
Spin Locks from Read-Write Atomicity

Shankar

October 29, 2013



Outline CS

Critical Section: Problem and Solutions

Spin Lock from Peterson solution

Obtaining N-user lock given 2-user locks

Spin Lock from Bakery solution



Critical-Section Problem CS

Given program with

threads 0, · · · , N−1 that execute concurrently
parts of the program designated as critical sections (CSs)

To obtain entry and exit code around each CS so that

at any time there is at most one thread in all of the CSs
any thread in entry code eventually enters its CS
provided no thread stays in a CS forever
code requires only read-write atomicity

no read-modify-write atomicity (eg, no test&set)



Locks from Critical-Section Solutions CS

Any solution yields a lock requiring only read-write atomicity

lock de�nition: variables of CS solution
lock acquire body: entry code
lock release body: exit

Two of the simplest solutions

Peterson algorithm: N = 2
Bakery algorithm: arbitrary N

We will obtain locks from these two solutions

Terminology

thread is eating if it holds the lock
" " hungry if it is acquiring the lock
" " thinking otherwise



Outline Peterson

Critical Section: Problem and Solutions

Spin Lock from Peterson solution

Obtaining N-user lock given 2-user locks

Spin Lock from Bakery solution



Peterson Lock Peterson

Threads 0 and 1

Shared variables

flag[0] ← false // true i� thread 0 is non-thinking
flag[1] ← false // true i� thread 1 is non-thinking
turn ← 0 or 1 // identi�es winner in case of con�ict

acq():
j ← 1 − myid // j is other thread’s id

s1: flag[myid] ← true
s2: turn ← j
s3: while (flag[j] and turn = j) skip

rel():

flag[myid] ← false



Peterson Lock: Safety Peterson

Suppose thread i leaves s3 at time t0.
Need to show that thread j is not eating at t0.

Only two ways that i leaves s3.

Case 1: i leaves s3 because flag[j] is false.

Then at t0, j is thinking and so does not hold the lock.

Case 2: i leaves s3 because flag[j] is true and turn is i.

Thread i executed s2 at some t1 (< t0), setting turn to j.
Because turn is i at t0, j executed s2 at some t2 in [t1, t0].
Hence flag[i] is true and turn is i during [t2, t0].
Hence j is stuck in s3.



Peterson Lock: Progress Peterson

Suppose i calls acq(i) and is in s3 at time t0.
Need to show that i eventually leaves s3.

C1: Suppose turn is i at t0.
It remains so. Hence i eventually leaves s3.

C2: Suppose flag[j] is false at t0.
Eventually i leaves s3 or j does s1;s2 (→ C1).

C3: Suppose flag[j] is true and turn is j at t0.
So j is eating or hungry.

C3a: If j is eating, it eventually stops eating (→ C2 → C1)

C3b: If j is at s2, it eventually does s2 (→ C1).

C3c : If j is in s3, then turn remains j, so j eventually eats (→ C3a

→ C2 → C1)

So eventually C1 holds, which leads to i eating.



Outline N from 2

Critical Section: Problem and Solutions

Spin Lock from Peterson solution

Obtaining N-user lock given 2-user locks

Spin Lock from Bakery solution



Obtaining a N-user lock from 2-user locks N from 2

De�ne a binary tree of (at least) N leaf nodes.

Associate a distinct 2-user lock with every non-leaf node.

Associate the N users with distinct leaf nodes.

A thread acquires the N-user lock by acquiring in order
the 2-user locks on the path from my leaf to root

A thread releases the N-user lock by releasing
the acquired 2-user locks (in any order)

4-user lock example

- thread 0 acquires x1, x0
- thread 2 acquires x2, x0

users 0 1 2 3

x0

x1

2−user

locks
x2

But there are better ways to implement N-user locks



Outline Bakery

Critical Section: Problem and Solutions

Spin Lock from Peterson solution

Obtaining N-user lock given 2-user locks

Spin Lock from Bakery solution



Bakery Solution: Approach Bakery

Threads 0, · · · , N−1
Share variables num[0], · · · , num[N − 1], initially 0
num[i] is 0 if i thinking, else > 0; in con�ict, smaller num wins

Lock acquire: thread i does two scans of the nums
s1: set num[i] to a value higher than other nums
s2: wait at each num[j] until

num[j] is 0 or greater than num[i]

Lock release: thread i zeroes num[i]

This works if s1 is atomic, but not with read-write atomicity.

