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1 Multi-threaded programs

• Multiple interacting threads arise because

– application is inherently distributed (data at different locations), or
– need for better performance via parallel hardware

• Threads interact via shared memory or message passing (e.g., signals, send/receive).

– Shared memory can be implemented using message passing, and vice versa.
– At lower levels (hardware/physical), it’s necessarily message passing

• A code chunk execution x interferes with a code chunk execution y if one writes to a
memory location that the other reads or writes.

• Atomicity: The execution of a code chunk S by a thread t is defined to be atomic if
while t is executing S (i.e., has started and not yet finished), no other thread influences
or is influenced by t’s execution of S (i.e., executes an interfering statement).

Atomicity is achieved by exclusion in time or space.

• Ordering: Code chunk S is executed only after code chunk T is executed.

One easy (but not efficient) way to achieve this on a shared-memory machine: set a flag
at the end of T and have S busy wait for the flag to be set.

• Atomicity and ordering: S is atomically executed only after T has completed execution.

• Achieving atomicity: On single-CPU system, atomicity of S can be achieved by dis-
abling external interrupts to the CPU.

– If interrupts are enabled when S starts, they should be disabled at that point and
enabled when S ends.

– If interrupts are disabled when S starts, nothing should be done. (This happens if
S is being called by some code chunk T which is to be executed atomically. So
interrupts should not be enabled at the end of S.)

– So is the following a solution?

1: if interrupts enabled
2: flag ← true // local variable
3: disable interrupts
4: S
5: if flag
6: enable interrupts

Suppose interrupts are enabled when the thread is at 1, and the thread gets switched
out just before 3 (after flag is updated). Can the thread be resumed with interrupts
disabled? Would things go wrong if this happens?
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• But disabling interrupts is not a good approach in general.

– Can cause more important activities to be slowed or dropped (e.g., clock ticks).
– Does not work in multi-processor system.
– Not system-friendly.
– Programming-friendly?

• Want a better synchronization construct.

– Allow S to be atomic but interruptible by non-interfering T.
– Allow ordering without busy waiting.
– Higher-level programming language construct.

• Typical programming-language synchronization constructs

– reads and writes of shared memory locations.
– semaphores
– locks and condition variables (aka monitors)

• Typical synchronization problem to be solved:

– Given shared data structure X,
boolean conditions B1, B2, · · ·, Bn in X,
code chunks U1, U2, · · ·, Un in X,

– To ensure that Ui is atomically executed only when X satisfies Bi.
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2 Locks

At any time, a lock is either available (aka free) or acquired (aka held) by some thread.

Lock constructs

• Initialization: Lock lck // Creates available lock lck.
• Acquire lock: lck.acq()

– Callable only if thread does not hold the lock.
– Thread gets past this statement only if lock is available; simultaneously acquires

the lock. So thread blocks if lck is not available.
• Release lock: lck.rel()

– Callable only if thread holds the lock.
– Releases the lock. Non blocking.

• Progress:
– Weak lock: thread at lck.acq() eventually gets past if lock is continuously free.
– Strong lock: thread at lck.acq() eventually gets past if lock is repeatedly free (but

not necessarily continuously free).

Achieving mutual exclusion

To have code chunks U1, U2, · · ·, Un be executed mutually exclusively,

• Define lock lck.
• Surround each Ui by lck.acq() and lck.rel().

Achieving ordering

Using locks alone, this can be achieved only with busy waiting.
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3 Lock implementation for single-CPU system

Here is an implementation of a lock for a single-CPU system. It uses interrupt disabling and
accesses PCBs.

