Operating Systems:
Memory Management

Shankar

April 14, 2015

Overview
Segmentation
Non-demand Paging
Demand Paging
Paged-Segmentation
Sparse Virtual Space
IA-32: x86 — 32-bit

Process Space — System Space Overview

m Process space (aka virtual space)

= address space of its (machine code) program
m structure: code, stack, data, heap, ...
m attributes: read, read/write, execute, ...

m System space

= hierarchy of caches, main memory, disk, ...
= small, fast — large, slow

m Virtual space mapped to physical space at run time

instruction i hw /sw location in
N virtual N /

i — .
execution address mapper cache/memory /disk

m if location in disk
hw traps — sw moves content to memory — resume instruction

Benefits of Run-time Mapping Overview

m Program'’s start address is O (in each segment)
m Kernel enforces attributes of virtual address

= memory protection
n efficient debugging

m Virtual space can be larger than physical memory
= memory-mapped files, ...
m Only the active part of virtual space need be in physical memory

= faster starting up
= higher degeree of multi-programming
= better utilization of memory, 10 devices, ...

m Efficient sharing of memory between processes/kernel
= avoid |O transfers between user and kernel space

m Efficient system virtualization
= guest operating systems

Some Basics Overview

m Processor can only access locations in memory
= faster for caches, slower for main memory

m Move more (less) frequently accessed stuff to fast (slow) mem
= need to maintain info on usage, dirty/clean, ...

m Suspend some programs if movement overhead too high
= thrashing, low hit rate

m Efficient management of physical space

= partition space into blocks (physical pages, disk sectors, ...)
= reduce fragmentation of space

m Need cacheing in processor to achieve low overhead of mapping
= TLB (translation-lookaside buffer): physical or virtual

Long ago ... Overlays Overview

m Way to run a program that doesn’t fit in physical memory

m Program image structured in parts:

= common
= phase 1
= phase 2

m Initially, common and phase 1 parts in physical memory
m The last bit of phase /, for i =1,2,---

= loads in phase i + 1, overwriting phase i
= jumps to start of phase / + 1

m No OS intervention
m No virtual address space: instructions generate physical addesses

Overview
Segmentation
Non-demand Paging
Demand Paging
Paged-Segmentation
Sparse Virtual Space
IA-32: x86 — 32-bit

Segmentation: Overview - 1 Segmentation

m Virtual address: | seg# | offset | m seg#'s: 0,---,2m—1
m-bit n-bit m seg max size: 2" bytes

m Virtual address is generated by an instruction
= eg, load 2:0x030, regl // put data at 2:0x030 into regl

m Physical address:

m Program space consists of segments
m eg, seg0: code; seg?2: data; segbh: stack;
w subset of {0,---,2" — 1}
need not be consecutive
each segment has a size (in 0,--- ,2")
each segment has access attributes (r, r/w, ...)

Segmentation: Overview - 2 Segmentation

m A segment is mapped completely in one physical memory chunk

m Assume all segments of a (non-suspended) process are mapped
= hence, total virtual space of processes < physical memory size

m Segments can grow if there is adjacent free physical memory
= allocate physical memory in out-of-bounds exception handler

m External fragmentation: wasted space between segments
m arises as processes enter/leave
= chunks of memory too small to use
= can fix by compaction, but expensive

Segment Tables Segmentation

m Each process has a segment table in memory // part of PCB
seg# valid base size access
0
1

m Created when process is loaded

m Row for every j in {0,---,2" — 1} /I descriptor of j
valid (1 bit): 1 iff process has segment j

base: physical address of (start of) segment j

m size of segment j
m access: allowed access to segment j, eg, r, r/w, ...

m Layout fixed by hardware

m For partial mapping of segment set, may want status field also.

