
Optimal Batch Schedules for Parallel Machines

Frederic Koehler1? and Samir Khuller2

1 Princeton Univ., Princeton NJ 08544, USA,
f.koehler427@gmail.com

2 Dept. of Computer Science, Univ. of Maryland, College Park, MD 20742, USA,
samir@cs.umd.edu

Abstract. We consider the problem of batch scheduling on parallel ma-
chines where jobs have release times, deadlines, and identical processing
times. The goal is to schedule these jobs in batches of size at most B on m
identical machines. Previous work on this problem primarily focused on
finding feasible schedules. Motivated by the problem of minimizing energy,
we consider problems where the number of batches is significant. Minimiz-
ing the number of batches on a single processor previously required an
impractical O(n8) dynamic programming algorithm. We present a O(n3)
algorithm for simultaneously minimizing the number of batches and max-
imum completion time, and give improved guarantees for variants with
infinite size batches, agreeable release times, and batch “budgets”. Finally,
we give a pseudo-polynomial algorithm for general batch-count-sensitive
objective functions and correct errors in previous results.

Keywords: Scheduling, Batching, Optimal Algorithms

1 Introduction

Batch Scheduling refers to the scheduling of jobs when jobs can be processed
in batches of size at most B. The notion of parallel batch scheduling of jobs
was initially proposed to model deliveries by trucks of bounded capacity [9]. It
has, among other applications, been used to model the management of large
multimedia-on-demand systems [2] and “burn-in” operations in an oven where
a number of chips can be baked together at once [10]. We focus on the version
where all of the jobs in a batch are processed together and start at the same
time. In addition, for each job (Jα) the schedule must respect release times (rα)
and deadlines (dα), times at which jobs become available to process and must be
processed by, respectively. This can, for example, model the delivery of people
flying into an airport for a conference, where each person must be transported
by a given deadline using a fleet of limited capacity vehicles.

Many results in deterministic batch scheduling focus on the version where all
jobs have release times, deadlines, and uniform length of p [5, 10, 9, 3, 1], where the

? The first author’s work was done as part of his high school research project at the
Univ. of Maryland, and later an NSF REU supplement to CCF 0937865. The work
of the second author is supported by NSF grants CCF 0728839 and CCF 0937865.

2 Frederic Koehler and Samir Khuller

objective is to find a feasible schedule of batches each containing at most B jobs.
The start and end time of the batch must respect the release time and deadline of
each job in the batch. Using standard techniques these feasibility algorithms can
be used to minimize objectives such as maximum lateness (Lmax) and maximum
completion time (Cmax). Note that when jobs have different lengths, deciding
feasibility becomes an NP-complete problem, although approximation algorithms
exist, e.g. [2].

Motivated by issues of savings energy, recently Chang et al. [4] consider
the problem of minimizing the time the machine is being used, referred to as
activation time. In this case of identical job lengths, this translates to scheduling
all of the jobs using the fewest number of batches. Chang et al. [4] develop a
O(n8) algorithm for this problem based on the work of Baptiste [1]; the space
complexity is also very high, and it is also designed for the single processor case
only. The paper also considers a variety of other cases of the activation problem

— e.g. when the release times and deadlines are integral and p = 1 they present a
linear time algorithm. Even though batch scheduling has been studied for over
twenty-five years, these are the first algorithms which explicitly aim to minimize
batch count. However, we expect the number of batches used almost always
affects the energy cost (and thus profit) of the system.

The basic problem dealt with is that of creating a schedule of batches for m
identical machines. A batch (or batch instance) Bα in a schedule is associated
with three properties:

– The set of jobs contained in the batch. We let |Bα| denote the number of
jobs in a batch. In a feasible schedule, |Bα| ≤ B, where B is the given batch
size constraint.

– The start time s(Bα). ∀Jj ∈ Bα, the completion time Cj = s(Bα) + p. In a
feasible schedule, rj + p ≤ Cj ≤ dj .

