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Abstract—We address the problem of efficiently gathering
correlated data from a wireless sensor network, with the aim of
designing algorithms with provable optimality guarantees, and
understanding how close we can get to the known theoretical
lower bounds. Our proposed approach is based on finding an
optimal or a near-optimal compression tree for a given sensor
network: a compression tree is a directed tree over the sensor
network nodes such that the value of a node is compressed using
the value of its parent. We focus on broadcast communication
model in this paper, but our results are more generally applicable
to a unicast communication model as well. We draw connections
between the data collection problem and a previously studied
graph concept called weakly connected dominating sets, and we
use this to develop novel approximation algorithms for the
problem. We present comparative results on several synthetic
and real-world datasets showing that our algorithms construct
near-optimal compression trees that yield a significant reduction
in the data collection cost.

I. INTRODUCTION

In this paper, we address the problem of designing energy-
efficient protocols for collecting all data observed by the
sensor nodes in a sensor network at an Internet-connected base
station, at a specified frequency. Some of the key challenges in
designing an energy-efficient data collection protocol are: (1)
effectively exploiting the strong spatio-temporal correlations
present in most sensor networks, and (2) optimizing the routing
plan for data movement. In most sensor network deployments,
especially in environmental monitoring applications, the data
generated by the sensor nodes is highly correlated both in
time (future values are correlated with current values) and in
space (two co-located sensors are strongly correlated). These
correlations can usually be captured by constructing predictive
models using either prior domain knowledge, or historical data
traces. However, the distributed nature of data generation and
the resource-constrained nature of the sensor devices make it
a challenge to optimally exploit these correlations.

Consider an n-node sensor network, with node i mon-
itoring the value of a variable Xi, and generating a data
flow at entropy rate of H(Xi). In the naive protocol, data
from each source is simply sent to the base station through
the shortest path, rendering a total data transmission cost∑

i H(Xi)·d(i, BS), where d(i, BS) is the length of a shortest
path to the base station. However, because of the strong
spatial correlations among the Xi, the joint entropy of the
nodes, H(X1, . . . , Xn), is typically much smaller than the

sum of the individual entropies; the naive protocol ignores
these correlations.

A lower bound on the total number of bits that need to be
communicated can be computed using the Distributed Source
Coding (DSC) theorem [1], [2], [3], [4]. In their seminal work,
Slepian and Wolf [1] prove that it is theoretically possible to
encode the correlated information generated by distributed data
sources (in our case, the sensor nodes) at the rate of their joint
entropy even if the data sources do not communicate with each
other. This can be translated into the following lower bound on
the total amount of data transmitted for a multi-hop network:∑

i d(i, BS) × H(Xi|X1, . . . , Xi−1) where X1, . . . , Xn are
sorted in an increasing order by their distances to the base
station [5], [4]. With high spatial correlation, this number
is expected to be much smaller than the total cost for the
naive protocol (i.e., H(Xi|X1, . . . , Xi−1) � H(Xi)). The
DSC result unfortunately is non-constructive, with constructive
techniques known for only a few specific distributions [6];
more importantly, DSC requires perfect knowledge of the
correlations among the nodes, and may return wrong answers
if the observed data values deviate from what is expected.

However, the lower bound does suggest that significant
savings in total cost are possible by exploiting the correla-
tions. Pattem et al. [7], Chu et al. [8], Cristescu et al. [9],
among others, propose practical data collection protocols that
exploit the spatio-temporal correlations while guaranteeing
correctness (through explicit communication among the sensor
nodes). These protocols may exploit only a subset of the
correlations, and in many cases, assume uniform entropies
and conditional entropies. Further, most of this prior work
has not attempted to provide any approximation guarantees on
the solutions, nor have they attempted a rigorous analysis of
how the performance of the proposed data collection protocol
compares with the lower bound suggested by DSC.

We are interested in understanding how to get as close to the
DSC lower bound as possible for a given sensor network and
a given set of correlations among the sensor nodes. In a recent
work, Liu et al. [10] considered a similar problem to ours and
developed an algorithm that performs very well compared to
the DSC lower bound. However, their results are implicitly
based on the assumption that the conditional entropies are
quite substantial compared to the base variable entropies
(specifically, that H(Xi|X1, ..., Xi−1) is lower bounded). Our
results here are complimentary in that, we specifically target



the case when the conditional entropies are close to zero
(i.e., the correlations are strong), and we are able to obtain
approximation algorithms for that case. We note that we
are also able to prove that obtaining better approximation
guarantees is NP-hard, so our results are tight for that case. As
we will see later, lower bounding conditional entropies enables
us to get better approximation results and further exploration
of this remains a rich area of future work.

In this paper, we analyze the data collection problem under
the restriction that any data collection protocol can directly
utilize only second-order marginal or conditional probability
distributions – in other words, we only directly utilize pair-
wise correlations between the sensor nodes. There are several
reasons for studying this problem. First off, the entropy
function typically obeys a strong diminishing returns property
in that, utilizing higher-order distributions may not yield
significant benefits over using only second-order distributions.
Second, learning, and utilizing, second-order distributions is
much easier than learning higher-order distributions (which
can typically require very high volumes of training data).
Finally, we can theoretically analyze the problem of finding the
optimal data collection scheme under this restriction, and we
are able to develop polynomial-time approximation algorithms
for solving it.

