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1. INTRODUCTION
In this abstract we define some very basic scheduling problems

motivated by increasing power density and consequent cooling con-
siderations in data centers and multi-core chips. Modern data cen-
ters consist of thousands of computers closely packed in a dense
space, typically arranged as hundreds of racks of processors. The
energy costs of a data center have been compared to that of a small
town, with a significant portion contributed by the cost incurred in
cooling the machines [1]. The energy cost of cooling is directly
driven by the supply temperature (denoted Tsup) of the cold air
being blown in to cool the data center – the incoming air is of-
ten kept at a lower than necessary temperature to prevent hotspots
from forming since those can damage the hardware. For instance,
it has been observed that servers near the top of a rack often run
hotter and are subject to higher failure rates [3]. Thermal balancing
through judicious task scheduling can lead to fewer hotspots and
thus lower overall cooling costs and lower failure rates. Similarly
in multi-core chip architectures, the increasing density of cores and
a movement toward 3D architectures [7] has made dynamic ther-
mal management a key challenge. Increasing temperatures affect
circuit reliability and longevity over the long term, and result in in-
creased power consumption (because of increased leakage power)
and overall high cooling costs.

In this framework we study a basic scheduling problem, called
the thermal scheduling problem. We would like to minimize the
maximum temperature of the machines in a data center while exe-
cuting a set of jobs, or maximize assigned jobs while keeping the
maximum temperature below a pre-specified red-line temperature
(Tred). The key differentiating factor here from much of the prior
work in scheduling is the notion of spatial cross-interference: the
heat generated by jobs running on a machine raises its own tem-
perature as well as the temperatures of nearby machines due to
recirculation effects. Such effects are well-documented both for
data centers [6, 5] and for multi-core chips [7]. In addition, the
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geometry of the data center plays a significant role in determining
the cross-effect parameters, which are often asymmetric. Although
several recent works have recognized the increasing importance of
such cross-effects, that prior work (a survey can be found in [4])
has presented either reactive policies that take corrective action, or
heuristics without any approximation guarantees. In this work, we
initiate a formal study of the problem of thermal scheduling in pres-
ence of spatial cross-interference and present analytical results for a
1-dimensional asymmetric model where the machines are arranged
in a linear array, with the cold air blowing in from one end.

2. PROBLEM DEFINITION AND MODEL
We base our model on the abstract heat circulation model sug-

gested by Mukherjee et al. [5]. As with much of the prior work on
thermal scheduling, we assume that the system is in steady state;
i.e., we assume the jobs are long-lived, and analyse the system
state when all the jobs have arrived and the temperatures have sta-
bilized. According to the model, the temperature of a machine i
is given by: Ti = Tsup + DiL, where Di is the ith row of the
heat distribution matrix D, and L is the load vector. The vector
L = {L1, · · · , Lm}, where m is the number of machines, de-
notes the loads on the machines in terms of the power consumed
by the jobs assigned to the machine. The matrix D represents how
the heat or load of any machine j affects machine i (called cross-
interference). Since the temperature of no machine should exceed
Tred, we have that: Tsup + maxi∈[1,...,m] DiL ≤ Tred. Thus,
given a set of jobs, our goal is to schedule them so as to either: (a)
maximize Tsup (or equivalently, minimize maxi∈[1,...,m] DiL), or
(b) given a constraint on maxi∈[1,...,m] DiL, maximize the number
of assigned jobs.

For each job, we assume that we can estimate the power that
will be consumed to execute it on a machine; this can be computed
using the estimated resources required to execute the job, its time
duration, and standard system power modeling techniques [2].

The total energy consumption is obtained by adding the energy
for processing and the energy for cooling, and can be modeled as:
E = L(1 + 1

CoP (Tsup)
), where L = ΣLi is the total load on all

the machines, and CoP (coefficient of performance) is a super lin-
ear function of the supply temperature. We formulate the problem
of thermal scheduling in terms of minimizing what we call the “ef-
fective load” on a machine. Effective load on a machine is a linear
combination of the load of the machine itself and the load of other
machines. Specifically, given that the load of machine i is Li, and
the effect of machine j’s load on machine i is captured through the
cross-interference coefficient Dij , the effective load ELi is com-
puted as follows: ELi =

∑
j DijLj where 0 ≤ Dij ≤ 1 and

Dii = 1. Our optimization problem of minimizing the maximum



temperature can now be seen as minimizing maximum effective
load instead, an easier quantity to reason about.