– The machine m(Bα) that the batch is scheduled upon, occupying the time
interval [s(Bα), s(Bα) + p) on that machine. In a feasible schedule, the time
intervals of batches scheduled on the same machine must be disjoint.

Our results, briefly: we can find a batch-count and Cmax minimal schedule in
O(n3) time and improve that in variants of the problem; we produce a O(n)
algorithm for the agreeable problem (ra < rb → da ≤ db). We give a pseudo-
polynomial algorithm for a notion of batch-count-sensitive objective functions.

1.1 Related Work

Ikura and Gimple originally gave a O(n2) algorithm for scheduling agreeable
jobs on a single processsor with the objective of minimizing Cmax. Lee et al.
found a O(nB) algorithm for this same problem using dynamic programming
[10]. Baptiste[1] finally showed that the problem with arbitrary release times was
polynomial-time solvable for a broad class of sum-function objectives, such as∑

Cj . However his algorithms have extremely high (polynomial) complexity.
Recently, Condotta et al. [5] developed improved algorithms for the feasibility

problem for general release times and deadlines: for the single machine case

Optimal Batch Schedules for Parallel Machines 3

they provide an O(n2) time algorithm. They also study the previously ignored
multiple identical machine case and provide an O(n3 log n) time algorithm. These
algorithms are generalized forms of algorithms for the non-batching problem
(B = 1): the O(n2) algorithm is based on the “forbidden regions” method of
Garey et al. [7], and the O(n3 log n) algorithm for the multiprocessor case is
based on the “barriers” method of Simons [14].

The barriers and forbidden regions methods for a single processor are both
notable for choosing schedules with the property that each job, numbered from
the left (or the right), starts as soon as possible. Formally, the start time of the
ith job from the left in the generated schedule is a lower bound on the start time
of the ith job in any feasible schedule. These schedules are thus optimal for the
objectives

∑
Cj and Cmax. We shall say that these schedules have unit-optimal

structure. Recent algorithms using graph-theoretic techniques find schedules with
identical structure [6, 12].

The Condotta et al. paper claims that each batch, counting from the left,
for their barriers algorithm has minimal start time (Lemma 4). This claim is
incorrect: consider a problem instance with large deadlines, two machines, B = 2
(or any even number), B jobs released at time 0 and B jobs released at time p.
The barriers algorithm will produce a schedule with two full batches, the second
at time p. However a feasible schedule exists where the first two batches are
started at time zero, each containing B/2 jobs. This disproves their claim and
invalidates their proof of correctness. However by correcting this claim it is still
possible to show their algorithm’s correctness. (Here is a sketch: Consider only
the classes of schedules where each batch, from the left, greedily takes as many
jobs as possible. The schedules generated by the barriers algorithm are those
which for any k, both process the minimum number of jobs in the first k batches
numbered from the left and starts each batch Bk no earlier than any nonempty
B′k in any other schedule of this class. The processing of the minimum number
of jobs is crucial to proving the batch start times are minimized.)

They also claim that their algorithms immediately minimize
∑

Cj and Cmax
in the batching problem. We do not believe this to be the case. Consider the
single machine case: by delaying a job slightly, it may be possible to overlap it in
a batch with other jobs, drastically reducing its completion time by not blocking
on the processing of the first job. The barriers algorithm only creates barriers
when it encounters infeasibility, so if it never encounters infeasibility, no attempt
is made to delay jobs to batch them together with later released jobs. Similarly,
the forbidden regions algorithm will find no forbidden regions.

The following simple example will demonstrate our claims. Run the barriers
algorithm on jobs with rj , dj pairs {(1, 16), (2, 20), (6, 24))}, with the processing
length for jobs p = 8, with batch size B = 3, and one machine: a batch will be
created at time r1 = 1 and at r1 + p = 9. An optimal schedule for Cmax uses only
a single batch starting at r3 = 6. Interestingly, an optimal schedule for

∑
Cj

uses one batch starting at r2 = 2 and another at r2 + p = 10.

Theorem 1. In the batching problem, there exist instances where minimizing∑
Cj and Cmax simultaneously is impossible.