The above restriction leads to what we call compression
trees. Generally speaking, a compression tree is simply a
directed spanning tree T of the communication network, in
which, the parents are used to compress the values of the
children. More specifically, given a directed edge (u, v) in T ,
the value of Xv is compressed using the value of Xu

1 (i.e.,
we use the value of Xu = xu to compute the conditional
distribution p(Xv|Xu = xu) and use this distribution to
compress the observed value of Xv (using say Huffman
coding)). The compression tree also specifies a data movement
scheme, specifying where (at which sensor node) and how the
values of Xu and Xv are collected for compression.

The compression tree-based approach can be seen as a
special case of the approach presented by one of the au-
thors in prior work [11]. There the authors proposed using
decomposable models for data collection in wireless sensor
networks, of which compression trees can be seen as a special
case. However, that work only presented heuristics for solving
the problem, and did not present any rigorous analysis or
approximation guarantees.

II. PROBLEM DEFINITION

We begin by presenting preliminary background on data
compression in sensor networks, discuss the prior approaches,
and then introduce the compression tree-based approach.

A. Notation and Preliminaries

We are given a sensor network modeled as an undirected,
edge-weighted graph GC(V = {1, · · · , n}, E), comprising of
n nodes that are continuously monitoring a set of distributed

1In the rest of the paper, we denote this by Xv |Xu

attributes X = {X1, · · · , Xn}. The edge set E consists of
pairs of vertices that are within communication radius of
each other, with the edge weights denoting the communica-
tion costs. Each attribute, Xi, observed by node i, may be
an environmental property being sensed by the node (e.g.,
temperature), or it may be the result of an operation on
the sensed values (e.g., in an anomaly-detection application,
the sensor node may continuously evaluate a filter such as
“temp > 100” on the observed values). If the sensed attributes
are continuous, we assume that an error threshold of e is
provided and the readings are binned into intervals of size
2e to discretize them. In this paper, we focus on optimal
exploitation of spatial correlations at any given time t; our
approach can be generalized to handle temporal correlations
in a straightforward manner.

We are also provided with the entropy rate for each attribute,
H(Xi) (1 ≤ i ≤ n) and the conditional entropy rates,
H(Xi|Hj) (1 ≤ i, j ≤ n), over all pairs of attributes.
More generally, we may be provided with a joint probability
distribution, p(X1, ..., Xn), over the attributes, using which we
can compute the joint entropy rate for any subset of attributes.
However accurate computation of such joint entropies for large
subsets of attributes is usually not feasible.

We denote the set of neighbors of the node i by N(i) and let
N̄(i) = N(i)∪{i} and deg(i) = |N(i)|. We denote by d(i, j)
the energy cost of communicating one bit of information along
the shortest path between i and j.

We focus on the wireless communication model (WL) in
this paper; specifically we assume that when a node transmits
a message, all its neighbors can hear the message (broadcast
model). We further assume that the energy cost of receiving
such a broadcast message is negligible, and we only count the
cost of transmitting the message. In the extended version of
the paper [12], we discuss how our approach generalizes to
wired communication networks, and to unicast or multicast
models.

B. Prior Approaches

Given the entropy and the joint entropy rates for compress-
ing the sensor network attributes, the key issue with using
them for data compression is that the values are generated
in a distributed fashion. The naive approach to using all the
correlations in the data is (a) to gather the sensed values at a
central sensor node, and (b) compress them jointly. However,
even if the compression itself was computationally feasible,
the data gathering cost would typically dwarf any advantages
gained by doing joint compression. Prior research in this
area has suggested several approaches that utilize a subset of
correlations instead. Several of these approaches are illustrated
in Figure 1 using a simple 5-node sensor network.
IND: Each node compresses its own value, and sends it to

the base station along the shortest path. The total commu-
nication cost is given by

∑
i d(i, BS) ·H(Xi).

Cluster: In this approach [7], [8], the sensor nodes are
grouped into clusters, and the data from the nodes in
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Fig. 1. Illustrating different data collection approaches – costs computed assuming H(Xi) = 1, H(Xi|Xj) = ε,∀ i, j: (i) IND: correlations ignored; (ii)
Cluster: using 3 clusters {X1}, {X2, X5}, {X3, X4}; (iii) DSC (theoretical optimal); (iv) Compression tree: with edges 1 → 2, 1 → 3, 1 → 5 and 3 → 4
(the cost under WN model would have been 5 + 7ε).

each cluster is gathered at a node (which may be dif-
ferent for different clusters) and is compressed jointly.
Figure 1 (ii) shows an example of this using three clus-
ters {1}, {2, 5}, {3, 4}. Thus the intra-cluster spatial cor-
relations are exploited during compression; however, the
correlations across clusters are not utilized.

Cristescu et al. [9]: The approach proposed by Cristescu et
al. is similar to ours, and also only uses second-order
distributions. However they only consider the unicast
communication model, and further assume that the en-
tropies and conditional entropies are uniform. Rickenbach
et al. [13] also present results under similar assumptions.