Next
de�ne a �XBakery� lock based on the above
show how it fails with read-write atomicity
show how to �x it, resulting in the Bakery lock



XBakery Lock Bakery

Lock:
num[0..N−1] ← [0,· · · ,0]

acq():
s1: num[myid] ← max(num[0],· · · ,num[N−1]) + 1

for (p in 0..N−1)
s2: do

x ← num[p]
while (x =0 or x < num[myid]) skip

rel():
num[myid] ← 0



XBakery Lock with s1 atomic Bakery

De�ne

Q: hypothetical queue of ids of non-thinking threads
in increasing num order

i joins Q when thread i executes s1
i leaves Q when thread i executes rel()

i is ahead of j: 0 < num[i] < num[j] holds
i has passed j: i is eating or i is in s2 with i.p > j.

Properties

arrival to Q joins at tail // coz s1 is atomic, right?
threads in Q have distinct nums " " " "

if i is ahead of j then j cannot pass i
so only the thread at the head of Q can eat

if i is ahead of j then i eventually passes j
so the thread at the head of Q will eventually eat



XBakery Lock with read-write atomicity Bakery

XBakery lock does not work if only reads and writes are atomic.

Flaw 1
threads i and j enter s1 simltaneously
each reads the other's num before either updates its num
hence num[i] equals num[j] and both threads are in s2
each thread passes the other, both acquire the lock. v

Flaw 2
threads i, j, k enter s1 simultaneously
i completes s1 except for updating num[i], to say x
j completes s1, setting num[j] to x
k completes s1, setting num[k] to x + 1
k enters s2, passes i (because num[i] is 0)
i completes s1, setting num[j] to x
i enters s2 and passes k (because num[k] > num[i])
i and j can now both acquire the lock



Fixing XBakery for read-write atomicity Bakery

Fixing �aw 1

use thread ids to break ties
let [num[i],i] < [num[j],j] denote

num[i] < num[j] or (num[i] = num[j] and i < j)

Fixing �aw 2

introduce booleans choosing[0], · · · , choosing[N − 1]
such that choosing[i] true if i in s1
in s2, thread j reads num[i] only after �nding choosing[i] false
so if num[i] changes after j reads it, it is because of i
executing s1 after j left s1.
so num[i] will be higher than num[j], so i cannot pass j



Bakery Lock Bakery

Lock:
choosing[0..N−1] ← false
num[0..N−1] ← 0

acq():
t1: choosing[myid] ← true
t2: num[myid] ← max(num[0],· · · ,num[N−1]) + 1
t3: choosing[myid] ← false

for (p in 0..N−1)
t4: while (choosing[p]) skip
t5: do

x ← num[p]
while (x 6= 0 and [x,p] < [num[myid], myid])

rel():
num[myid] ← 0



Bakery Lock Analysis: De�nitions Bakery

De�ne

i is choosing: choosing[i] is true (ie, i on t2,t3)

j is a peer of i:
i and j are non-thinking
their choosing intervals overlapped
j is still choosing

Q: hypothetical queue of ids of non-thinking non-choosing
threads in increasing [num,id] order

// �non-choosing� simply makes the argument cleaner: once a
// thread enters Q, it is nobody's peer (but it can have peers)

i is ahead of j: [0,·] < [num[i], i] < [num[j], j] holds

i has passed j: i is eating or i is in t4..t5 with i.p > j



Bakery Lock Analysis: Properties Bakery

While thread i is in Q

set of its peers keeps decreasing // choosing is non-blocking
only a peer can join Q ahead of i
so at most N−1 threads can join Q ahead of i

When thread i reads num[j] in t5
j is not currently a peer of i
// j not choosing, or started choosing after i �nished choosing
so i may pass j based on an unstable num[j]
but j will not pass i // coz num[j] will exceed num[i]

only the head eats // coz i passes j only if i is ahead of j

every hungry i eventually eats
eventually i has no peers // coz choosing is non-blocking
after this, no thread joins ahead of i, the head eventually eats,
so i eventually becomes the head and eats


	Critical Section: Problem and Solutions
	Spin Lock from Peterson solution
	Obtaining N-user lock given 2-user locks
	Spin Lock from Bakery solution