4 Frederic Koehler and Samir Khuller

On a different note, when scheduling unit jobs on multiple processors, Simons
[14] showed that w.l.o.g. one can only consider the cyclic schedules. We will make
exactly this assumption in our paper. The original proof of the following claim
comes from Simons for the non-batching case [14].

Lemma 1. For any feasible schedule, a solution identical except in machine
assignment exists which is cyclic, i.e. where ∀x, (Bx, Bx+m, . . .) are scheduled on
the same machine.

1.2 Our Approach

We generalize the notion of unit-optimality. We shall call our structure right-
heavy batch-optimality (rhbo). It comprises the following properties (note
the descending batch numbering scheme):

(1) Consider any feasible schedule S′ composed of batches B′1 . . . B
′
u where B′u

is the earliest starting batch (and B′1 the latest) containing a job in schedule

S′. ∀i ≤ u,
∑i
b=1 |Bb| ≥

∑i
b=1 |B′b| ; i.e. the number of jobs in

⋃i
b=1 Bi is an

upper bound for feasible schedules.
(2) For any Bi, the start time of batch Bi is a lower bound for feasible schedules;

i.e. for any B′i in any feasible schedule S′, s(Bi) ≤ s(B′i).

In the case that B = 1, the first property is trivial and the second property makes
the structure identical to unit-optimality. Note that unlike in the corrected
version of the barriers algorithm, our bounds hold for all feasible schedules. Any
schedule with these properties is optimal for many objectives:

1. Cmax because the start time of B1 is a lower bound. In fact the makespan
(availability time) mx = Bx of all of the machines is minimized; so e.g.

∑
mx

(average makespan) and a variety of other norms are also minimized.
2. K, the number of batches, by the first property.
3.

∑
Bx∈S s(Bx), the sum of batch start times, because a minimal number of

batches is used and the start time of each batch is a lower bound.

The first section of our paper gives a low polynomial time complexity algorithm
witnessing the existence of these structures. We also use this existence result
to produce an optimal recursive algorithm for the agreeable batch scheduling
problem [9]. The property of simultaneous makespan minimization on multiple
machines is crucial to the decomposition.

In general Condotta et al.’s algorithms [5] will use batches efficiently only if
that part of the schedule is highly constrained or many jobs share a release time.
When batch sizes are larger than e.g. B = 2, this becomes evident. By using
fewer batches, we also can improve our time complexity bound in the case that
a feasible schedule exists with K∗ batches (n/B ≤ K∗ ≤ n) as excess batches
increase algorithmic overhead. In the case of agreeable release times, we produce
an elegant algorithm which searches for rhbo schedules. It is both more general
and lower complexity than previous algorithms for this problem. This completes
our study of rhbo schedules.

Optimal Batch Schedules for Parallel Machines 5

Finally we design a pseudo-polynomial algorithm for optimizing a broad array
of batch-count-sensitive objectives, generalizing [1]. The lack of structure in this
general setting leads to very high complexity. This result, proofs of auxillary
lemmas, and pseudocode versions of the algorithms are omitted for space reasons;
the full version is at http://www.cs.umd.edu/˜samir/grant/BatchScheduling.pdf

2 Scheduling Jobs on Multiple Batch Machines

For this section, we study the problem of scheduling all of the jobs in a given
instance. Thus when we refer to a feasible schedule, this schedule must successfully
process all n jobs. We will work through a series of tentative (infeasible) schedules
in our algorithms. Each tentative schedule will obey a rhbo structure: we refer
to the two properties of a rhbo schedule as Invariant (1) and Invariant (2),
matching the numbering in the definition. We say a job Jj is deadline-available
in a batch Bb if dj ≥ s(Bb) + p. Using this notion we will define a third invariant
which determines job selection within batches:

(3) ∀Bx∀Jj ∈ By such that x < y, if Jj is deadline-available in Bx then Bx is
full of jobs with no less strict release times (|Bx| = B, rj ≤ minJi∈Bxri).