DSC: Distributed source coding (DSC), although not feasible
in this setting for the reasons discussed earlier, can be
used to obtain a lower bound on total communication cost
as follows [5], [9], [4]. Let the sensor nodes be numbered
in increasing order by distances from the base station (i.e.,
for all i, d(i, BS) ≤ d(i + 1, BS)). The optimal scheme
for using DSC is as follows: X1 is compressed by itself,
and transmitted directly to the sink (incurring a total cost
of d(1, BS)×H(X1)). Then, X2 is compressed according
to the conditional distribution of X2 given the value of
X1, resulting in a data flow rate of H(X2|X1) (since the
sink already has the value of X1, it is able to decode
according this distribution). Note that, according to the
distributed source coding theorem [1], sensor node 2 does
not need to know the actual value of X1. Similarly, Xi is
compressed according to its conditional distribution given
the values of X1, . . . , Xi−1. The total communication cost
incurred by this scheme is given by:∑n

i=1 d(i, BS)×H(Xi|X1, . . . , Xi−1)
Figure 1 (iii) shows this for our running example (note
that 5 is closer to sink than 3 or 4).

RDC: Several approaches where data is compressed along the
way to the base station (routing driven compression [7],
[14], [15]) have also been suggested. These however require
joint compression and decompression of large numbers of

data sources inside the network, and hence may not be
suitable for resource-constrained sensor networks.

Dominating Set-based: Kotidis [16] and Gupta et al. [17],
among others, consider approaches based on using a rep-
resentative set of sensor nodes to approximate the data
distribution over the entire network; these approaches how-
ever do not solve the problem of exact data collection, and
cannot provide correctness guarantees.

As we can see in Figure 1, if the spatial correlation is high,
both IND and Cluster incur much higher communication costs
than DSC. For example, if H(Xi) = 1,∀i, and if H(Xi|Xj) =
ε ≈ 0,∀i, j (i.e., if the spatial correlations are almost perfect),
the total communication costs of IND, Cluster (as shown in
the figure), and DSC would be 9, 6, and 1 respectively.

C. Compression Trees

As discussed in the introduction, in practice, we are likely
to be limited to using only low-order marginal or conditional
probability distributions for compression in sensor networks.
In this paper, we begin a formal analysis of such algorithms
by analyzing the problem of optimally exploiting the spatial
correlations under the restriction that we can only use second-
order conditional distributions (i.e., two-variable probability
distributions). A feasible solution under this restriction is fully
specified by a directed spanning tree T rooted at r (called
a compression tree) and a data movement scheme according
to T . In particular, the compression tree indicates which of
the second-order distributions are to be used, and the data
movement scheme specifies an actual plan to implement it.

More formally, let p(i) denote the parent of i in T . This
indicates that both Xi and Xp(i) should be gathered together at
some common sensor node, and that Xi should be compressed
using its conditional probability distribution given the value
of Xp(i) (i.e., p(Xi|Xp(i) = xp(i))). The compressed value
is communicated to the base station along the shortest path,
resulting in an entropy rate of H(Xi|Xp(i)). Finally, the root
of the tree, r, sends it own value directly to the base station,



resulting in an entropy rate of H(Xr). It is easy to see that the
base station can reconstruct all the values. The data movement
plan specifies how the values of Xi and Xp(i) are collected
together for all i.

In this paper, we address the optimization problem of
finding the optimal compression tree that minimizes the total
communication cost, for a given communication topology
and a given probability distribution over the sensor network
variables (or the entropy rates for all variables, and the joint
entropy rates for all pairs of variables).

We note that the notion of compression trees is quite similar
to the so-called Chow-Liu trees [18], used for approximating
large joint probability distributions.
Example 1: Figure 1 (iv) shows the process of collecting data
using a compression tree for our running example, under the
broadcast communication model. The compression tree (not
explicitly shown) consists of four edges: 1→ 2, 1→ 3, 1→ 5
and 3→ 4. The data collections steps are:

1. Sensor nodes 1 and 4 broadcast their values, using
H(X1) and H(X4) bits respectively. The Base Station
receives the value of X1 in this step.

2. Sensor nodes 2, 3, and 5 receive the value of X1, and
compress their own values using the conditional distribu-
tions given X1. Each of them sends the compressed values
to the base station along the shortest path.

3. Sensor node 3 also receives the value of X4, and it
compresses X4 using its own value. It sends the com-
pressed value (at an entropy rate of H(X4|X3)) to the
base station along the shortest path.

The total (expected) communication cost is thus given by:
H(X1) + H(X4) + H(X2|X1) + 2×H(X3|X1)+

2×H(X5|X1) + 2×H(X4|X3)
If the conditional entropies are very low, as is usually the

case, the total cost will be simply H(X1) + H(X4).

