ≤ i, and it is possible that we do not pick any set from T a

i . The
total fractional coverage coming from the sets in T a

i with Ra
i ≤ i is at most

r̄1(a)
l∑

i=1

i

2i
< 2r̄1(a).

Therefore,
l∑

i=1

r̄1(a)

2i

∑
S∈Ta

i ,Ra
i >i

y1(S) ≥ (β1 − 2)r̄1(a).

We set β = 3. Thus, element a is covered to an extent of at least r̄1a. The remaining
coverage requirement of element a is fulfilled by the sets chosen in H. Thus all the big
elements are covered.

4.3 Proof of Lemma [5]

Lemma. The expected number of sets selected in Step 4 is at most 21n’, where n′ are
the number of big elements that are not covered after Step 5.

Proof. Consider an element a. For each T a
i , i = 1, 2, . . . , l, compute the probability

that the number of sets chosen in Step 4 is less than Ra
i /(β1 − 2), where Ra

i as defined
in the previous lemma is

∑
S∈Ta

i
y1(S). We define an indicator random variable Xa

i (S)

for each set S ∈ T a
i .

Xa
i (S) = 1, if S is selected,

= 0, otherwise.

Then Xa
i =

∑
S∈Ta

i
Xa

i (S) denote the number of sets chosen from T a
i in Step 4. Now,

Pr {Xa
i (S) = 1} = γy1(S), where γ ≥ 3. Therefore, E

[
Xa

i

]
= γRa

i .

Hence, by the Chernoff-Hoeffding bound,

Pr

{
Xa

i <
Ra

i

(β1 − 2)

}
≤ e

− γRa
i

2

(
1− 1

γ(β1−2)

)2

.

With β1 = 3, γ = 2, we get Pr {Xa
i < Ra

i } ≤ e−
1
4R

a
i = 1.284−Ra

i . If Ra
i > i and

Xa
i < Ra

i , we pick at most Ra
i + 1 sets. The expected number of sets picked in Step 5

to cover a is at most

l∑
i=1,Ra

i ≥i)

(Ra
i +1)1.284−Ra

i ≤
l∑

i=1

i+ 1

1.284i
≤ 1

(1− 1
1.284)

+
1

1.284
(
1− 1

1.284

)2 ≤ 21.

Thus, the expected number of sets selected in Step 5 is at most 21n′, where n′ is the
number of big elements that get covered in Step 5.

4.4 Proof of Theorem [3]

Theorem. The algorithm returns a solution with expected cost at most 21N + 32F ,
where F =

∑
S x∗(S), and covers all the elements with probability at least 1− 1

n1/3 .

Proof. From Lemma 4.1 and 4.2, we know all the big elements are covered and all the
small elements are covered with probability at least 1− 1

n1/3 .

Step 1. The total number of sets picked is at most |H| where H are the sets each with
fractional value at least α. Thus, |H| < 1

α

∑
S∈H x∗

S .
Step 4. The total expected cost incurred in the randomized rounding step is at most∑

S∈S\H γy1S =
∑

S∈S\H 2y1S =
∑

S∈S\H 8yS =
∑

S∈S\H 8βx∗
S . Now β1 = 3

and β = β1 + 1 = 4. Hence, the expected cost is at most 32
∑

S∈S\H x∗
S .

Step 5. From Lemma 4.3, the expected number of sets picked is at most 21n′, where n′ are
the big elements that are not covered by Step 4.

Setting α = 1
32 , we get the desired result.

We have not tried to optimize the constants of our approach, but reducing the approxi-
mation ratio substantially to 2 or 3 may require significant new ideas.

5 Set Cover with Hard Capacity Constraints

In this section, we consider the unweighted set cover problem, where each set has a
hard capacity. We first consider the case, where each set has a single copy (m(S) =
1, ∀S). Next, this is extended to handle arbitrary multiplicities for each set. The main
result in this section is an O(f) approximation for the set cover problem with hard
capacity constraints where each element belongs to at most f sets. As a corollary, we
obtain a constant factor approximation algorithm for the vertex cover problem with hard
capacity where arbitrary number of copies of each vertex may be available.

