On Multi-Threaded Programming

Shankar

February 18, 2018



Multi-threaded programs

m Multiple threads executing concurrently in the same address space

m Threads interact by reading and writing shared memory
w eg: threads u and v read/write a structure (memory area) x

m Requires synchronization of threads

= u should wait to access x while v is writing x
= u should wait to “add” to x while x is “full”

m Canonical synchronization problems

» mutual-exclusion, readers-writers, producer-consumer, ...

m Standard synchronization constructs
= locks, conditions, semaphores, ...

m Goal: solve synchro problems using standard synchro constructs



Locks, condition variables, semaphores
Await-structured program

Achieving priority for waiting threads
Bounded Buffer

Readers-Writers

Read-write Locks



m Lock operations: acquire and release
m Ick + Lock() // define a lock

m Ick.acq() // acquire the lock; blocking

= call only if caller does not hold Ick
= returns only when no other thread holds Ick

m Ick.rel() // release the lock; non-blocking
= call only if caller holds Ick

m Weak lock: Ick.acq() returns if lock is continuously free

m Strong lock: Ick.acq() returns if lock is repeatedly free
// even if only intermittently free



Condition variables

lock, cv, sem

m Condition variable operations: wait, signal and signal _all

m A condition variable is associated with a lock

m cv < Condition(lck) // condition variable associated with Ick

m cv.wait() // wait on cv; blocking

= call only if caller holds Ick
= atomically release Ick and wait on cv
when awakened: acquire Ick and return

m cv.signal() // signal cv; non-blocking

= call only if caller holds Ick
= wake up a thread (if any) waiting on cv

m cv.signal _all() // wake up all threads waiting on cv

m Ick.acq() does not give priority to threads coming from

cv.wait()



Semaphores lock, cv, sem

m Semaphore: variable with a non-negative integer count
m Semaphore operations: P() and V()

m sem < Semaphore(N) // define semaphore with count N (> 0)

m sem.P() // blocking

= wait until sem.count > 0 then decrease sem.count by 1; return
= checking sem.count > 0 and decrementing are one atomic step

m sem.V() // non-blocking
= atomically increase sem.count by 1; return

m V() does not give priority to waiting threads

m Semaphore can be strong or weak (just like a lock)



Locks, condition variables, semaphores
Await-structured program

Achieving priority for waiting threads
Bounded Buffer

Readers-Writers

Read-write Locks



Awaits awaits

m Standard synchro constructs (ie, lock, cv, sem) are low level

m High-level construct: await (B) {S} // await B: S

» if B holds execute S, all in one atomic step
n if B does not hold, wait
» B has no side effect

m Weak await: does S if B holds continuously
m Strong await: does S if B holds repeatedly // even if intermittent

m atomic {5} // short for await (true) {S}

m A program using awaits is
= easier to understand than one using std synchro constructs
= can be transformed to one using std synchro constructs
= often provides a convenient intermediate program



Await-structured program awaits

m We say code chunks S and T in a program conflict if

= a thread can write to a memory area
= another thread can simultaneously read/write the same area

m This is a dynamic (not textual) notion

= S and T can update the same location but be conflict-free
if two threads cannot execute them simultaneously

m S and T can be the same code chunk

» S conflicts with itself if it writes to a global location x
and two threads can execute S simultaneously

m Await-structured program:

= awaits are the only synchronization constructs
» all the code outside the awaits is conflict-free



Program Po:
= X, y: global int variables; initially @
= up(), down() // callable by multiple threads simultaneously

s up(): m down():
int z int z
await (x < 100): await (x > 0):
X < x+1 X ¢ x-1
Z + X Z + X

return 2%z return 2xz



Program P1:
. X,y // as in PO
m 1lck < Lock()
m cVNF < Condition(lck) // for guard (x < 100)
m cVNE < Condition(lck) // for guard (x > @)
= up(): m down():
int z int z
lck.acq() 1ck.acq()
while (not x < 100): while (not x > 0):
cVNF.wait() cVNE.wait()
X = x+1 X & x-1
Z < X Z <+ X
cVNE.signal() cVNF.signal()
lck.rel() lck.rel()

