Spin Locks from Read-Write Atomicity

Shankar

October 29, 2013

Critical Section: Problem and Solutions
Spin Lock from Peterson solution
Obtaining N-user lock given 2-user locks
Spin Lock from Bakery solution

Critical-Section Problem

= Given program with

m threads 0, - - -, N-1 that execute concurrently
= parts of the program designated as critical sections (CSs)

m To obtain entry and exit code around each CS so that
= at any time there is at most one thread in all of the CSs
= any thread in entry code eventually enters its CS
provided no thread stays in a CS forever
= code requires only read-write atomicity

= no read-modify-write atomicity (eg, no test&set)

CS

Locks from Critical-Section Solutions cs

m Any solution yields a lock requiring only read-write atomicity
= lock definition: variables of CS solution
= lock acquire body: entry code
= lock release body: exit

m Two of the simplest solutions

= Peterson algorithm: N =2
» Bakery algorithm: arbitrary N

We will obtain locks from these two solutions

m Terminology
m thread is eating if it holds the lock

. " hungry if it is acquiring the lock

= " "thinking otherwise

Critical Section: Problem and Solutions
Spin Lock from Peterson solution
Obtaining N-user lock given 2-user locks
Spin Lock from Bakery solution

m Threads 0 and 1

m Shared variables

= flagl0] < false // true iff thread 0 is non-thinking
= flagll] < false // true iff thread 1 is non-thinking
= turn <~ Oor 1l // identifies winner in case of conflict
m acq():
Jj + 1-myid // j is other thread’s id

sl: flaglmyid]l < true
s2: turn <+ j
s3: while (flagljl and turn = j) skip

mrel():
flaglmyid] « false

Peterson Lock: Safety

Peterson

Suppose thread i leaves s3 at time t.
Need to show that thread j is not eating at t;.

m Only two ways that i leaves s3.

m Case 1: i leaves s3 because flagLj] is false.

Then at ty, j is thinking and so does not hold the lock.

m Case 2: i leaves s3 because flagLj] is true and turn is 1.

Thread 1 executed s2 at some t; (< tp), setting turn to j.
Because turnis i at ty, j executed s2 at some t; in [ty to].
Hence flagli] is true and turn is i during [ty, to].

Hence j is stuck in s3.

Peterson Lock: Progress Peterson

Suppose i calls acq(i) and is in s3 at time t.
Need to show that i eventually leaves s3.

Cy: Suppose turnis i at tg.
It remains so. Hence i eventually leaves s3.

C»: Suppose flagLjl is false at ty.
Eventually 1 leaves s3 or j does s1;s2 (— ().

C3: Suppose flagl[j] is true and turnis j at t.
So j is eating or hungry.

Cs,: If jis eating, it eventually stops eating (— G, — ;)

Gsp: If jis at s2, it eventually does s2 (— ().

Gsc: If jis in s3, then turn remains j, so j eventually eats (— Gz,
— Cg — Cl)

So eventually C; holds, which leads to i eating.

Critical Section: Problem and Solutions
Spin Lock from Peterson solution
Obtaining N-user lock given 2-user locks
Spin Lock from Bakery solution

Obtaining a N-user lock from 2-user locks N from 2

m Define a binary tree of (at least) N leaf nodes.
m Associate a distinct 2-user lock with every non-leaf node.
m Associate the N users with distinct leaf nodes.

m A thread acquires the N-user lock by acquiring in order
the 2-user locks on the path from my leaf to root

m A thread releases the N-user lock by releasing
the acquired 2-user locks (in any order)

4-user lock example 2-user- -

- thread 0 acquires x1, x0
- thread 2 acquires x2, x0

users 0

m But there are better ways to implement N-user locks

Critical Section: Problem and Solutions
Spin Lock from Peterson solution
Obtaining N-user lock given 2-user locks
Spin Lock from Bakery solution

Bakery Solution: Approach Bakery

m Threads 0, ---, N-1
m Share variables num[0], - - -, numCN-11, initially O
= numlil is O if i thinking, else > 0; in conflict, smaller num wins

m Lock acquire: thread i does two scans of the nums
m sl: set numli] to a value higher than other nums
m s2: wait at each num[j] until
numL j1 is O or greater than num[i]

m Lock release: thread i zeroes num[i]
m This works if s1 is atomic, but not with read-write atomicity.