In this abstract, we consider a model of machines in a linear array
with the cold air blowing from one end (capturing either a rack in a
data center, or a stack in 3D multi-core chips with a heat sink at one
end). The ith machine is affected only by the heat recirculated from
the machines located below it, closer to the source of the cold air.
We number machines from bottom to top, in increasing order from
the cold air source. Machine i is only affected by machines j ≤ i.
We assume the heat falls off in an exponential manner. Specifically,
the heat felt by a machine i due to machine j is a fraction 1

Kd of
the load of j, where d = |i − j| is the distance between i and j
and K is a constant > 1. More formally, Dij = 1

K|i−j| . For
technical reasons we assume that K ≥ 2. The effective load of
the ith machine, where 1 ≤ i ≤ m, is then given as ELi =∑i
j=1

Lj

Ki−j .

3. RESULTS
It is NP -hard to find the optimal integral schedule that mini-

mizes the effective load for a given set of jobs or that maximizes the
number of jobs assigned without exceeding a certain effective load.
We therefore relax the problem to the case when jobs are splittable
between machines (i.e., fractional assignments are permitted), find
an optimal solution, and then use this solution to devise approxi-
mations for the dual problem of maximizing the number of jobs,
integrally assigned, given a hard constraint on the effective load.
For the 1-D model with exponential heat fall-off, one can show
that: ELi = Li +

ELi−1

K
. Given this, we can show that:

LEMMA 1. An optimal strategy for minimizing the maximum
effective load for fractional assignments, with total load L, would
result in uniform effective load of ELi = EL = L

m−m−1
K

∀i.

The optimal strategy to minimize the effective load for a given
load, would be to place a higher load on machine 1 and lower on
the rest. Specifically, L1 = L

m−m−1
K

and Li = L

m−m−1
K

(
1− 1

K

)
for i > 1. A non-thermal strategy on the other hand would split
load uniformly in minimizing the loads of machines, and this would
result in highest effective load on the last machine on the rack from
the bottom.

The following theorem states the thermal savings possible.

THEOREM 1. The reduction in effective load between a ther-
mally aware scheduler and a naive load balanced strategy is ≥

L
m(K−1)+1

(1− 1
K

)
m−1

> 0.

Figure 1 shows the percentage savings in effective load for dif-
ferent values of K and m.

The savings in maximum effective load translate into savings in
energy of the cooling system. Let the maximum effective load with-
out thermal aware scheduling be ELold and the one with thermal
savings be ELnew. Let us assume a simple function for CoP :
CoP (T ) = T 1+δ , for some δ > 0. The following theorem states
the amount of energy savings possible.

THEOREM 2. Let the energy consumed for cooling with a naive
strategy of splitting the load uniformly without any thermal aware-
ness be Eold, and the energy consumed by our thermally aware
strategy be Enew. Let the difference be ∆E = Eold − Enew.
The fraction of energy that can be saved in cooling purposes is
∆E
Eold

> ∆EL
Tred−ELnew

, where, ∆EL is the savings in effective load,
ELnew is the maximum thermal aware effective load, and Tred is
the red-line temperature.
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Figure 1: Percentage savings in maximum effective load for varying
K and m

Now we look at the dual problem of maximizing the total as-
signed load, given a hard thermal or effective load constraint, which
we assume is identical for all machines. Further, we assume there
are no assignment restrictions. In the fractional case, by intelli-
gently scheduling more load on the first machine than the rest, we
can schedule more load overall than a non-thermally aware policy
for the same effective load constraint. Let this constraint be called
effective load capacity c.

LEMMA 2. Without loss of generality, an optimal policy would
assign load c to machine 1 and c

(
1− 1

K

)
to all machines i > 1

till it exhausts either the load L or the available machines.

THEOREM 3. The fraction of extra load we can assign by a

thermal aware strategy is
1− 1

Km

m(K−1)
− 1

Km .

The above problem becomes hard when jobs need to be assigned
integrally to machines. Further, deriving the structure of the opti-
mum fractional solution becomes much harder when we consider a
2-dimensional model with both vertical and lateral heat coupling.
We show the structure of the optimum fractional solution for three
different 2-dimensional heat flow models, provide analogous bounds
for thermal savings, and also provide approximation algorithms for
the integral assignment problem for all three heat flow models [4].
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