return 2xz return 2%z



Program P2:
"X,y // as in PO
m 1lck + Lock()
m cv < Condition(lck) // for both guards
= up(): m down():
int z int z
lck.acq() lck.acq()
while (not x < 100): while (not x > 0):
cv.wait() cv.wait()
X ¢ x+1 X — x-1
Z +— X Z — X
cv.signal_all() cv.signal_all()
lck.rel() lck.rel()

return 2xz return 2xz



return <« 2*z

Program P3:
. X,y // as in P1
= mutex < Semaphore(1) // for lck
= gateNF < Semaphore(0) // for cvNF
» gateNE < Semaphore(0) // for cvNE
s up(): = down():
int z int z
mutex.P() mutex.P()
while (not x < 100) while (not x > 0)
mutex.V() mutex.V()
gateNF.P() gateNE.P()
mutex.P() mutex.P()
X < x+1 X — x-1
Z +— X Z +— X
gateNE. V() gateNF.V()
mutex.V() mutex.V()

return <« 2%z



Locks, condition variables, semaphores
Await-structured program

Achieving priority for waiting threads
Bounded Buffer

Readers-Writers

Read-write Locks



Method: Await — Sem priority for waiting awaits — sem

m Await-structured program with distinct await guards By, - -+, By

m Want an equivalent semaphore program such that processes stuck
in an await have higher priority than processes arriving freshly to
the await

= Solution:
= Semaphores mutex and gatey, ---, gatey // as before
» After executing the update of an await
= do mutex.V() if no B; holds and has waiting processes
= o/w select one such B; and do gate;. V()
(do not mutex.V())



Method: Await — Sem priority for waiting awaits — sem

m Await-structured program with distinct await guards By, ---, By

m mutex < Semaphore(1)
m For every B;

» gate; <— Semaphore(0) // to wait for B;
= nw; < 0 // number of processes waiting at gate;

m Replace each await (B;) S; by

mutex.P()
if (not B;)
nw;t++; mutex.V(); gate;.P(); nw;--
Si
for k in 1,---,N
if (Bx and nw, > 0)
gate, . V()
return

mutex.V()



Program P4:
= X, y, mutex, gateNF, gateNE // as in P2
= nwNF, nwNE: initially @ /] # waiting on gateNF, gateNE
s up(Q): s down():
int z int z
mutex.P() mutex.P()
if (not x < 100) if (not x > 0)
nwNF ++ nwNE ++
mutex.V(); gateNF.P() mutex.V(); gateNE.P()
nwNF - - nwNE - -
X — x+1 X — x-1
Z +— X Z +— X
if x>0 and nwNE>0 if x<100 and nwNF >0
gateNE.V() gateNF.V()
else else
mutex.V() mutex.V()

return 2%z return 2%z



Locks, condition variables, semaphores
Await-structured program

Achieving priority for waiting threads
Bounded Buffer

Readers-Writers

Read-write Locks



Bounded Buffer Problem

m Given BB

buf: buffer of capacity N items

num: number of items in buf

add(x): add item x to buf; non-blocking
rmv(): return an item from buf; non-blocking

m Obtain enQ(x) and deQ() such that

callable by multiple threads simultaneously
enQ(x) calls add(x) once, waiting if buf is full
deQ() calls rmv() once, waiting if buf is empty
at most one add() or rmv() ongoing at any time

if buf not full and at least one enQ() ongoing,
eventually an enQ() returns

if buf not empty and at least one deQ() ongoing,

eventually a deQ() returns

bounded buffer

// has no synchronization

/] safety
/ 1} 1}
// 1} 1
/ 1 1

// progress

/ 1 1



Program BBO:
» buf, num, add(x), rmv() // as in BB

m enQ(x):
await (num < N):
add(x)
return

m deQ():
await (num > 0):
tmp < rmv()
return tmp

= awaits with weak progress adequate to achieve desired progress
(do not require progress for every waiting enQ or deQ)



Program BB1

m buf, num, add(x), rmv() // as in BBO
» 1ck: lock
= cVNF, cvNE: cond vars // not-full, not-empty
s enQ(x): s deQ():
lck.acq() 1ck.acq()
while (num = N): while (num = 0):
cvNF.wait() cvNE.wait()
add(x) tmp < rmv()
cVNE.signal() cvNF.signal()
if num < N: if num > 0:
cvNF.signal () cvNE.signal()
lck.rel() lck.rel()
return return tmp

m Is red code needed?