The algorithm in this section follows the same basic steps as in Section 3. We start with
the natural LP-relaxation similar to LPVC.

minimize
∑
S∈S

x(S) (LPSC)

subject to ∑
S∋a

y(a, S) = 1 ∀ a ∈ U , (9)

y(a, S) ≤ x(S), ∀a ∈ U , a ∈ S, (10)∑
a∈S

y(a, S) ≤ k(S)x(S) ∀S ∈ S, (11)

0 ≤ x(S) ≤ 1 ∀S ∈ S, (12)

0 ≤ y(a, S) ≤ 1 ∀a ∈ U . (13)

The rounding algorithm is similar to the one described in Section 3. Here we highlight
the main changes. From the LP optimal solution (x∗,y∗), we create a bipartite graph
H = (A,B,E(H)), where A represents the sets, B represents the elements and links
in H represent whether a particular element is fractionally covered by a set in the LP
solution, that is, A = {S ∈ S},B = {a ∈ U},E(H) = {(a, S) | y∗(a, S) > 0}. Each
vertex S ∈ A has an associated weight of x∗(S), and each link (a, S) has an associated
weight of y∗(a, S). We now modify the link weights and in the process decompose H
into two graphs H1 and H2, where H1 is a forest and in H2 all the link weights are equal
to the weights of the corresponding incident vertex in A. This step is exactly same as
Step 1 in Section 3.

Step 2. Rounding on H2.

We discard all the isolated vertices in H2 and we select all the vertices in A(H2) with x∗

value equal or greater than min (1η ,
1
2f). Recall that η will be the desired approximation

ratio. Let us denote these chosen vertices by D. Then,

D = {S | S ∈ A(H2), x
∗(S) ≥ min (

1

η
,
1

2f
)}.

For every element a ∈ B(H2) with a contained in the sets {S1
a, S

2
a, . . . , S

f
a} ∈ B(H2),

if either one of these sets, say Si
a is in D and also (a, Si

a) ∈ E(H2), then we set the
corresponding y(a, Si

a) variable to 1. Here sets play the role of vertices in the vertex
cover problem and elements correspond to edges. Thus, following Observation 1, all
the capacities of the sets in D are maintained.

If all f links of an element a belong to E(H2), then after this step, a is covered. Oth-
erwise, if the total fractional contribution of the links connecting a in H2 is at least
min (f−1

η , f−1
2f), then again a is covered . We now proceed to H1.

Step 3. Rounding on H1. H1 is a forest, it contains the vertices in A(H1) and elements
that have at least one link in E(H1). We call an element dangling if it has at least one

link in E(H2) and at least one link in E(H1). We root each tree in H1 to some arbitrary
set. Trees naturally define a parent-child relationship.

Step 3a. Rounding elements with all f connections in H1.

In H1, we define D′ as

D′ = {S | S ∈ A(H1) \ D, x∗(S) ≥ min (
1

η
,
1

2f
)}.

For each element in B(H1), if at least one of its children set is selected in D′, we assign
a to it. Define T(S) to be the collection of elements contained in S that are not yet
assigned and have all the links in E(H1). Consider, any such element a′ ∈ T(S). Since
a′ has not been covered, none of its children sets are picked. Denoting these children
sets by C(a′), all S ∈ C(a′) have fractional value strictly less than min (1

2f ,
1
η). Can

S ∈ C(a′) have any children element a′′ in H1 that is not yet unassigned ? a′′ must have
at least one link either in E(H1) or E(H2) with fractional value at least min (1η ,

1
2f), and

thus gets assigned. Since a′ is not covered by any of at most (f − 1) children sets in
H1, we have x∗(S) ≥ 1−min (f−1

η
f−1
2f).

We now pick t(S) = ⌈
∑

a′∈T(S)

∑
a′∈S′\S y∗(a, S)⌉ sets one from each of the chil-

dren sets of t(S) elements in T(S). Rest of the elements in T(S) are assigned to S.
Whenever, we pick a set in this stage, if there is any element in this set that is connected
to it by a link in H2, we assign that element to the set.

Step 3b. Rounding dangling elements, i.e, with not all f connections in H1.

Define L(S) as the collection of dangling elements connected to S that are not covered
in the previous steps and l(S) =

∑
a∈S

∑
a∈S′,(a,S′)∈E(H2)

y∗(a, S′). Note that any S,

with |L(S)| > 0 must have x∗(S) ≥ 1−min (f−1
η

f−1
2f). We have a Lemma analogous

to Lemma 1.