Lock lck:
lck.free ← true
lck.queue ← []

lck.acq():
// here on trap with interrupts disabled
currentPcb ← current thread state with return address after lck.acq() call
if lck.free

lck.free ← false
interrupt return

else // lck not free
move currentPcb to lck.queue
Scheduler

lck.rel():
// here on trap with interrupts disabled
if lck.queue 6= []

move a pcb from lck.queue to runnable queue
else

lck.free ← true
interrupt return

A strong lock can be achieved simply by using a fair queueing discipline (e.g., fifo) when
removing a PCB from lck.queue.
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4 Spin lock implementation using critical-section solution

The critical section problem is as follows. A program is executed by N threads, with ids 0, · · ·,
N−1. Sections of program by the threads are marked as “critical”. The problem is to come up
with entry and exit code chunks to surround each critical section so that:

• Safety: At any time at most one thread is in a critical section.
• Progress: Any thread that enters an entry code chunk eventually enters the associated

critical section, provided no thread stays in a critical section forever.
• Atomicity assumption: Atomic reads and writes of memory words are the only atom-

icity that can be assumed by the entry and exit code chunks.

Clearly this problem is equivalent to that of implementing locks, with entry corresponding to
acquire and exit to release. Thus a solution yields a lock implementation that requires only
atomic reads and writes of memory words (and hence is applicable in a multi-CPU shared-
memory system).

Because these lock implementations employ busy-waiting, the locks are referred to as spin
locks.

4.1 2-process spin lock implementation

Here is a spin lock implementation using Peterson’s critical section solution for the case of two
processes, i.e., N equals 2, thread ids are 0 and 1. Thus this lock is a “2-process” lock, i.e., a
lock that is accessed by only two threads.

Below, i and j range over 0 and 1, such that i 6= j. Thread i calls acq(i) to acquire the lock, and
rel(i) to release the lock. The threads share three 1-bit variables: flag[0], indicating if thread
0 is acquiring or holding the lock; flag[1], just like flag[0] for thread 1; and turn, indicating
which thread has priority in case of contention. To acquire the lock, thread i sets flag[i] to
true and turn to j, and then waits for flag[j] to be false or turn to equal i.

Shared variables:
boolean flag[2] ← [false, false]
turn ← 0 // can also be 1

acq(i):
s1: flag[i] ← true
s2: turn ← j
s3: while (flag[j] and turn = j) skip;

return

rel(i):
flag[i] ← false
return

Here is a proof that it works.
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Safety: Suppose i leaves s3 (in acq(i)). We need to show that j does not hold the lock at that
time.

• Suppose i leaves s3 because flag[j] is false. Then at that time thread j is neither in
acq(j) nor does it hold the lock.

• Suppose i leaves s3 because flag[j] is true and turn equals i, say at time t0. Let i’s last
execution of s2 be at time t1, where t1 < t0. Just after t1, flag[i] and turn = j hold.
Because turn = i holds at t0, thread j must have executed s2 at some time t2 where
t1 < t2 < t0. Hence flag[i] and turn = i hold during [t2, t0]. Hence thread j is still in
s3.

Progress: Suppose i calls acq(i) and reaches s3 at time t0. We need to show that i eventually
leaves s3.

1. Suppose flag[j] stays false after some point t1 where t0 ≤ t1. Then i eventually leaves
s3 and returns.

2. Otherwise flag[j] is true at t0 or becomes set at some later point (while i is in s3).
2a. Suppose flag[j] is set (by j) at some point after t0. Then at some later point j

sets turn to i. After this turn stays i (because j is stuck in s3), and so i eventually
leaves s3.

2b. Suppose flag[j] is true at t0 (i.e., it was set before t0), and j has not yet executed
s2. Then this reduces to case 2a.

2c. Suppose flag[j] is true and turn is i before t0 (i.e., j did s2 before t0). Then i is
stuck in s3 but j will eventually leave s3. After this it will eventually release the
lock (otherwise progress holds vacuously), after which this reduces to case 1 or 2a.

4.2 N-process spin lock implementation

Here is a lock implementation using Lamport’s bakery algorithm solution to the N-process
critical section problem.