Program BB2:
= buf, num, add(x), rmv() // as in BBO
m Semaphore(1) mutex

= Semaphore(Q) gateNF, gateNE
= nwNF, nwNE: initially @

m enQ(x): s deQ():

mutex.P() mutex.P()

while num = N: while num = 0:
nwNF ++ nwNE ++
mutex.V(); gateNF.P() mutex.V(); gateNE.P()
nwNF - - nwNE - -

add(x) tmp +— rmv()

if num>0 and nwNE>0: if x<100 and nwNF>0:
gateNE.V() gateNF.V()

else mutex.V(Q) else mutex.V()

return return tmp



Program BB3:

» buf, num, add(x), rmv() // as in BB
= Semaphore(1) mutex

= Semaphore(N) nSpace

m Semaphore (@) nItem

= enQ(x): = deQ():
nSpace.P() nItem.P()
mutex.P() mutex.P()
add(x) tmp <+ rmv()
mutex.V() mutex.V()
nItem.V() nSpace.V()
return return tmp

m Cute. But not adaptable.



Bounded Buffer with variable-size items bounded buffer

m Like the bounded-buffer except
= buf has a capacity of N bytes
= num: indicates available bytes in buf
» add(x,k): add item x of size k bytes
= rmv(k): return an item of size k bytes

m Previous await-structured solution BBO is easily adapted
s enQ(x,k):
await (num < N-k)
add(x, k)
m deQ(k):
await (num > k)
tmp < rmv(k)
return tmp

m Can transform above to using standard synch constructs
m Exercise: can you adapt program BB3 to solve this



Locks, condition variables, semaphores
Await-structured program

Achieving priority for waiting threads
Bounded Buffer

Readers-Writers

Read-write Locks



Readers-Writers Problem reader-writer

m Given non-blocking functions read(), write()

m Obtain functions cread(), cwrite() such that

1 each is callable by multiple threads simultaneously
2 cread() calls read() once, waits if ongoing write()
3 cwrite calls write() once, waits if ongong write() or read()
4 allow multiple ongoing read() calls
5 if every read() and write() call returns then
a every cread() call eventually returns
b every cwrite() call eventually returns

m 1-4 are safety requirements
m 5 is a progress requirement



Consequence of safety requirements reader-writer

m Every evolution of a solution is an alternating sequence of
idle intervals and busy intervals

m An idle interval has no read or write
m A busy interval is either a read interval or a write interval
m A write interval has exactly one write

m A read interval has one or more reads

m it starts with the first read() call
m it ends when the last read() return



RW1: partial solution using awaits reader-writer

Program RW1:

mnNR < 0 // number of ongoing reads
= nW < 0 // number of ongoing writes
s cread(): m cwrite():
ri: await (nW = 0) wl: await (nW = nR = 0)
nR ++ nW ++
read() write()
r2: await (true) w2: await (true)
nR -- nw --

m Weak awaits: RW1 does not satisfy requirement 5
(eg, thread stuck at r1 due to endless stream of reads/writes)

m Strong awaits: RW1 satisfies 5a but not 5b
(thread stuck at w1 due to endless stream of reads)



Program RW2:

= NR, nW: initially @ // as in RW1
= lck, cVR, cwW // lock, cv-read, cv-write
m cread(): m cwrite():
lck.acq() lck.acq()
while not nW = @: while not nW = nR = 0:
cvR.wait() cvW.wait()
nR ++ nW ++
lck.rel() lck.rel()
read() write()
lck.acq() lck.acq()
nR -- nw --
if nR = 0: cvW.signal ()
cvW.signal () cvR.signal ()
cvR.signal () lck.rel()

lck.rel()