Lemma 6. Each set S ∈ A(H1) can be assigned |L(S)| − ⌈l(S)⌉ dangling elements
without violating its capacity.

Proof. Suppose, S belongs to H2 as well and is selected in H2. Then,∑
as.t.(a,S)∈E(H2)

x∗(S) +
∑

as.t.(a,S)∈E(H1)

y∗(a, S) ≤ k(S)x∗(S).

Thus, ∑
a|(a,S)∈E(H1)

y∗(a, S) = (k(S)− |{a | (a, S) ∈ H2}|)x∗(S).

Now, (kS − |{a | (a, S) ∈ E(H2)}|) is an integer, and we denote it by k′(S).

Let us assume S ∈ D′ first. Let the fractional value of the link connecting S to its parent
edge-vertex be b. The capacity of S is k′(S) ≥ ⌈b+ |T(S)| − t(S) + |L(S)| − l(S)⌉.
The number of elements assigned to S is at most 1+ |T(S)|−⌈t(S)⌉+ |L(S)|−⌈l(S)⌉.

Now, following a similar argument as in Lemma 1, we get the desired result.

The elements in L(S) have at least one link in E(H2) and other than S (which is the
parent node for the elements of L(S) in H1), may be connected to some sets (that appear
as their children) in A(H1). We first pick one set other than S from A(H2) such that it
covers at least one element from L(S). Let us denote this set by h2(S) and the elements
of L(S) that it covers by P2(S). Let |P2(S)| = p2(S). If l(S) ≤ p2(S), then rest of
the elements of L(S) can be assigned to S (by Lemma 6), and we exactly do that. Else,
l(S) > p2(S).

Consider all sets in A(H1) ∪ A(H2) that contain the elements of L(S) except S and
h2(S). Denote these sets by R(S). Therefore, any set in R(S) is connected by at most
one link from E(H1) (because of the tree structure); rest of the links are from E(H2).
Hence, if we pick a set in R(S), we can assign all the elements it connects to both in
E(H1) and E(H2) without violating its capacity5.

We scale up all the x∗ variables of
∪

S∈A(H1)
R(S) by a factor of 1

1−min (f−1
η , 1

2f)
. We

also scale up the corresponding y∗ link variables by a factor of 1
1−min (f−1

η , f−1
2f)

. Let

(x̄, ȳ) denote this scaled up variables.

Lemma 7. After scaling up ȳ satisfies
∑

(a,S′)
s.t.a∈L(S)\P2(S),S′∈R(S)

ȳ(a, S′) ≥ l(s) −

p2(S) + 1.

Proof.

∑
(a,S′)

s.t.a∈L(S)\P2(S),S′∈R(S)

ȳ(a, S′) =

(
l(S)−

∑
a∈P2(S)

∑
S′∋a,S′ ̸=S y∗(a, S′)

)
(
1−min (f−1

η , f−1
2f)

)

≥

(
l(S)− p2(S)min (f−1

η , f−1
2f)

)
(
1−min (f−1

η , f−1
2f)

)
> l(S)− p2(S) + 1,

where the last inequality follows from the fact that l(S) > p2(S) > 1.

We set l′(S) = 0 if l(S) ≤ p2(S), else we set l′(S) = l(s)− p2(S)+ 1. If we can pick
enough sets from R(S) such that at least ⌊l′(S)⌋ elements from L(S) are covered by the
sets picked from R(S), then from Lemma 6, the remaining elements can be assigned to
S.

We thus arrive to the MM problem.

5 this holds because any set S′ that has at least one link fractionally connected to it in E(H1)
has capacity k′(S′) ≥ 1.

For each S ∈ A(H1) with l′(S) > 1, we create an element a(S). For each set S′ ∈∪
S∈A(H1)

R(S), we create a multi-set T (S′). If there are d(S, S′) elements in L(S) \
P2(S) incident upon S′, then we create d(S, S′) copies of a(S) in T (S′). Each element
a(S) has a requirement of r(S) = ⌊l′(S)⌋. The goal is to pick minimum number of sets
such that each element a(S) is covered ⌊l′(S)⌋ times counting multiplicities.