D. Compression Quality of a Solution

To analyze and compare the quality of the solutions with
the DSC approach, we subdivide the total communication cost
incurred by a data collection approach into two parts:
Necessary Communication (NC): As discussed above, for

practical reasons, data collection schemes typically use a
subset of the correlations present in the data (e.g. Cluster
only uses intra-cluster correlations, our approach only uses
second-order joint distributions). Given the specific set of
correlations utilized by an approach, there is a minimum
amount of communication that will be incurred during
data collection. This cost is obtained by computing the
DSC cost assuming only those correlations are present in
the data. For a specific compression tree, the NC cost is
computed as:

H(Xr)× d(r, BS) +
∑

i∈V H(Xi|Xp(i))× d(i, BS)
The NC cost for the Cluster solution shown in Figure 1(ii)
is 4 + 5ε, computed as:
H(X1) + H(X2) + 2 · H(X5|X2) + 2 · H(X3) + 3 · H(X4|X3)

In some sense, NC cost measures the penalty of ignoring
some of the correlations during compression. For Cluster,
this is typically quite high – compare to the NC cost for
DSC (= 1 + 8ε). On the other hand, the NC cost for the
solution in Figure 1 (iv) is 1 + 8ε (i.e., it is equal to the
NC cost of DSC – we note that this is an artifact of having
uniform conditional entropies, and does not always hold).

Intra-source Communication (IC): This measures the cost
of explicitly gathering the data together as required for
joint compression. By definition, this cost is 0 for DSC.
We compute this by subtracting the NC cost from the total
cost. For the solutions presented in Figures 1 (ii) and (iv),
the IC cost is 2− 2ε and 1− ε respectively. The broadcast
communication model significantly helps in reducing this
cost for our approach.

The key advantage of our compression tree-based approach is
that its NC cost is usually quite close to DSC, whereas the
other approaches, such as Cluster, can have very high NC costs
because they ignore a large portion of the correlations.

E. Solution Space

In our optimization algorithms, we consider searching
among two different classes of compression trees.
• Subgraphs of G (SG): Here we require that the com-

pression tree be a subgraph of the communication graph.
In other words, we compress Xi using Xj only if i and
j are neighbors.
• No restrictions (NS): Here we don’t put any restrictions

on the compression trees. As expected, searching through
this solution space is much harder than SG.

In general, we expect to find the optimal solution in the SG
solution space; this is because the correlations are likely to be
stronger among neighboring sensor nodes than among sensor
nodes that are far away from each other.

Finally, we define β as the bounded conditional entropy
parameter, which bounds the ratio of conditional entropies
for any pair of variables that can be used to compress each
other. Formally, 1

β ≤
H(Xi|Xj)
H(Xj |Xi)

≤ β for any nodes i and j and
some constant β ≥ 1. For the SG problem, this is taken over
pairs of adjacent nodes and for the NS problem, it is taken
over all pairs. Moreover, the above property implies that the
ratio of entropies between any pair of nodes is also bounded,
1
β ≤

H(Xi)
H(Xj)

≤ β.
We expect β to be quite small (≈ 1) in most cases

(especially if we restrict our search space to SG). Note that,
if the entropies are uniform (H(Xi) = H(Xj)), then β = 1.

F. Summary of Our Results

We refer to the two problems that we focus on in this
paper by WL-SG (where compression trees are restricted to be
subgraphs of G), and WL-NS (no restrictions on compression
trees). Below we summarize our key results.

1) (Section III-A) We first consider the WL-SG prob-
lem under an uniform entropy and conditional entropy
assumption, i.e., we assume that H(Xi) = 1 ∀i
and H(Xi|Xj) = ε ∀i, j, i 6= j. We develop a



(
1

1+2ε(davg−1/2) (H∆ + 1) + 2
)

-approximation for this
problem, where davg is the average distance to the base
station.

2) (Section III-B and III-C) We develop a unified generic
greedy framework which can be used for approximating
the problem under various communication cost models.

3) (Section III-D and III-E) We show that, for wireless
communication model, the greedy framework gives a
4β2Hn approximation factor for the SG solution space
and and an O(β3nε log n) (for any ε > 0) factor for the
NS solution space.

4) (Section IV) We illustrate through an empirical evalua-
tion that our approach usually leads to very good data
collection schemes in presence of strong correlations.
In many cases, the solution found by our approach
performs nearly as well as the theoretical lower bound
given by DSC.

III. APPROXIMATION ALGORITHMS

We first present an approximation algorithm for the WL-
SG problem under the uniform entropy assumption; this will
help us tie the problem with some previously studied graph
problems, and will also form the basis for our main algorithms.
We then present a generic greedy framework that we use to
derive approximation algorithms for the remaining problems.

A. The WL-SG Model: Uniform Entropy and Conditional
Entropy Assumption

Without loss of generality, we assume that H(Xi) = 1, ∀i
and H(Xi|Xj) = ε ∀i, j, for all adjacent pairs of nodes
(Xi, Xj). We expect that typically ε� 1.

For any compression tree that satisfies the SG property,
the data movement scheme must have a subset of the sensor
nodes locally broadcast their (compressed) values, such that
for every edge (u, v) in the compression tree, either u or v
(or both) broadcast their values. (If this is not true, then it
is not possible to compress Xv using Xu.) Let S denote this
subset of nodes. Each of the remaining nodes only transmits
ε bits of information.