This invariant can be viewed directly as expressing a relationship between a
single batch Bx, and a set of preceding jobs in higher-numbered (earlier) batches.
It equivalently states that each batch must prefer to pick latest-released jobs
from the set of jobs preceding the next-earliest batch. Note that increasing start
times can only reduce the set of deadline-available jobs, and thus only make this
invariant easier to satisfy.

We assume w.l.o.g. that ∀Jj , rj + p ≤ dj : jobs violating this constraint are
impossible to process. Initially let s(Bb)← −∞ for all Bb (including those earlier
than Bn which cannot actually be used), since −∞ is a trivial lower bound on
the start time of any batch.

Lemma 2. Invariants (2) and (3) imply Invariant (1).

Proof. Assume Invariant (1) is violated while the other two invariants hold. Let
B′x be the latest batch in a feasible schedule S′ such that

∑x
b=1 |B′b| >

∑x
b=1 |Bb|.

Because we chose the latest batch where the invariant is violated, the invariant
holds for Bx−1 . . . B1, and so B′x must contain at least one additional job Jj which
is not in Bx. As Bx cannot be full, Invariant (3) implies that dj < s(Bx) + p. By
Invariant (2), s(Bx) ≤ s(B′x) and so dj < s(B′x) + p. The deadline for job Jj is
violated, so schedule S′ cannot be feasible.

Lemma 3. If the optimality invariants holds for a partial schedule Bx−1 . . . B1

then ∀Jl /∈
⋃x−1
b=1 Bb, for any feasible schedule S′ composed of B′1, B

′
2, . . . it must

be true that rl ≤ s(B′x).

Proof. Let Jl ∈ B′y. If y ≥ x, then we have that rl ≤ s(B′y) ≤ s(B′x). Otherwise

(y < x): because Jl /∈
⋃x−1
b=1 Bb and Jl ∈

⋃x−1
b=1 B′b, by Invariant (1) there exists

6 Frederic Koehler and Samir Khuller

some job Jk ∈
⋃x−1
b=1 Bb such that Jk /∈

⋃x−1
b=1 B′b. Also, by Invariant (2), dl ≥

s(B′y) + p ≥ s(By) + p, so by Invariant (3), rl ≤ rk. Because Jk ∈ B′z with z ≥ x,
as above s(B′x) ≥ rk ≥ rl.

2.1 Scheduling with an Unbounded Number of Machines

Theorem 2. A feasible schedule obeying the optimality invariants can be
computed in O(n2) time if m =∞.

Proof. For the first (latest) batch, rmax is a lower bound on the start time —
thus setting s(B1) = rmax obeys Invariant (2). Invariant (3) determines that this
batch should be filled with the maximal number (up to B) of the latest-released
deadline-available jobs. For any other batch Bi, we can inductively assume that
the partial schedule of Bi−1, . . . , B1 obeys the invariants. Let U be the set of
unscheduled jobs. All jobs in U can only be scheduled in Bi and earlier batches.
Set s(Bi) to be the latest release time in U ; Lemma 3 guarantees that this satisfies
Invariant (2). Once again, Invariant (3) dictates that the maximal number of the
latest-released deadline-available jobs are chosen to fill the batch.

Every batch created contains at least one job. Thus there are at most n
batches and this construction takes O(n2) time.3

An example tentative schedule is shown in Figure 1, based on the input from
Table 1 with batches taking three units of time (p = 3) to process up to two
(B = 2) jobs at a time.

Table 1. Jobs for Example 2

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

rj 0 2 1 2 0 4 3 4 1 5 4 3 8 9 10 7

dj 5 11 6 12 8 13 8 10 7 8 9 9 16 13 14 12

2.2 Scheduling with a Bounded Number of Machines

Theorem 3. Given a tentative schedule containing all jobs with no more than
B jobs in any batch, and obeying the optimality invariants, in O(n3) time it
is possible to either show no feasible schedule exists or to find a feasible schedule
obeying the optimality invariants.