STBR: Segment-Table Base Register Segmentation

m Processor has a STBR

m When a process is dispatched:

STBR « phys addr of the process’s segment table

m In user mode, processor uses segment table pointed to by STBR
= refer to this table as “STBR.table”

m virtual address

physical address

sn

offset

STBR.table[sn].base + offset

m In kernel mode, STBR not used, ie, physical addr = virtual addr
» eg, add/delte zero msb’s as needed

Address Translation w/o Cacheing Segmentation

m Instruction generates virtual addr | segno | offset |in user mode

m Processor does following
» sd < STBR.table[segno]
w if sd.valid =0 — invalid-segment exception
a if sd.size < offset — out-of-bounds exception
m if sd.access violated — invalid-access exception
» phyaddr < sd.base + offset

access physical memory location phyaddr

m Upon exception

m processor enters kernel mode
= executes exception handler

m Requires 2 memory accesses for every virtual address
= Overcome with caches in the processor

TLB Cache: Translation Lookaside Buffer Segmentation

m TLB cache: holds a portion of the current segment table

valid (1 bit) sn (segment #) | base | size | access

= for an entry x with valid bit set:
STBR.table[x.sn].valid =1 and
x.[base, size, access| = STBR.table[x.sn]

m Hw (set) associatively searches on valid and sn fields

m OS clears all valid bits when a process is dispatched
= unless TLB also has a pid field // associatively searched

m TLB's valid bit is not the same segment table's valid bit

Address Translation with TLB Segmentation

m Processor generates virtual address segno:offset

m If TLB does not have valid-segno entry // TLB miss

= if STBR.table[segno].valid =0 — invalid-segment exception
w create a valid-segno TLB entry from STBR.table[segno]

= if TLB was full, overwrite an entry

Let x be valid-segno TLB entry // TLB hit

if access invalid wrt x.access — invalid-access exception
w if offset > x.size — out-of-bounds exception

physaddr < x.base + offset

access physical memory location physaddr

m Cache replacement policy: fast, crude if needed
» FIFO, random, LRU approx, ...

More Caches Segmentation

m TLB is not the only cache in the processor

m Physical memory cache: holds a portion of physical memory
= memory is divided into (small-sized) blocks

» valid (1 bit) pa (phys addr) | data (of block pa)

= (set) associatively searched on valid and pa fields
m Virtual memory cache: holds a portion of virtual memory
m Cache access order: virtual mem — TLB — phys mem

m Multiple levels of caches

Overview
Segmentation
Non-demand Paging
Demand Paging
Paged-Segmentation
Sparse Virtual Space
IA-32: x86 — 32-bit

m Virtual space is linear (not segmented)
m Virtual space and physical memory divided into pages

m Virtual addr: | virtual page # | offset |
m-bit n-bit

m Physical addr: | Physical page # | offset |
p-bit n-bit

m virtual page# range: 0,---,2m—1
m physical page# range: 0,---,2°P —1

m page size: 2" bytes

Paging: Overview - 2 Paging

m Program space consists of virtual page ranges

m eg, 0-1000: code; 2000-4000: data; 7000-9000: stack;
= each page has access attributes (r, r/w, ...)

m Virtual pages are mapped to physical pages

m All virtual pages of an active process are mapped // for now
m Paging increases physical memory utilization

m Internal fragmentation: wasted space inside page

= usually in the last page of a program “segment”
= less wasteful than external fragmentation (between segments)

Page Table Paging

m Each process has a page table in memory // part of PCB
vpn valid ppn access
(virtual page#) (1 bit) (physical page) # (r, r/w, ...)
0
1

m Created when process is loaded

m Row for every j in {0,---,2" — 1} /I descriptor of j
w valid (1 bit): 1 iff process has page j
» ppn: physical page # where j is mapped (if valid = 1)
m access: allowed access to page j

m Layout fixed by hardware

PTBR: Page-Table Base Register

m Processor has a PTBR

m When a process is dispatched:

PTBR < phys addr of the process's page table

Paging

m In user mode, processor uses page table pointed to by PTBR
= refer to this table as “PTBR.table”

m virtual address

vpn

offset

—

physical address

PTBR.table[vpn].ppn

offset

m In kernel mode, paging optional

= no paging: physical addr = virtual addr

Address Translation w/o Cacheing Paging

m Instruction generates virtual addr in user mode

m Processor does following
s pd < PTBR.table[vpn]
w if pd.valid =0 — invalid-page exception
w if pd.access violated — invalid-access exception

m phyaddr < | sd.ppn | offset |

m access physical memory location phyaddr

m Upon exception

= processor enters kernel mode
» executes exception handler

m Requires 2 memory accesses for every virtual address
= Overcome with caches in the processor

TLB Paging

m TLB cache: holds a portion of the current page table

valid vpn (virtual page #) | ppn (phys page #) | access

m for an entry x with valid bit set:
PTBR.table[x.vpn].valid =1 and
x.[ppn, access| equals PTBR.table[x.vpn.[ppn, access]]

m Hw (set) associatively searches on valid and vpn fields

m OS clears all valid bits when a process is dispatched
= unless TLB also has a pid field // associatively searched

Address Translation with TLB Paging

m Processor generates virtual address

m If TLB does not have valid-vpn entry // TLB miss

» if PTBR.table[vpn].valid =0 — invalid-page exception
= create a valid-vpn TLB entry from PTBR.table[vpn]

= if TLB was full, overwrite an entry

Let x be valid-vpn TLB entry // TLB hit
= if access invalid wrt x.access — invalid-access exception

» physaddr <« ‘ X.ppn ‘ offset ‘

= access physical memory location physaddr

m Interaction with physical-memory and virtual-memory caches

Overview
Segmentation
Non-demand Paging
Demand Paging
Paged-Segmentation
Sparse Virtual Space
IA-32: x86 — 32-bit

Demand-Paging: Overview - 1 Demand paging

m Paging with virtual pages mapped to physical memory as needed
m Hence can exploit spatial locality in programs to provide

= virtual space greater than physical memory size
= more processes simultaneously active

m Page fault exception
= generated by access to virtual page not in memory (but in disk)
= hw undoes any partial effects of page-faulting instruction
= faulting virtual addr saved in a specified place

m Page fault handler:
= bring in virtual page to physical memory
= if no physical page is free, evict a virtual page in memory
= if the evicted virtual page is dirty, write it back to disk

Demand-Paging: Overview - 2 Demand paging

m Page replacement policy:
= which virtual page to evict when free physical page needed
= goal: minimize page faults (to maximize cpu utilization)
= maintain “usage” info for physical pages
= eg, order of last allocation / sw-only

= eg, order of least recently accessed /I hw-sw
= per process (local) or across all processes (global)

= maintain dirty bit per physical page in memory /l hw-sw
= set iff its vpage has changed from on-disk copy

evict page based on usage and dirty
= local or global

Page Table Demand paging

m Page table per process

vpn valid ppn access dirty hw-usage
0
m Row for every possible virtual page number j /I as before

w valid (1 bit): 1 iff page j in memory
= 0: page j in disk or does not exist

= ppn: physical page number // as before
m 3ccess: r, W, X, ... /| as before
w dirty (1 bit): 1 iff page j has changed from disk
» hw-usage: hw-accessed usage info, if any

= typically, referenced bit: set to 1 when hw accesses j

Additional state maintained by OS Demand paging

m For each process: valid vpage numbers and their disk locations
= can be kept in page table, if hw allows

m List of free physical pages

m Sw-accessed usage info for allocated physical pages

= eg, order of last allocation
m if info per process, can be kept in page table (if hw allows)

m For each shared phy page: links to vpage entries (in page tables)

m Core map: phy pages — global usage info, shared vpages

m Processor uses PTBR in user mode

vpn | offset | — PTBR:.table[vpn].ppn

offset

m Processor has TLB

valid vpn ppn access dirty hw-usage

= hw-usage: if present in page table
= when entry x is evicted

PTBR.table[x.vpn| . dirty / hw-usage < x.dirty/hw-usage

Address Translation (with TLB) Demand paging

m Processor generates virtual address offset | in user mode

m If TLB does not have valid-vpn entry // TLB miss
= let pd be PTBR.table[vpn]
w if pd.valid =0 — page-fault/invalid-page exception
= create a valid-vpn TLB entry from pd
= if TLB was full, replace an entry and overwrite it