We solve the MM problem and for each selected set T (S′), we include S′ in the so-
lution. If there are d(S, S′) copies of a(S) in T (S′), then there are d(S, S′) elements
from L(S) \ P2(S) that are contained in S′. We let S′ cover all these elements. The
number of elements that are not covered from L(S) is at most |L(S)|−⌊l′(S)⌋−p2(S),
which is at most L(S) − ⌈l(S)⌉. By, Lemma 6, these elements can be covered by S
and therefore we assign them to S. Each element S′ covers all the elements linked to
it in E(H2) and possibly one extra element that is linked in E(H1). Since capacities are
always integers, S′ maintains its capacity.

Theorem 5. There exists a polynomial time algorithm achieving an approximation fac-
tor of max (65, 2f) for the set cover problem with hard capacities with unit multiplici-
ties, where each element is contained in at most f sets.

Proof. The capacities of all the sets in H1 and H2 are maintained.

The cost paid while rounding the sets in H2 is

max(2f, η)
∑
S∈D

x∗(S). (14)

From H1, sets are chosen in two phases. First, for selecting vertices in D′, we pay at
most

max(2f, η)
∑

S∈D′/D
s.t,|L(S)|=0 and |T(S)|=0

x∗(S)+
1

1−min (f−1
η , f−1

2f)

∑
S∈D′/D

s.t,|L(S)|≥1 or |T(S)|≥1

x∗(S).

(15)

The sets with |L(S)| ≥ 1 or |T(S)| ≥ 1 must have fractional value at least (1 −
min (f−1

η , f−1
2f)). The number of sets picked to satisfy the requirement of t(S) for all

S is at most

|{S s.t. |T(S)| ≥ 1}|+
∑

S∈A(H1)\D′∪D

x∗(S)

≤ 1

1−min (f−1
η , f−1

2f)

∑
S∈D′/D

s.t. T(S)≥1

x∗(S) +
∑

S∈A(H1)∪A(H2)\D′∪D

x∗(S). (16)

We further select sets from A(H1) and A(H2) to satisfy the requirements from L(S).
Let R =

∪
S∈A(H1)

s.t.|L(S)|≥1

{R(S) ∪ h2(S)}. The cost paid for selecting sets from R

while rounding on H1 is at most s for selecting the sets h2(S) for all S and 21s +
32
∑

S′∈
∪

S∈A(H1)
s.t.l(S)>1

R(S) x̄(S) from Theorem 4.4. Here s = |{S ∈ A(H1)s.t.|L(S)| ≥

1}|. Therefore, the cost paid in this step is at most

22s+
32

1−min (1η ,
1
2f)

∑
S′∈

∪
S∈A(H1)
s.t.l(S)>1

R(S)

x∗(S) ≤ 22

1−min (f−1
η , f−1

2f)

∑
S∈D′s.t.|L(S)|≥1

x∗(S)

+
32

1−min (f−1
η , f−1

2f)

∑
S∈A(H1)∪A(H2)\D∪D′

x∗(S). (17)

Therefore, the total cost from Equation (14), (15), (16) and (17) is at most

max (η, 2f)
∑

S∈D∪D′s.t.
x∗(S)<1−min (f−1

η , f−1
2f)

x∗(S) +
23

1−min (f−1
η , f−1

2f)

∑
S∈D′∪Ds.t.

x∗(S)≥1−min (f−1
η , f−1

2f)

x∗(v)

+

(
32

1−min (f−1
η , f−1

2f)
+ 1

) ∑
v∈A(H1)∪A(H2)

\D∪D′

x∗(v)

We can adjust the value of η according to the value of f , in general, by setting η = 65,
we obtain a max (65, 2f)-approximation.

5.1 Hard-Capacitated Set Cover with Arbitrary Multiplicities

Given an instance of hard-capacitated set cover with arbitrary multiplicities where each
element belongs to at most f sets, we reduce it to an instance of unit multiplicity by
slightly increasing the value of f . First, we solve the following natural LP-relaxation,
where set S has multiplicity m(S).

minimize
∑
S∈S

x(S) (LPSC−Mult)

subject to (18)∑
S∋a

y(a, S) = 1 ∀ a ∈ U , (19)

y(a, S) ≤ x(S), ∀a ∈ U , a ∈ S, (20)∑
a∈S

y(a, S) ≤ k(S)x(S) ∀S ∈ S, (21)

0 ≤ x(S) ≤ m(S) ∀S ∈ S, (22)

0 ≤ y(a, S) ≤ 1 ∀a ∈ U . (23)