TBD
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5 Lock implementation using spin locks and PCB queues

Our lock implementation for single-CPU systems involves disabling interrupts and manipu-
lating PCB queues. Our lock implementations for multi-CPU shared memory systems do not
involve disabling interrupts or manipulating PCB queues, but they do involve busy waiting. A
busy waiting solution is acceptable only if the lock is to be held by threads for short durations.
If that is not the case, it makes sense to have a lock implementation that manipulates PCB
queues (as in the single-CPU case) but where atomicity of acq and rel are achieved using spin
locks (instead of disabling interrupts).

Lock lck:
lck.free ← true
lck.queue ← []
lck.spinLck

lck.acq():
lck.spinLck.acq()
currentPcb ← current thread state with return address after lck.acq() call
if lck.free

lck.free ← false
lck.spinLck.rel()
interrupt return

else // lck not free
move currentPcb to lck.queue
lck.spinLck.rel()
Scheduler

lck.rel():
lck.spinLck.acq()
if lck.queue 6= []

move a pcb from lck.queue to runnable queue
else

lck.free ← true
lck.spinLck.rel()
return

The overhead of busy waiting is now acceptable because the spin lock, namely lck.spinLck, is
held for only short durations (specifically, the time to execute the body of acq or rel.
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6 Spin lock implementation using test-and-set instruction

A test-and-set(x) instruction returns the old value of x and simultaneously sets x to true.
Locks can be easily implemented if the hardware provides this instruction. Below we assume
N threads, with ids 0, · · ·, N−1.

6.1 Safety-only solution

Here is a partial solution. It ensures that at most one thread holds the lock. It does not ensure
that a thread waiting for the lock eventually acquires it if the lock becomes repeatedly free.

Shared variables:
// false iff lock is free
boolean lckd ← false

acq(i): // i not used
while test-and-set(lckd) skip;
return

rel(i): // i not used
lckd ← false
return

6.2 Safety and progress solution

Here is a complete solution. In addition to lckd, the threads share boolean variables waiting[0],
· · ·, waiting[N−1], where waiting[i] indicates if thread i is waiting for the lock. When a thread
j releases the lock, it looks in increasing (modulo-N) order for a waiting thread. If it finds one,
it “passes” the lock to it; otherwise, it makes the lock free.

Shared variables:
boolean lckd ← false
boolean waiting[N] ← [false, · · ·, false]

acq(i):
waiting[i] ← true
key ← true
while (waiting[i] and key)

key ← test-and-set(lckd)
waiting[i] ← false
return

rel(i):
j ← (i+1) mod N
while (j 6= i and not waiting[j])

j ← (j+1) mod N
if j = i

lckd ← false
else

waiting[j] ← false
return
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7 Semaphores

Semaphores (aka Counting Semaphores) are the earliest synchronization construct.

At any time, a semaphore has a non-negative integer value. Unlike with a lock, there is no
notion of a thread holding a semaphore (except when a semaphore is being used as a lock).

Semaphore operations

• Initialization: Semaphore(N) sem
Creates semaphore sem with initial value N.

• sem.P() // text uses acquire(sem) or wait(sem)
Thread gets past this statement only if sem.value > 0 holds; simultaneously decreases
sem.value by 1.
So thread blocks until sem.value > 0 holds.

• sem.V() // text uses release(sem) or signal(sem)
Increments sem.value by 1.
Non blocking.

• Progress:
Weak: thread at sem.P() eventually gets if sem.value > 0 holds continuously.
Strong: thread at sem.P() eventually gets if sem.value > 0 holds repeatedly.

Achieving mutual exclusion

To have code chunks U1, U2, · · ·, Un be executed mutually exclusively,

• Define semaphore mutex initialized to 1.
• Surround each Ui by mutex.P() and mutex.V().