To ensure that the base station can reconstruct all the values,
S must further satisfy the following properties: (1) S must
form a dominating set of GC (any node /∈ S must have a
neighbor in S). (2) The graph formed by deleting all edges
(x, y) where x, y ∈ V \ S is connected. Property (1) implies
every node should get at least one of its neighbors’ message
for compression and property (2) guarantees the connectedness
of the compression tree given S broadcast. Graph-theoretically
this leads to a slightly different problem than both the classical
Dominating Set (DS) and Connected Dominating Set (CDS)
problems[19]. Specifically, S must be a Weakly Connected
Dominating Set (WCDS) [20] of GC .

In the network shown in Figure 2, nodes 4, 3, 9 and 10
form a WCDS, and thus locally broadcasting them can give
us a valid compression tree (shown in Figure 2 (ii)). However,
note that nodes 4, 9, 10 and 2 form a DS but not a WCDS.
As a result, we cannot form a compression tree with these

nodes performing local broadcasts (there would be no way to
reconstruct the values of both X3 and X2).

The approach for the CDS problem that gives a 2H∆

approximation [19], gives a H∆+1 approximation2 for WCDS
[20]. We use this to prove that:

Theorem 1: Let the average distance to the base station
be davg =

P
j d(j,BS)

n . The approximation for WCSD yields
a

(
1

1+2ε(davg−1/2) (H∆ + 1) + 2
)

-approximation for WL-SG
problem under uniform entropy and conditional entropies
assumption.

Proof: The proofs of the theorems and the lemmas are
omitted due to space constraints, and can be found in the
extended version of the paper [12].

From the above theorem, if ε is small enough, say ε =
o( 1

davg
), the approximation ratio is approximately H∆). On

the other hand, if ε is large, the approximation ratio becomes
better. Specifically, if ε ≈ H∆/davg , then we get a constant
approximation. This matches our intuition that the hardness
of approximation comes mainly from the case when the
correlations are very strong. We can further formalize this –
by a standard reduction from the set cover problem which is
hard to approximate within a factor of (1 − δ) ln n for any
δ > 0 [21], we can prove:

Theorem 2: The WL-SG problem can not be approximated
within a factor of (1 − δ) ln n for any δ > 0 even with
uniform entropy and conditional entropy, unless NP ⊆
DTIME(nlog log n).

B. The Generic Greedy Framework

We next present a generic greedy framework that helps us
analyze the rest of the problems.

Suppose node p(i) is the parent of node i in the compression
tree T . Let Ii,p(i) denote the node where Xi is compressed
using Xp(i). We note that this is not required to be i or j, and
could be any node in the network. This makes the analysis of
the algorithms very hard. Hence we focus on the set of feasible
solutions of the following restricted form: Ii,j is either node i
or j. The following lemma states that the cost of the optimal
restricted solution is close to the optimal cost.

Lemma 1: Let the optimal solution be OPT and the op-
timal restricted solution be ÕPT . We have cost(ÕPT ) ≤
(2 + β)cost(OPT ). Furthermore, for WL-SG model,
cost(ÕPT ) ≤ 2cost(OPT ).

Our algorithm finds what we call an extended compression
tree, which in a final step is converted to a compression
tree. An extended compression tree ~T corresponding to a
compression tree T has the same underlying tree structure,
but each edge e(i, j) ∈ T is associated with an orientation
specifying the raw data movement. Basically, an extended
compression tree naturally suggests a restricted solution in
which an edge from i to j in ~T implies that i ships its raw
data to j and the corresponding compression is carried out at
j. We note that the direction of the edges in ~T may not be

2∆ is the maximum degree and Hn is the nth harmonic number, i.e, Hn =Pn
i=1

1
i

.
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Fig. 2. (i) A weakly connected dominating set of the sensor network is
indicated by the shaded nodes, which locally broadcast their values; (ii) The
corresponding compression tree (e.g. Node 3 is compressed using the value
of Node 1 at Node 1, whereas Node 5 is compressed using the value of
Node 4 at Node 5).
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Fig. 3. Illustrating the Treestar algorithm: First the treestars centered at
nodes 10, 9 and 3 are chosen, and finally the treestar centered at node 4 is
chosen. This causes the parents of nodes 1 and 5 to be re-defined as node
4, the parent of node 9 to be defined as node 5, and the parent of node 3 to
be defined as node 1. (i) also shows an extended compression tree.

the same as in T where edges are always oriented from the
root to the leaves, irrespective of the data movement. In the
following, we refer the parent of node i to be the parent in
T , i.e, the node one hop closer to the root, denoted by p(i).

The main algorithm greedily constructs an extended com-
pression tree by greedily choosing subtrees to merge in
iterations. We start with a empty graph F1 that consists
of only isolated nodes. During the execution, we maintain
a forest in which each edge is directed. In each iteration,
we combine some trees together into a new larger tree by
choosing the most (or approximately) cost-effective treestar
(defined later). Let the forest at the start of the ith iteration
be Fi. A treestar T S is specified by k trees in Fi, say
T1, . . . , Tk, a node r /∈ Tj(1 ≤ j ≤ k) and k directed edges
ej = (r, vj)(vj ∈ Tj , 1 ≤ j ≤ k) We call r the center,
T1, . . . , Tk the leaf-trees, ej the leaf-edges. The treestar T S
is a specification of the data movement of Xr, which we
will explain in detail shortly. Once a treestar is chosen, the
corresponding data movement is added to our solution. The
algorithm terminates when only one tree is left which will be
our extended compression tree ~T .