Let (x∗,y∗) be an optimal solution of the above LP. We construct a bipartite graph
H(A,B,E(H)), where A contains sets, possibly multiple copies of them, B contains the
elements and links are created based on non-zero components of y∗. For each set S ∈ S
with x∗(S) > 0, we create ⌈x∗(S)⌉ copies of S in A. Each one of them except the first
one gets a weight of 1, while the first one gets a weight of x∗(S) − ⌊x∗(S)⌋. We de-
note the weights of the sets by w. Therefore the total weight of all the sets in A equals∑

S x∗(S). Next, for each element a, we create a vertex a in B. Let a be contained in
sets S1

a, S
2
a, . . . , S

f
a with fractional values y∗(a, S1

a), y
∗(e, S2

a), . . . , y
∗(e, Sf

a) respec-
tively. Consider, one of these sets, say Si

a. Let there be l copies of Si
a in A. Denote them

by Si
a,1, S

i
a,2, . . . , S

i
a,l and their weights by w(Si

a,1) = h,w(Si
a,2) = w(Si

a,3) = . . . =

w(Si
a,l) = 1. The fractional capacity of Si

a,j , j ∈ [1, l], is w(Si
a,j)k(S

i
a).

We start with Si
a,1 and create a link (a, Si

a,1). Let the current weight of the
links connected to Si

a,1 be W1. We set the weight of (a, Si
a,1) as z(a, Si

a,1) =

min y∗(a, Si
a), w(S

i
a,1),W1 − w(Si

a,l)k(S
i
a). We set y∗(a, Si

a) = y∗(a, Si
a) −

z(a, Si
a,1) and if y∗(a, Si

a) > 0, we proceed to Si
a,2.

We again create a link (a, Si
a,2). Let the current weight of the

links connected to Si
a,2 be W2, then we set the weight of (a, Si

a,2)

as z(a, Si
a,2) = min (y∗(a, Si

a), w(S
i
a,2),W1 − w(Si

a,2)k(S
i
a)) =

min (y∗(a, Si
a),W1 − w(Si

a,2)k(S
i
a)).

A link is never made to a copy Si
a,j , j ≥ 3, unless the (j − 1)-th copy is completely

filled up to its fractional capacity which is at least 1. Therefore, element a may have
links to at most 3 copies of Si

a. We repeat the same procedure for all the other sets.

Hence, in the created bipartite graph an element may be linked to at most 3f sets. Also,
the vectors (w, z) satisfy the constraints of LPSC. Each set in the modified instance now
has multiplicity 1, therefore from Theorem 5, we get a max (65, 6f) approximation
algorithm for it.

Theorem 6. There exists a polynomial time algorithm achieving an approximation fac-
tor of max (65, 6f) for the set cover problem with hard capacities and arbitrary multi-
plicities, where each element is contained in at most f sets.

Corollary 1. There exists a polynomial time algorithm achieving an approximation
factor of 22 for the vertex cover problem with hard capacities and arbitrary multiplici-
ties in multigraph.

Proof. We reduce the vertex cover with arbitrary multiplicities to a unit multiplicity
instance. Thus, after the reduction, we have f ≤ 6. Therefore, if we set η = 38 in
Theorem 5, we get a 38-approximation.

We have not tried to optimize the constants of our approach, but reducing the approxi-
mation ratio substantially to 2 or 3 may require significant new ideas.

6 Partial Covering Problems with Hard Capacities

In the partial set cover problem with hard capacities, it is not required to cover all the
elements. In stead we need to cover only n′ elements. Again the goal is to maintain
all the hard capacity constraints and pick minimum number of sets to cover any of n′

elements.

We reduce the partial cover problem with hard capacities to one with the standard set
cover problem with hard capacities increasing the cost only by an additive one. In addi-
tion, if earlier each element belongs to f sets, now it can belong to at most f + 1 sets.
These two properties enable us to use any O(f) approximation for hard-capacitated set
cover problem to obtain an O(f) approximation algorithm for partial set cover problem
with hard capacities.

The reduction is as follows. We create a dummy set that contains all the elements and
assign its capacity to be (n− n′). Each element now belongs to f + 1 sets and if there
is an optimal solution for the partial cover problem with hard capacities that uses r sets
then we have a hard-capacitated set cover solution on the new instance with r + 1 sets.
We just use the dummy set to cover the remaining (n−n′) elements. Hence the desired
result follows.