RW?2a: simpliﬁed RW?2 reader-writer

m While write() ongoing, no other read() or write() ongoing
m Hence can remove 1ck.rel and 1lck.acq surrounding write()
m Then nW is always 0, so can simplify code

Program RW?2a:

m nR, 1ck, cvW // as in RW2; no need for nW, cvR
m cread(): s cwrite():

lck.acq() lck.acq()

nR ++ while (not nR=0)

lck.rel() cvW.wait()

read() write()

lck.acq() cvW.signal ()

nR -- lck.rel()

if (nR=0)

cvW.signal ()
lck.rel()



m Several ways to transform program RW1 to a semaphore program

= apply “lock-cv — semaphore” transformation on RW2
= apply “lock-cv — semaphore” transformation on RW2a

= apply “await — semaphore with awakened priority” on RW1

m Left as exercises



RW3: another partial semaphore solution ~ — 1 reader-writer
m Following is the partial solution usually given in texts

m Variables
= Semaphore(1) wrt: protects every busy interval

= wrt.P() is done at the start of the interval
= wrt.V() is done at the end of the interval

= int nR: number of ongoing reads
= for detecting the start and end of a read interval

= Semaphore(1) mutex: protects nR

m Note
= In a read interval of more than one read,
wrt.P() and wrt.V() are done in different cread calls
w If read threads are blocked (due to ongoing write),
one is waiting on wrt and the others on mutex



m cread():

mutex.P()
nR ++
if (nR = 1)

wrt.P(O) mcwrite():
mutex.V() wrt.P(O)
read() write()
mutex.P() wrt.V(Q)
nR --
if (nR = 0)

wrt.V(Q)
mutex.V()

m Cute. But not easily modified to satisfy requirement 5b.



RW4: solution using awaits -1 reader-writer

m One way to satisfy requirement 5b is to impose a limit, say N,
on the number of consecutive reads while a writer is waiting.

m Variables
= NR < 0: # ongoing reads
= NW < @: # ongoing writes
= NCR < 0: # of reads since last write

= incremented when a read starts
s zeroed when a write starts

= NnWW < @: number of waiting writes

= incremented when a thread enters cwrite
= decremented when the thread starts to write



m cread():

await (nW = @ and
(ncR < N or nwW = @)

)

nR ++
ncR ++
read()
await (true)
nR --

mcwrite():

await (true)
nwW ++
await (nW = nR = 0)
nW ++
nwwW - -
NncR < 0
write()
await (true)
nw --

m Exercise: transform to lock-cv and semaphore programs



Locks, condition variables, semaphores
Await-structured program

Achieving priority for waiting threads
Bounded Buffer

Readers-Writers

Read-write Locks



Read-write lock reader-writer

m A read-write lock can be held as a “read-lock” or as a “write-lock”
m Can view it as consisting of one write-lock and many read-locks
m At any time, [# wlocks, # rlocks] held is [0, 0], [0, >0], or [1, 0]

m Operations

= rwlck < ReadWriteLock() // define a read-write lock
m rwlck.acqR() // acquire read-Ick; blocking

m rwlck.relR() // release read-lock; non-blocking

= rwlck.acgW() // acquire write-Ick; blocking

s rwlck.relW() // release write-lock; non-blocking

m Call acqrR() or acgW() only if caller does not have lock
m Call relR() or relW() only if caller has the appropriate lock

m Weak lock: acgX() returns if lock is continuously free

m Strong lock: acgX() returns if lock is repeatedly free
// even if only intermittently free



m Any readers-writers solution yields a read-write lock
m Weak or strong depending on readers-writers solution

Program readers-writers

» variables

m cread(): m cwrite():
// acqR() / acqW()
read() write()

/" relRQ) /- relNO)



	Locks, condition variables, semaphores
	Await-structured program
	Achieving priority for waiting threads
	Bounded Buffer
	Readers-Writers
	Read-write Locks