Let r be the center of T S and S be the subset indices of
leaf-trees. We define the cost of T S (cost(T S)) to be

min
vj∈Tj ,j∈S

(c(r, {vj}j∈S)H(Xr) +
∑
j∈S

H(Xvj |Xr)d(vj , BS))

where c(r, {vj}j∈S) is the minimum cost for sending Xr from
r to all vj’s. Essentially, the first term corresponds roughly to
the cost of intra-source communication (raw data movement
of Xr), denoted IC(T S) and the second roughly to the nec-
essary communication (conditional data movement), denoted
NC(T S). We say that the corresponding data movement is
an implementation of the treestar. The cost function c() differs
for different cost models of the problem; we will specify its
concrete form later.

We define the cost effectiveness of the treestar T S to be
ceff(T S) = cost(T S)

k+1 where k is the number of leaf-trees
in T S. In each iteration, we will try to find the most cost
effective treestar. Let Mce-Treestar(Fi) be the procedure for
finding the most (or approximately) cost effective treestar on
Fi. The actual implementation of the procedure Mce-Treestar

will be described in detail in the discussion of each cost model.
In some cases, finding the most cost-effective treestar is NP-
hard and we can only approximate it.

We now discuss the final data movement scheme and how
the cost of the final solution has been properly accounted in
the treestars that were chosen. Suppose in some iteration, a
treestar T S is chosen in which the center node r sends its
raw information to each vj(vj ∈ Tj , j ∈ S) (S is the set of
indices of leaf-trees in T S). The definition of the cost function
suggests that Xvj

is compressed using Xr at vj , and the result
is sent from vj to BS. However, this may not be consistent
with the extended compression tree ~T . In other words, some
vj may later become the parent of r, due to latter treestars
being chosen, in ~T which implies that r should be compressed
using vj instead of the other way around. Suppose some leaf
vp(vp ∈ Tp, p ∈ S) is the parent of r in ~T . The actual data
movement scheme is determined as follows. We keep the raw
data movement induced by T S unchanged, i.e, r still sends
Xr to each vj(j ∈ S). But now, Xr|Xvp instead of Xvp |Xr

is computed on node vp and sent to the base station. Other
leaves vj(j 6= p) still compute and send Xvj |Xr. It is easy
to check this data movement scheme actually implements the
extended compression tree ~T .

For instance, in Figure 3, node 3 is initially the parent of
node 1, but later node 4 becomes the parent of node 1, and in
fact node 1 ships X1|X4 to the base station (and not X1|X3).
Node 1 now being the parent of node 3 also compresses X3

and sends X3|X1 to BS. Due to the fact that 1
β ≤

H(X|Y )
H(Y |X) ≤

β, the actual data movement cost is at most β times the sum
of the treestar costs. Thus every part of the communication
cost incurred is counted in some treestar. We formalize the
above observations as the following lemma:

Lemma 2: Let T Si be the treestars we choose in iteration
i for 1 ≤ i ≤ `. Then: cost(T ) ≤ β

∑`
i=1 cost(T Si).

The pseudocode for constructing ~T and the corresponding
communication scheme is given in Algorithm 1.

C. The Generic Analysis Framework

OPT is defined as the optimal restricted solution. Let T Si

be the treestar computed in iteration i. After ` iterations (it is



Algorithm 1: The Generic Greedy Framework
F1 =

⋃n
i=1{{Xi}};

i→ 1;
while Fi is not a spanning tree do
T Si = Mce− Treestar(Fi);
Let E(T Si) be leaf-edges of TSi and r is the center
of T Si;
Fi+1 ← Fi + E(T Si);
Tr ← Tr + IC(T Si);
i = i + 1;

~T = Fi;
for each directed edge e(i, j) ∈ E(~T ) do

if i is the parent of j then
Compute Xj |Xi at j and send it to BS;

else
Compute Xi|Xj at j and send it to BS;

easy to see ` must be smaller than n), the algorithm terminates.
We assume in each iteration, Mce-Treestar is guaranteed to
find an α-approximate most cost-effective treestar. We assume
further the bounded conditional entropy parameter is β, Given
these, we can prove that:

Theorem 3: We can find a 2αβ2Hn approximate re-
stricted solution T in polynomial time, i.e.,cost(T ) ≤
β

∑`
i=1 cost(T Si) ≤ 2αβ2Hncost(OPT ).

D. The WL-SG Model

We first specify the cost function c(r, {vj}j∈S) in the wire-
less sensor network model where we require the compression
tree to be a subgraph of the communication graph and then
give a polynomial time algorithm for finding the most cost-
effective treestar.