Achieving ordering (without busy waiting)

To have S execute only after U completes:

• Define semaphore gate initialized to 0.
• Insert gate.V() at the end of U.
• Insert gate.P() at the start of S.
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8 Semaphore implementation for single-CPU system

Semaphore(N) sem:
sem.value ← N
sem.queue ← []

sem.P():
// here on trap with interrupts disabled
currentPcb ← current thread state with return address after sem.P() call

if (sem.val > 0)
sem.val ← sem.val − 1
interrupt return

else // sem.val = 0
move currentPcb to sem.queue
Scheduler // enables interrupts

sem.V():
// here on trap with interrupts disabled
if sem.queue 6= []

move a pcb from sem.queue to runnable queue
else

sem.val ← sem.val + 1
interrupt return

9 Semaphore implementation using spin locks

To implement semaphores on shared memory systems without disabling interrupts, we can
have the P and V operations do the same manipulations of PCB queues as in the single-CPU
case, but use spin locks to achieve atomicity of these operations. (This is the same approach as
in section 5.)
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10 Bounded-buffer

Given buffer buff of max size N, and non-blocking code chunks append and remove, to obtain
functions enQ and deQ such that:

• enQ and deQ can be called by multiple threads simultaneously.
• enQ(x) calls append(x) exactly once, waiting if buff.size = N holds.
• deQ calls remove exactly once. waiting if buff.size = 0 holds.

10.1 Solution BB1

Shared variables:
Semaphore(1) mutex
Semaphore(0) gateE // enQ thread waits here if buff full
int nE ← 0 // tracks number of enQ threads waiting on gateE
Semaphore(0) gateD // deQ thread waits here if buff empty
int nD ← 0 // tracks number of deQ threads waiting on gateD

enQ(x):
mutex.P()
if buff.size = N

nE ← nE + 1
mutex.V()

e0: gateE.P()
nE ← nE − 1

buff.append(x)

if nD > 0
gateD.V()

else
mutex.V()

deQ():
mutex.P()
if buff.size = 0

nD ← nD + 1
mutex.V()

d0: gateD.P()
nD ← nD − 1

x ← buff.remove

if nE > 0
gateE.V()

else
mutex.V()

return x

We now show that this works. Below, for brevity, we use the name of a semaphore to denote
its value.

Atomic steps of program

First, note that there are six possible atomic steps in the program:

e1: from enQ-start to enQ-end.
e2: from enQ-start to e0.
e3: from e0 to enQ-end.
d1: from deQ-start to deQ-end.
d2: from deQ-start to d0.
d3: from d0 to deQ-end.
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[Explanation: Let α be the number of threads in enQ or deQ but not at gateE.P() or gateD.P().
Then following holds initially and is preserved by each atomic step:

• (α = 1 and mutex + gateE + gateD = 0) or (α = 0 and mutex + gateE + gateD = 1)

Hence α is either 0 or 1. So at most one of e1, e2, e3, d1, d2, d3 can be executing at any time.
End of Explanation]

No overflow or underflow

The following holds initially and is preserved by each atomic step:

1. mutex + gateE + gateD = 1
2. number of threads at gateE.P() = nE
3. number of threads at gateD.P() = nD
4. (nE = gateE = 0) or

(nE > 0 and gateE = 0 and buff.size = N) or
(nE > 0 and gateE = 1 and buff.size = N − 1)

5. (nD = gateD = 0) or
(nD > 0 and gateD = 0 and buff.size = 0) or
(nD > 0 and gateD = 1 and buff.size = 1)

Step e1 calls buff.append only when buff.size < N holds.
Predicate 4 above ensures that e2 calls buff.append only when buff.size < N holds.
Hence no overflow.

Step d1 calls buff.remove only when buff.size > 1 holds.
Predicate 5 above ensures that d2 calls buff.remove only when buff.size > 1 holds.
Hence no underflow.

10.2 Solution BB2

Shared variables:
Semaphore(1) mutex
Semaphore(N) spaces // enQ thread waits here if buff full
Semaphore(0) items // deQ thread waits here if buff empty

enQ(x):
spaces.P()
mutex.P()
buff.append(x)

mutex.V()
items.V()

deQ():
items.P()
mutex.P()
x ← buff.remove()

mutex.V()
spaces.V()
return x
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11 Awaits

Awaits are powerful synchronization constructs that are very convenient for programmers.
Awaits are not provided by programming languages (because they are too powerful). How-
ever a program using awaits can be methodically transformed to one using semaphores (or
locks and conditions).