m Next
= define a “XBakery” lock based on the above
= show how it fails with read-write atomicity
= show how to fix it, resulting in the Bakery lock

m Lock:
numf0..N-11 « [0,---,0]

m acq():
sl: numCmyid]l < max(numCOJ,---,numlN-11) + 1

for (p in 0..N-1)
s2: do
X <— numCp]
while (x=0 or x < numCmyidl) skip

mrel():
numCmyid]l < O

XBakery Lock with s1 atomic Bakery

m Define
= Q: hypothetical queue of ids of non-thinking threads
in increasing num order

= 1 joins @ when thread 1 executes sl
» 1 leaves Q when thread i executes rel()

m i /s ahead of j: 0 < numLi] < numCj] holds
m i has passed j: 1iis eating or 1iisin s2 with i.p > j.

m Properties
= arrival to Q joins at tail // coz sl is atomic, right?
» threads in @ have distinct nums " i " "

if iis ahead of j then j cannot pass i
so only the thread at the head of @ can eat

if iis ahead of j then i eventually passes j
so the thread at the head of @ will eventually eat

XBakery Lock with read-write atomicity Bakery

m XBakery lock does not work if only reads and writes are atomic.

m Flaw 1

threads i and j enter s1 simltaneously

each reads the other’s num before either updates its num
hence numli] equals numlj] and both threads are in s2
each thread passes the other, both acquire the lock. v

m Flaw 2
= threads 1, j, k enter s1 simultaneously
= i completes s1 except for updating numl[i], to say x
= j completes s1, setting numLj] to x
» k completes s1, setting numCk] to x + 1
= k enters s2, passes i (because num[i] is 0)
= i completes s1, setting num[j1 to x
= i enters s2 and passes k (because numlk] > num[il)
= i and j can now both acquire the lock

Fixing XBakery for read-write atomicity Bakery

m Fixing flaw 1

» use thread ids to break ties
m let Cnumlil,i] < [numCjl, j1 denote
numCil < numCjl or (numlil = numCj] and i < j)
m Fixing flaw 2
» introduce booleans choosing[0], - - -, choosing[N - 1]
such that choosing[i] true if i in sl
m in s2, thread j reads numLi] only after finding choosingli] false
= so if numLi] changes after j reads it, it is because of i
executing sl after j left sl.
= so numLi] will be higher than numL j1, so i cannot pass j

m Lock:
choosing[0..N-1] « false
numC0..N-1]1 < 0

m acq():
tl: choosinglmyid] < true
t2: numCmyid]l < max(numCOl,---,numCN-11) + 1
t3: choosinglmyid]l < false

for (p in 0..N-1)
t4: while (choosinglpl) skip
th: do
X <— numlCp]
while (x 0 and [x,pl < [numCmyidl, myidl)

mrel():
numCmyid]l < O

Bakery Lock Analysis: Definitions Bakery

m Define

= i is choosing: choosingli] is true (ie, i on t2,t3)

= jis a peerof i:
= i and j are non-thinking
= their choosing intervals overlapped
= jis still choosing

= @Q: hypothetical queue of ids of non-thinking non-choosing
threads in increasing [num, id] order
// “non-choosing” simply makes the argument cleaner: once a
// thread enters Q, it is nobody's peer (but it can have peers)
m i /s ahead of j; [0,-1 < [numCil, i1 < [numCjl, j1 holds
m i has passed j: 1iis eating or 1iisin t4..th with i.p > j

Bakery Lock Analysis: Properties Bakery

m While thread iisin @
m set of its peers keeps decreasing // choosing is non-blocking
= only a peer can join @ ahead of i
= so at most N-1 threads can join @ ahead of i

m When thread i reads numLj] in t5
= jis not currently a peer of i
// J not choosing, or started choosing after 1 finished choosing
= so i may pass j based on an unstable num[j]
but j will not pass i // coz numLj1 will exceed numCi]

m only the head eats // coz i passes j only if i is ahead of j

m every hungry i eventually eats
= eventually i has no peers // coz choosing is non-blocking
= after this, no thread joins ahead of 1, the head eventually eats,
so i eventually becomes the head and eats

	Critical Section: Problem and Solutions
	Spin Lock from Peterson solution
	Obtaining N-user lock given 2-user locks
	Spin Lock from Bakery solution