Recall c(r, {vj}j∈S) is cost of sending Xr from r to all
vj’s. It is easy to see c(r, {vj}j∈S) = H(Xr) since we
require vj to be adjacent to r and a single broadcast of
Xr from r can accomplish the communication. The most
cost-effective treestar can be computed as follows: We fix a
node r as the center to which all leaf-edges will connect.
Assume T1, T2, . . . are sorted in a non-increasing order of
h(r, Tj) = minv∈Tj∩N(r) H(Xv|Xr)d(v,BS). h(r, Tj) cap-
tures the minimum cost of sending the data of some node in
Tj ∩ N(r) conditioned on Xr to the base station. The most
cost-effective treestar is determined simply by

min
k

{
H(Xr) +

∑k
j=1 h(r, Tj)

k + 1

}
.

In each iteration, for each candidate center r, sorting
h(r, Tj)s needs O(deg(r) log deg(r)) time. So, the most-
effective treestar can be found in O(|E| log n) time. There-
fore, the total running time is O(n|E| log n). In each iter-
ation, for each candidate center r, sorting h(r, Tj)s needs
O(deg(r) log deg(r)) time. Using Lemma 1 and Theorem 3,
we obtain the following.

Theorem 4: We can compute a 4β2Hn-approximation for
the WL-SG model in O(n|E| log n) time.

E. The WL-NS Model

Here we don’t put any restrictions on the compression
trees. Thus, a source node is able to send the message to a set
of nodes through a Steiner tree and the cost for sending one
bit is the sum of the weights of all inner nodes of the Steiner
tree (due to the broadcasting nature of wireless networks). In
graph theoretic terminology, it is the cost of the connected
dominating set that includes the source node and dominates
all terminals. Formally, the cost of the treestar T S with node
r as the center and S be the set of indices of the leaf-trees is
defined to be:

min
vj∈Tj

 
Cds(r, {vj}j∈S)H(Xr) +

X
j∈S

H(Xvj |Xr)d(vj , BS)

!
where Cds() is the minimum connected set dominating all
nodes in its argument.

Next, we discuss how to find the most effective treestar. We
reduce the problem to the following version of the directed
steiner tree problem [22].

Definition 1: Given a weighted directed graph G, a speci-
fied root r ∈ V (G), an integer k and a set X ⊆ V of terminals,
the D-Steiner(k, r,X) problem asks for a minimum weight
directed tree rooted at r that can reach any k terminals in X .
It has been shown that the D-Steiner(k, r,X) problem can be
approximated within a factor of O(nε) for any fixed ε > 0
within time O(nO( 1

ε )) [22].
The reduction is as follows. We first fix the center r. Then,

we create a undirected node-weighted graph D. The weight
of each node is H(Xr). For each node v, we create a copy
v′ with weight w(v′) = H(Xv|Xr)d(v,BS) and add an edge
(u, v′) for each u ∈ N̄(v). For each tree component Tj , we
create a group gj = {v′|v ∈ Tj}. Then, we construct the
directed edge-weighted graph . We replace each undirected
edge with two directed edges of opposite directions. For each
group gi, we add one node ti and edges (v, ti) for all v ∈ gi.
The following standard trick will transfer the weight on nodes
to directed edges. For each vertex v ∈ V (D), we replace it
with a directed edge (v′, v′′) with the same weight as w(v)
such that v′ absorbs all incoming edges of v and v′′ takes all
outgoing edges of v. We let all t′′i s be the terminals we want
to connect. It is easy to see a directed steiner tree connecting
k terminals in the new directed graph corresponds exactly to
a treestar with k leaf-trees.

Theorem 5: We develop an O(β3nε log n)-approximation
for the WL-NS model for any fixed constant ε > 0 in
O(nO( 1

ε )) time.

IV. EXPERIMENTAL EVALUATION

We conducted a comprehensive simulation study over sev-
eral datasets comparing the performance of several approaches
for data collection. Our results illustrate that our algorithms
can exploit the spatial correlations in the data effectively,
and perform comparably to the DSC lower bound. Below we
present results over a few representative settings.

Comparison systems:
We compare the following data collection methods.
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Fig. 4. Results of the experimental evaluation over the Rainfall data

– IND (Sec. II-B): Each node compresses its data inde-
pendently of the others.

– Cluster (Sec. II-B): The clusters are chosen using the
greedy algorithm presented in Chu et al. [8] – we start
with each node being in its own cluster, and combine
clusters greedily, till no improvement is observed.

– DSC: the theoretical lower bound is plotted (Sec. II-B).
– TreeStar: Our algorithm, presented in Sec. III-D, aug-

mented with a greedy local improvement step3.
For the TreeStar algorithm, we also show the NC cost (which
measures how well the compression tree chosen by TreeStar
approximates the original distribution). This cost is lower
bounded by the cost of DSC (which uses the best possible
compression tree).

Rainfall Data:
For our first set of experiments, we use an analytical expres-
sion of the entropy that was derived by Pattem et al. [7]
for a data set containing precipitation data collected in the
states of Washington and Oregon during 1949-19944. All the
nodes have uniform entropy (H(Xi) = h), and the conditional
entropies are given by: H(Xi|Xj) = (1− c

c+dist(i,j) )h, where
dist(i, j) is the Euclidean distance between the sensors i and
j. The parameter c controls the correlation. For small values
of c, H(Xi|Xj) ≈ h (indicating independence), but as c
increases, the conditional entropy approaches 0.