An await construct has the form await (B) S, where B is a boolean expression (without side
effects) and S is a non-blocking statement. A thread at await (B) S executes S only if B holds, all
in one atomic step. The thread waits if B does not hold. B is referred to as a “guard” and S as
the “action” of the await.

Regarding progress, an await can be “weak” or “strong” (just as in the case of semaphores):

• A thread at a weak await eventually gets past if the guard holds continuously.
• A thread at a strong await eventually gets past if the guard holds repeatedly or continu-

ously.

The construct await (true) S is just a convenient way of specifying that S is atomically executed.

11.1 Implementing await-based programs using semaphores

An await-based program is a program such that awaits are its only synchronization constructs
and there is no conflicting code outside its awaits.

An await-based progam X can be transformed to an equivalent semaphore-based program Y .
First introduce the following variables in Y :

• A “gate” semaphore for every distinct await guard in X . A thread waits on this if it
would wait on a corresponding await in X .

• A “gate” counter for every gate semaphore, indicating the number of threads waiting on
the semaphore.

• A “mutex” semaphore to achieve atomicity of each await’s implementation in Y .

Next, for each await (B) S in X , do the following in Y :

1. Do P on the mutex semaphore.
2. If B holds then skip 3 and go to 4.
3. Increment B’s gate counter, do V on the mutex semaphore, do P on B’s gate semaphore.

Upon being awakened, decrement B’s gate counter and go to 4.
4. do S
5. Look for a guard (which can be B or any other) in X such that the guard holds and its gate

counter is non-zero. If there is such a guard, then do V on the guard’s gate semaphore
and exit. If there is no such a guard, do V on the mutex semaphore and exit.
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12 Readers-writers problem

Given functions read() and write(), to obtain functions concRead() and concWrite() that can be
called simultaneously by multiple threads such that:

1. concRead() calls read() exactly once.
2. concWrite() calls write() exactly once.
3. The following holds at any time (exactly one holds at any time):

– (no thread in read() and no thread in write()), or
– (no thread in read() and 1 thread in write()), or
– (1 or more threads in read() and no thread in write()).

4. If every read call returns and every write call returns then:
a. every call to concRead eventually enters read, and
b. every call to concWrite eventually enters write.

5. while a read is ongoing, every call to concRead eventually enters read.
// informally: multiple simultaneous reads should be allowed.

Note that every evolution is a sequence of read intervals and write intervals separated by idle
intervals (during which no read or write is ongoing). A write interval has exactly one write. A
read interval has one or more reads; it starts when the first read of the interval starts, and ends
when the last read of the interval ends.

We now give several solutions, named RW1, RW2, RW3 and RW4. RW1 uses awaits and does
not satisfy (progress) requirement 4. RW2 implements RW1 using semaphores; it has the same
deficiency. RW3 is another semaphore-based solution that does not satisfy requirement 4; it
is the solution usually shown in textbooks. RW4 is a refinement of RW1; it satisfies all the
requirements.

12.1 Solution RW1

Shared variables:
int ongR ← 0; // number of ongoing reads
int ongW ← 0; // number of ongoing writes

concRead():
r1: await (ongW = 0)

ongR ++
read()

r2: await (true)
ongR −−

concWrite():
w1: await (ongW = ongR = 0)

ongW ++
write()

w2: await (true)
ongW −−

If the awaits are weak, RW1 satisfies requirement 5 but not 4. (A thread can wait forever at r1
or w1 while other threads complete reads and writes.)

If the awaits are strong, RW1 satisfies 5 and 4a but not 4b. (A thread can wait forever at w1
while a never-ending stream of readers ensures that there is always one ongoing read.)
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12.2 Solution RW2

Solutin RW2 implements the awaits in RW1 using semaphores. We follow the standard proce-
dure (given in section 11.1). In RW1, blocking occurs in only two places: await r1 and await
w1. The guards at r1 and w1 are not the same. Hence we introduce two “gate” semaphores (for
threads to wait on), two gate counters (tracking how many threads are waiting on each gate),
and a “mutex” semaphore. Here is the resulting program.