Let x be valid-vpn TLB entry // TLB hit
= if access invalid wrt x.access — invalid-access exception

= physaddr < | x.ppn | offset |

m access physical memory location physaddr

OS activities Demand paging

m Handling page-fault for virtual page vpn of process P:

save state of P and move its pcb to “pagewait” queue

get a free physical page pp // may block
read vpage P.vpn from disk into pp

update P’s page table

= move P’s pcb to ready queue

m Generating free pages /I executed asynchronously as needed
= select an allocated page x to free // from usage info
= mark x's vpage(s) as invalid //'in page table(s)

w if x is dirty, write x's vpage(s) back to disk // page cleaning
= mark x as free

m Page cleaning can also be done asynchronously as needed:
= select an allocated dirty page, write to disk, mark as clean

Page Replacement: Local vs Global Demand paging

m Local

= each process P is given a set of physical pages.
free page in this set can only go to P

so per-process page usage info suffices

= OS periodically adjusts the phy page allocation

maintains a page-fault “rate” for each process
eg, inverse of cpu-time between faults
not useful: inverse of wallclock-time between faults

= moves pages from low-rate processes to high-rate processes

m Global

= a free page can go to any process // need global usage info
= no separate phy page allocation policy

Page Replacement Algorithms — 1 Demand paging

m Objective

= min # page faults given reference seqv and set of phy pages
= implementable with acceptably low overhead

m Can be applied locally or globally

m Optimal: evict the page that is used farthest in the future

= unrealizable, except in very constrained situations
= useful as a standard for evaluating other policies

m LRU: evict the page not accessed for the longest time in past
= works well because the future is usually like the past
= usage info: order pages by latest reference
» hw needs to update the order on each access: impractical

Page Replacement Algorithms — 2 Demand paging

m FIFO: evict the page that was mapped in earliest
= usage info: order pages by mapping time
= update only when page is swapped in:

m FIFO + Second Chance (also called “Clock”)
w like FIFO but also requires referenced bit R (hw-usage)
= if head page has R = 0, free page (clean if needed)
= if head page has R = 1, zero R and move page to tail
“clock™ hand moving over pages ordered in a circle

= at each step, current page is made free or its R zeroed

LRU approximation

Page Replacement Algorithms — 3 Demand paging

m Clock using referenced bit R and dirty bit D
aif R,D =0,0: free page
s if R,D =0,1: clean page, R,D < 0,0
wif R,D=1,0. R,D <+ 0,0
aif R,D=1,1 R,D + 0,1

m Clock using referenced counter R (> 1 bit)
= hw increments R at each access unless already at max
w if R = 0: free page
wnif R>0 R+~ R-1
= closer to LRU

m Clock using referenced counter R (> 1 bit) and dirty bit D

m In FIFO, more memory may cause more page faults

123412512345 9 faults.
fl1 4 5 -
fz 2 1 -3
3 3 2 - 4
123412512345 10 faults
fl1 - 5 4
f2 2 -1 5
3 3 2
f4 4 3

m LRU (and most others) do not suffer from Belady’'s anomaly

Working set of a process Demand paging

m A process exibits locality of page accesses over “short” times
m Working set at time t: virtual pages accessed in [t — J, t]

» § ~ few seconds/10° instructions

= typical: working set stays fixed for some time, then changes

m Let W(t) be the size of the working set at time t
w typical: W(t) is much less than the total # virtual pages

instr executed
between successive
page faults

phys pages

Thrashing Demand paging

m Consider P physical pages, N identical cpu-intensive processes
= each process gets P/N physical pages

m As N increases to P/W, cpu throughput increases

m As N increases beyond P/ W, cpu throughput drops
// goodput drops even more

cpu throughput

(# instrs / sec) thrashing

active processes
P/W

m To recover from thrashing, suspend some processes

Observations — 1 Demand paging

m Upon excessive thrashing, which process to kill /suspend

= one with most memory, one asking for memory, youngest
process, ...
= probably not oldest process: init (root); gdm (user); ...