Figure 4 shows the results for 3 synthetically generated
sensor networks. We plot the total communication cost for
each of the above approaches normalized by the cost of IND.
The first plot shows the results for a 100-node network where
the sensor nodes are arranged in a uniform grid. Since the
conditional entropies depend only on the distance, for any two
adjacent nodes i, j, H(Xi|Xj) is constant. Because of this,
TreeStar-NC is always equal to DSC in this case. As we can
see, the extra cost (of local broadcasts) is quite small, and
overall TreeStar performs much better than either Cluster or
IND, and performs nearly as well as DSC.

We then ran experiments on randomly generated sensor
networks, both containing 100 nodes each. The nodes were
randomly placed in either a 200x200 square or a 300x30
rectangle, and communication links were added between nodes

3After the TreeStar algorithm finds a feasible solution, adding a few
redundant local broadcasts can cause significant reduction in the NC cost.
We greedily add such local broadcasts till the solution stops improving.

4http://www.jisao.washington.edu/data sets/widmann
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Fig. 5. Results for the Gaussian dataset

that were sufficiently close to each other (distance < 30). For
each plotted data point, we ran the algorithms on 10 randomly
chosen networks, and averaged the results. As we can see
in Figures 4 (ii) and (iii), the relative performance of the
algorithms is quite similar to the first experiment. Note that,
because the conditional entropies are not uniform, TreeStar-
NC cost was typically somewhat higher than DSC. The cost
of local broadcasts for TreeStar was again relatively low.

Gaussian approximation to the Intel Lab Data:
For our second set of experiments, we used multivariate
Gaussian models learned over the temperature data collected
at an indoor, 49-node deployment at the Intel Research Lab,
Berkeley5. Separate models were learned for each hour of
day [23] and we show results for 6 of those. After learning
the Gaussian model, we use the differential entropy of these
Gaussians for comparing the data collection costs. We use
the aggregated connectivity data available with the dataset
to simulate different connectivity behavior: in one case, we
put communication links between nodes where the success
probability was > .35, resulting in somewhat sparse network,
whereas in the other case, we used a threshold of .20.

Figure 5 shows the comparative results for this dataset. The
dataset does not exhibit very strong spatial correlations: as we
can see, optimal exploitation of the spatial correlations (using
DSC) can only result in at best a factor of 4 or 5 improvement
over IND (which ignores the correlations). However, TreeStar
still performs very well compared to the lower bound on
the data collection cost, and much better than the Cluster
approach. Different connectivity behavior does not affect the
relative performance of the algorithms much, with the low-
connectivity network consistently incurring about twice as
much energy cost compared to the high-connectivity network.

5http://db.csail.mit.edu/labdata/labdata.html



V. RELATED WORK

Wireless sensor networks have been a very active area of
research in recent years (see [24] for a survey). Due to space
constraints, we only discuss some of the most closely related
work on data collection in sensor networks here. Directed
diffusion [25], TinyDB [26], LEACH [27] are some of the
general purpose data collection mechanisms that have been
proposed in the literature. The focus of that work has been
on designing protocols and/or declarative interfaces to collect
data, and not on optimizing continuous data collection. Aside
from the works discussed earlier in the paper [7], [8], [9],
the BBQ system [23] also uses a predictive modeling-based
approach to collect data from a sensor network. However,
the BBQ system only provides probabilistic, approximate
answers to queries, without any guarantees on the correctness.
Scaglione and Servetto [14] also consider the interdependence
of routing and data compression, but the problem they focus
on (getting all data to all nodes) is different from the problem
we address. In seminal work, Gupta and Kumar [28] proved
that the transport capacity of a random wireless network
scales only as O(

√
n), where n is the number of sensor

nodes. Although this seriously limits the scalability of sensor
networks in some domains, in the kinds of applications we
are looking at, the bandwidth or the rate is rarely the limiting
factor; to be able to last a long time, the sensor nodes are
typically almost always in sleep mode.

Several approaches not based on predictive modeling have
also been proposed for data collection in sensor networks
or distributed environments. For example, constraint chain-
ing [29] is a suppression-based exact data collection approach
that monitors a minimal set of node and edge constraints to
ensure correct recovery of the values at the base station.

VI. CONCLUSIONS

Designing practical data collection protocols that can opti-
mally exploit the strong spatial correlations typically observed
in a given sensor network remains an open problem. In this
paper, we considered this problem with the restriction that the
data collection protocol can only utilize second-order marginal
or conditional distributions. We analyzed the problem, and
drew strong connections to the previously studied weakly-
connected dominating set problem. This enabled us to develop
a greedy framework for approximating this problem under
various different communication model or solution space
settings. Although we are not able to obtain constant factor
approximations, our empirical study showed that our approach
performs very well compared to the DSC lower bound. We
observe that the worst case for the problem appears to be
when the conditional entropies are close to zero, and that
we can get better approximation bounds if we lower-bound
the conditional entropies. Future research directions include
generalizing our approach to consider higher-order marginal
and conditional distributions, improving the approximation
bounds by incorporating lower bounds on the conditional
entropy values, and also understanding how to apply such

approximation algorithms in practice in presence of node and
communication link failures.
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