Proof. We show how to use invariant-preserving transformations to make this
schedule into a feasible one. We use two cooperative alternating passes: PushFor-
ward, which increases start times, and MoveBack, which moves jobs which are
provably in the wrong batch backward.4

3 Though O(n logn) is possible
4 MoveBack tightens the bounds of Invariant (1) while PushForward tightens Invari-

ant (2).

Optimal Batch Schedules for Parallel Machines 7

r1
r5

d1

r2
r4

d2

r3
r9

d3 d4
d16

r6
r8
r11

d6
d14

r7
r12

d5
d7
d10

d8d9

r10

d11
d12

r13

d13

r14 r15

d15

r16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5,1

9,3

4,2

12,7

6,8

10,11

13,16

15,14

Fig. 1. Schedule constructed by Theorem 2 on Example 2

PushForward is the pass that starts first. It processes batches left-to-right
(earliest-to-latest) consecutively; initially, it starts from Bi, the earliest non-empty
batch in the schedule. We describe its action. Let Bc be the current batch. Let
P be the set of batches which are earlier than Bc (higher indexed): inductively
assume that the batches in P (1) are in non-decreasing order of start time
(counting higher indexed batches first), (2) can be scheduled without overlap
on m machines, and (3) contain jobs whose release times and (4) deadlines are
satisfied. To process Bc, let

s(Bc)← max [{s(Bc+m) + p, s(Bc), s(Bc+1)} ∪ {rl|Jl ∈ Bc}] .

As noted before, increasing start times always preserves Invariant (3); we now
show Invariant (2) is maintained as well. For any of the first three terms, it is
possible that they may reference an empty batch past the end of the schedule:
for all such batches their start time has been set to −∞, so the term reduces to
−∞ which is a correct lower bound. Otherwise (the normal case), the first term
is a valid lower bound because we have restricted ourselves to the class of cyclic
schedules, and there can be no overlap between batches run on the same machine.
This also satisfies inductive hypothesis (2). For the third term, by definition a
lower bound for the start time of Bc+1 extends to Bc. This satisfies inductive
hypothesis (1). The final set of release times are valid lower bounds by Lemma 3,
satisfying the inductive hypothesis (3).

After updating the start time, if there are any jobs in Bc which are no longer
deadline-available, pick one such Ji arbitrarily and move on to the next phase
MoveBack. If there are no such jobs, then the final hypothesis (4) is satisfied. If
Bc = B1 then terminate: supposing that all batches in our schedule obey the
batch size constraint (which we have not shown yet), then using our inductive

8 Frederic Koehler and Samir Khuller

hypotheses the requirements for a feasible schedule are satisfied. Otherwise
(Bc 6= B1), continue on to the next batch (Bc−1).

We now describe MoveBack. This phase will not adjust start times so Invari-
ant (2) is preserved. We will study Invariant (3) separately for each batch and its
set of preceding jobs to show that it holds for all batches (when obvious, we will
leave implicit which batch the invariant is preserved with respect to). We now
describe the action of this phase. The first action this phase takes is to remove
Ji from Bc. If there do not exist preceding deadline-available jobs to Bc, this
does not affect Invariant (3) with respect to Bc. If there does exist at least one
such job, pick the one with latest release time and move it from its current batch
Ba into Bc. We say in this case that job Ja′ was brought forward from Ba. This
may violate Invariant (3) with respect to Ba; if so, we will show that invariant
is restored before the end of this phase. The removal of a job guarantees that
|Ba| < B. The rest of this phase moves right-to-left over consecutive batches,
starting with Bc+1. Call the current batch being processed Bz; also let the cur-
rent job, initially Ji, be called Jj . We now describe the action performed for Bz;
remember that when we say this phase continues, that means the next batch
examined is the preceding batch Bz+1.

Case 1 (|Bz| = B). Let Jj′ = argminJy∈Bz
ry.

Case 1.a (rj′ ≤ rj). Swap Jj into Bz, removing Jj′ . Continue MoveBack
with Jj′ .