Shared variables:
int ongR ← 0; // number of ongoing reads
int ongW ← 0; // number of ongoing writes
Semaphore(0) gateR; // readers wait here
Semaphore(0) gateW; // writers wait here
int atgR ← 0; // number of threads waiting on gateR
int atgW ← 0; // number of threads waiting on gateW
Semaphore(1) mutex; // for atomicity of each await

concRead():
mutex.P() // await r1 start
if (not ongW = 0)

atgR ++
mutex.V()
gateR.P()
atgR −−

ongR ++
if (atgR > 0)

gateR.V()
else

mutex.V() // await r1 end

read()

mutex.P() // await r2 start
ongR −−

if (atgW > 0 and ongR = 0)
gateW.V()

else
mutex.V() // await r2 end

concWrite():
mutex.P() // await w1 start
if (not ongW = ongR = 0)

atgW ++
mutex.V()
gateW.P()
atgW −−

ongW ++
1: mutex.V() // await w1 end

write()

2: mutex.P() // await w2 start
ongW −−

3: if (atgW > 0)
gateW.V()

4: else if (atgR > 0)
gateR.V()

else
mutex.V() // await w2 end

If mutex is weak, RW2 satisfies requirement 5 but not 4.

If mutex is strong, RW2 satisfies requirement 5 but not 4. It will satisfy 4a if the updates in lines
3 and 5 (in concWrite) are interchanged.

Lines 1 and 2 (in concWrite) can be deleted (because no other process can execute them while
a write is ongoing.
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12.3 Solution RW3

Here is the solution that one usually finds in textbooks. It satisfies all requirements except 4b.

A semaphore wrt protects every read interval and write interval; i.e., P is done at the start of
the interval and V is done at the end of the interval. (In case of a read interval with more than
one read, the P and V are done in different invocations of concRead.)

To detect the start and end of a read interval, a counter nr keeps track of the number of threads
in concRead.

A semaphore mutex protects the counter.

Shared variables:
int nr ← 0; // number of threads in concRead
Semaphore(1) wrt; // protects read and write
Semaphore(0) mutex; // number of ongoing writes

concRead():
mutex.P()
nr ++
if (nr = 1)

wrt.P()
mutex.V()

read()

mutex.P()
nr −−

if (nr = 0)
wrt.V()

mutex.V()

concWrite():
wrt.P()

write()

wrt.V()

Note that if reader threads are blocked (because of any ongoing write), the first reader thread
to be blocked is waiting on wrt and all other reader threads are blocked on mutex.

Very slick. But not easily modified to satisfy requirement 4b.
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12.4 Solution RW4

A natural way to make solution RW1 satisfy requirement 4b is to impose a limit, say N, on the
number of consecutive reads while a writer is waiting. To detect this condition it suffices to
maintain the following variables:

• consecR: number of consecutive reads in the current read interval; 0 if no ongoing read
interval.

• waitngW: number of waiting writers.

For consecR to maintain the above stated meaning, it is incremented when a read starts and
zeroed when a write starts. For waitngW to maintain the above stated meaning, it is incremented
when a thread enters concWrite and decremented when the thread starts to write.

Here is the resulting solution, expressed using awaits.

Shared variables:
int ongR ← 0; // number of ongoing reads
int ongW ← 0; // number of ongoing writes
int consecR ← 0; // number of consecutive reads currently
int waitngW ← 0; // number of waiting writers

concRead():
await (ongW = 0 and

(consecR < N or waitngW = 0)
)

ongR ++
consecR ++

read()
await (true)

ongR −−

concWrite():
await (true)

waitngW ++
await (ongW = ongR = 0)

ongW ++
waitngW −−

write()
await (true)

ongW −−

12.5 Solution RW5: semaphore-based implementation of RW4

Left as an exercise.
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