m malloc() fails: out of virtual memory, not physical memory

m Non-pageable pages
= Page table? Could swap out if process is suspended
= Current/active page tables
= Pages that an 10 adapter is going to usek (DMA)
permanently allocated, eg, display
lock the page

m To improve heap locality: program mallocs a large chunk and
divides it itself

m How large should a page be? Page size vs 10 size? Page the
Kernel?

m Large sparse virtual address space: multi-level paging, inverted
page table

Overview
Segmentation
Non-demand Paging
Demand Paging
Paged-Segmentation
Sparse Virtual Space
IA-32: x86 — 32-bit

m Virtual space is segmented
m Segments and physical memory is paged

m Virtual addr: | seg # | virtual page # | offset |
s-bit m-bit n-bit

m Physical addr: | Physical page # | offset |
p-bit n-bit

Segment and Page Tables

m Each process has a segment table in memory

Seg + paging

m For each valid segment, there is a page table in memory

m Segment table entry as before except base contains physical

address of associated page table
m Page table as in demand-paging

m Processor STBR: points to segment table of running process

m Processor TLB: each entry has segment- and page-related fields

valid segment # | virtual page #

phys page #

access

Overview
Segmentation
Non-demand Paging
Demand Paging
Paged-Segmentation
Sparse Virtual Space
IA-32: x86 — 32-bit

Sparse Virtual Space Sparse Virtual Space

m Large virtual address size = infeasibly large page tables

= 32-bit virtual addr, 4KB page
= 232/212 = 220 — 1M entries per page table

» 64-bit virtual address, 4KB pages

= 204/212 = 252 — 1G x 1M entries in page table
= 64-bit virtual address, 4MB pages
= 204/222 = 2% = 1G x 1K entries in page table
m Solutions

= Large or variable-size pages
= Multi-level paging
= Inverted page tables (Hashing)

m Virtual addr: | vpnl # | vpn2 # | offset |

m Physical addr: | physical page # | offset |

level-1 page table level-2 page table physical page
0 0 0 .
: : offset
vpn1 vpn2

m In general, level j + 1 page table needed only for valid level j entry

Inverted Page Tables Sparse Virtual Space

m Inverted page table

= one table per OS, not one per process
= row for every physical page
= row J identifies the virtual page in physical page j
= [process id (pid); virtual page number (vpn); access; ...]

m Saves space if virtual mem > physical mem or # processes > 1

m Given virtual address and process id p

= search table for a row j with matching [p, v]
w if found phys addr < [}, offset] else exception

m Typically use hashing for efficiency
m 5o let j be hash(p, vpn), then proceed as above

m Difficult to accomodate page sharing between processes

Overview
Segmentation
Non-demand Paging
Demand Paging
Paged-Segmentation
Sparse Virtual Space
|A-32: x86 — 32-bit

IA-32 Address Translation IA-32: x86 — 32-bit

m Provides segmentation and optional two-level paging
m Virtual address: [segment selector (16-bit), offset (32 bit)]

m Linear address generation
= segment selector: points to segment descriptor
= segment descriptor: contains 32-bit base addr
w linear addr = base addr + offset

m Without paging: physical addr = linear addr

m With paging: linear addr — phys addr via 2-level paging
m level-1 page table: directory table
n level-2 page table: page table
= 32-bit offset = [dir (10-bit), vpn (10-bit), page offset (12-bit)]
= dir: index into directory table; yields page table addr
= vpn: index into page table; yields phys page addr
» physical addr = z + page offset

	Overview
	Segmentation
	Non-demand Paging
	Demand Paging
	Paged-Segmentation
	Sparse Virtual Space
	IA-32: x86 – 32-bit