Case 1.b (rj′ > rj). Continue MoveBack with Jj .
In either case a new, possibly deadline-available, job will now precede Bz
(either Jj or Jj′). Even if the job is deadline-available, its release time is no
bigger than the smallest in Bz so Invariant (3) is preserved.

Case 2 (|Bz| < B). Place Jj into Bz.
Case 2.a (Job Ja′ was brought forward from Ba) Suppose Bz 6= Ba.

Since Ja′ preceded Bz before its move (after the execution of the previous
phase) and |Bz| < B, by Invariant (3) Ja′ cannot have been deadline-
available in Bz. However, it is deadline-available in Bc, and by the action
of PushForward we know that this implies Ja′ is deadline-available in all
earlier (higher-numbered) batches. By contradiction Bz = Ba.
Since Jj came from some batch later than Bz but not later than Bc, and
Ja′ was deadline-available in this origin-batch, rj ≥ ra′ by Invariant (3).
Therefore the replacement of Ja by Jj cannot violate Invariant (3) with
respect to Ba.

Case 2.b (No job was brought forward) Adding an additional job to a
nonfull batch cannot violate Invariant (3), so it is preserved.

In either case, the transformations of this phase are complete. Only batches
between Ba and Bc inclusive have been modified. With respect to batches
Bf with f > a of f < c, this implies that Invariant (3) has been maintained.
Thus we have shown that for every batch, Invariant (3) holds with respect to
it at the end of this phase. Recall that Invariant (1) holds now by Lemma 2.
If z > n, declare the scheduling instance infeasible: by Invariant (1), only at
most n− 1 jobs can be scheduled in B1, . . . , Bn. Otherwise, continue on to

Optimal Batch Schedules for Parallel Machines 9

PushForward at Bz: because we have not modified any batches earlier than
Bz, the required inductive hypotheses hold for them.

This completes the description of the algorithm itself. As noted before, we still
must show that the batch size restriction is obeyed to show that the algorithm is
partially correct : if it terminates, it gives a correct answer. Recall we required
our initial schedule to obey the restriction. Only the MoveBack pass modifies the
assignment of jobs to batches, but it only adds a net job to a batch which has at
most B − 1 jobs. Therefore the batch size restriction is always obeyed.

We must now show that our algorithm terminates. We claim that there can
be at most O(n2) passes: for every MoveBack pass, Jj can never be placed in
Bc again, because start times only increase and jobs are brought forward only
if they are deadline-available; there are n jobs and at most n batches, so this
makes O(n2) possible passes. Both passes run in O(n) time, so a O(n3) time
bound follows.

A complete algorithm is formed by composing the previous two theorems:
feasible schedules for finite m are a subclass of those for unbounded m so the
precondition for Theorem 3 holds. See Figure 2 and Figure 3 where m = 2.
However, as Theorem 3 requires little from its initial schedule, far less intelligent
schemes would give the same time bounds.

r1
r5

d1

r2
r4

d2

r3
r9

d3 d4
d16

r6
r8
r11

d6
d14

r7
r12

d5
d7
d10

d8d9

r10

d11
d12

r13

d13

r14 r15

d15

r16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5,1

9,3

4,2

12,7

8,6

10,11

13,16

15,14

Fig. 2. Operations performed by first (thick arrows) and third (thin) pass of MoveBack.

We have not so far discussed how to efficiently represent the contents of a
batch. Let each batch’s contents be represented by two data structures: a binary
min-heap of the jobs ordered by deadlines, and an avl tree of the jobs’ release
times maintaining counts in each node for duplicate release times. Our efficiency
proofs are omitted for space reasons; they modify the algorithm’s internals very

10 Frederic Koehler and Samir Khuller

r1
r5

d1

r2
r4

d2

r3
r9

d3 d4
d16

r6
r8
r11

d6
d14

r7
r12

d5
d7
d10

d8d9

r10

d11
d12

r13

d13

r14 r15

d15

r16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5,1

9,3

2,7

10,12

11,8

6,4

16,14

15,13M1

M2

Fig. 3. Final schedule produced for Example 2

slightly to improve its performance. If we are given a fixed batch budget K∗
(modifying the algorithm to exit after exceeding its budget of batches rather
than n batches), we can call this budget K∗ and the improved bounds will hold;
alternatively, if a feasible schedule exists with K∗ batches this bound also holds.

Corollary 1. The batch-budgeted algorithm is O(min(n2K∗, nK
2
∗ logB)).

Corollary 2. The algorithm terminates in O(n2) time for agreeable release times.
The batch-budgeted algorithm is O(nK∗).

Corollary 3. The algorithm terminates in O(n2 log n) time for the unbounded
case (B =∞). The batch-budgeted algorithm is O(nK∗ log n).

Using the enhanced binary search approach outlined in Condotta et al. [5],
Lmax = maxCj − dj minimization can be performed with a O(n2 log n) prepro-
cessing phase and by calling a feasibility algorithm O(log n) times. In addition,
by following the approach outlined in Condotta et al. [5], we can easily respect
start-start precedence constraints. First, the schedule can be passed through
their O(n2) preprocessing phase, which guarantees that if job a precedes job b
then ra ≤ rb and da ≤ db. After generating a schedule, swapping will produce a
schedule which obeys the precedence constraints.

3 Scheduling Agreeable Jobs

We now design a faster algorithm to solve the problem with agreeable jobs, where
ri < rj ⇒ di ≤ dj . We assume the jobs are sorted by increasing deadline (giving
non-decreasing release time). Let us describe the structure of the solution we
search for. By our previous result, if there exists a feasible partial schedule, there
exists a rhbo partial schedule. By a simple swapping argument [10], which does
not violate our invariants, we also assume w.l.o.g. that each batch consists of
consecutively numbered jobs. Finally, we note that these schedules are “left-
shifted” (see e.g. [1]). This implies that given an assignment of jobs to batches,
the start time of a batch Bx is fully determined: it must be the maximum of rj

Optimal Batch Schedules for Parallel Machines 11

for all Jj ∈ Bx and of the time the previous batch on the machine completes
(machine assignments remain determined by cyclic scheduling).

We will need to maintain lists of machine availability times: to do this we use
purely functional queues [8, 13]. We are given three functions: head(Q) returns
the front of the queue Q, tail(Q) returns Q with its front removed, and snoc(X,Q)
produces a new queue with X inserted into the back of Q. All of these operations
are O(1) and non-destructive. Availability time lists will be maintained sorted
ascending order, such that head(A) is the earliest availability time in A. We define
a new operation, U(q, t) = snoc(tail(q), t). This will be used to update availability
times: when a new batch is scheduled ending at time t, by cyclic scheduling it
runs on the same machine as Bm+1 in the resultant schedule, formerly (in the
previous partial schedule) Bm.

Now we can easily describe the actual algorithm. Let Li be defined (see
below) such that JLi+1 is the earliest job which can be batched together with
Ji in a feasible schedule. Consider the rhbo feasible schedule for i jobs: by
Invariant (1), the last batch must consist of jobs JLi+1, . . . , Ji. Upon removing
this final batch, observe that a rhbo feasible schedule is left for the first Li
jobs. Thus we inductively assume we have the rhbo schedules for each of the
first j < i (i ≤ n) jobs (from which we can compute L), and then find the
only possible rhbo schedule for i jobs (or fail if none exists). Note that L is
a non-decreasing function (Li−1 ≤ Li): this observation makes the tabulation
more efficient. Fi is the availability time list for a rhbo schedule of the first i
jobs. E(j, i) = max{ri,head(Fj)}+ p is the left-shifted end time of the last batch
in the schedule for i jobs, where the schedule is composed of a batch of jobs
Jj+1, . . . , Ji appended to a rhbo schedule for the first j jobs. Formally:

L0 = 0, Li = min {j | max{Li−1, i−B} ≤ j < i,E(j, i) ≤ dj+1} ,
F0 = a persistent queue with m copies of 0, Fi = U(FLi , E(Li, i)).

If at any point Li is undefined because it minimizes over an empty set, there can
exist no rhbo schedule and thus no feasible schedule at all. E and U are not
tabulated in the dynamic program. Fn and Ln can be computed in O(n) time.
In the case of integer release times and deadlines, the binary search algorithm
for Lmax created by Lee et al. [10] can be combined with our algorithm to solve
the multiprocessor problem in O(n log(np)) time.

3.1 Agreeable Processing Times

The relaxation to agreeable processing times was first studied by Li and Lee [11].
Multiprocessor scheduling with no release times and a single deadline (dj = d),
which necessarily agrees with the processing times, is unary NP-Hard. However,
our algorithm adapts easily to the single processor case.

E(j, i) = max{ri, Fj}+ pi, L0 = F0 = 0, Fi = E(Li, i),

Li = min {j | max(Li−1, i−B) ≤ j < i,E(j, i) ≤ dj+1} .

12 Frederic Koehler and Samir Khuller

4 Conclusions

The hardness of multi-processor batch scheduling for the objectives not satisfied
by rhbo structure remains an open problem: is a pseudo-polynomial algorithm
best possible? If so, what are the best approximation algorithms? Most of these
problems are open even when B = 1;

∑
Cj is a notable exception. Because of

Theorem 1, it may be difficult to efficiently minimize
∑

Cj .

References

1. Philippe Baptiste. Batching identical jobs. Math. Meth. of O.R., 53:355–367, 2000.
2. Amotz Bar-Noy, Sudipto Guha, Yoav Katz, Joseph (Seffi) Naor, Baruch Schieber,

and Hadas Shachnai. Throughput maximization of real-time scheduling with
batching. In Proc. of SODA, pages 742–751, 2002.

3. Peter Brucker. Scheduling Algorithms. Springer, 2007.
4. Jessica Chang, HaroldN. Gabow, and Samir Khuller. A model for minimizing active

processor time. In Leah Epstein and Paolo Ferragina, editors, Algorithms ESA 2012,
volume 7501 of Lecture Notes in Computer Science, pages 289–300. Springer Berlin
Heidelberg, 2012. Full version at http://www.cs.umd.edu/ samir/grant/active.pdf.

5. Alessandro Condotta, Sigrid Knust, and Natalia V. Shakhlevich. Parallel batch
scheduling of equal-length jobs with release and due dates. J. of Scheduling,
13:463–477, October 2010.

6. Christoph Dürr and Mathilde Hurand. Finding total unimodularity in optimization
problems solved by linear programs. Algorithmica, 59:256–268, 2011.

7. M. R. Garey, D. S. Johnson, B. Simons, and R. E. Tarjan. Scheduling Unit-Time
Tasks with Arbitrary Release Times and Deadlines. SIAM J. on Computing,
10(2):256–269, 1981.

8. Robert Hood and Robert Melville. Real-time queue operation in pure lisp. Infor-
mation Processing Letters, 13(2):50–54, 1981.

9. Yoshiro Ikura and Mark Gimple. Efficient scheduling algorithms for a single batch
processing machine. Operations Research Letters, 5:61–65, 1986.

10. Chung-Yee Lee, Reha Uzsoy, and Louis A. Martin-Vega. Efficient algorithms for
scheduling semiconductor burn-in operations. Op. Research, 40(4):764–775, 1992.

11. Chung-Lun Li and Chung-Yee Lee. Scheduling with agreeable release times and
due dates on a batch processing machine. European J. of Operational Research,
96(3):564 – 569, 1997.

12. Alejandro López-Ortiz and Claude-Guy Quimper. A fast algorithm for multi-
machine scheduling problems with jobs of equal processing times. In STACS, pages
380–391, 2011.

13. Chris Okasaki. Simple and efficient purely functional queues and deques. Journal
of Functional Programming, 5(04):583–592, 1995.

14. Barbara Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release
times and deadlines. SIAM J. Comput., 12(2):294–299, 1983.

