
Queueing Systems

Shankar

March 31, 2022

Queueing System

CPUs

ready queues

•
•
•

•
•
•

•
•
•

IO queues

Queueing Overview

Queueing system

servers + waiting rooms
customers arrive, wait, get served, depart or go to next server
queueing disciplines

non-preemptive: �fo, priority, ...
preemptive: round-robin, multi-level feedback, ...

Operating systems are examples of queueing systems

servers: hw/sw resources (cpu, disk, req handler, ...)
customers: PCBs, TCBs, ...

Given: arrival rates, service times, queueing disciplines, ...

Obtain: queue sizes, response times, fairness, bottlenecks, ...

Why do queues arise: bursty tra�c

Consider cars traveling on a road with a turn
each car takes 3 seconds to go through the turn
at most one car can be in the turn at any time

N(t): # cars in the turn and waiting to enter the turn

1 2 4 5 6 7 8 9 10 11 123 13 14 15
t

1

2
1

21

2

3

3 4

4

0

N(t)

1 2 4 5 6 7 8 9 10 11 123 13 14 15
t

1

2

21 3 4

0

N(t)

1
2

3
4

arrival rate 1/4
load 3/4
uniform

arrival rate 1/4
load 3/4
bursty

Load < 1: stable with waits depending on burstiness
Load > 1: unstable, ever-increasing waits // not relevant

Single Queue

Customer i :

arrival time // when it arrives
service time // duration of service needed
departure time // when it departs
response time // departure time � arrival time
wait time // response time � service time

Queue

number of customers in queue at time t
un�nished work in queue at time t

Steady-state metrics

Assume unending stream of customers

arrival rate //# arrivals per second averaged over all time
average service time // averaged over all customers
average response time // averaged over all customers

load // work arriving per second averaged over all time
throughput (aka departure rate):

//# departures per second averaged over all time
average queue size // averaged over all time
utilization // fraction of time server is busy

Typical goal

Given: arrival rate, average service time, queueing discipline
Obtain: average response time, average queue size

Some Steady-state Relationships

Load = arrival_rate × average_service_time

System is unstable if load > 1

avg queue size and avg response time are not de�ned
throughput = 1/service_time
utilization = 1

System is stable if load ≤ 1

throughput = arrival_rate
utilization = load

Little's Law

avg_queue_size = avg_response_time × arrival_rate

holds for any queueing (sub)system: eg, a class of customers

Steady-state: Queue Size vs Load

Avg queue size N increases �exponentially� as load ρ increases,
becoming ∞ as ρ→ 1

N increases as burstiness increases

N

ρ1.0

incre
asin

g

0

burst
iness

Steady-state: Wait time vs Service time

Queuing disciplines can discriminate based on service times

W (S): avg wait time for customers with service time S

Favor customers with small S
SJF-preemptive > SJF > RR > FIFO, LIFO
RR w quantum → 0: linear discrimination // ignoring overhead

S

FIFO

RR (qs −−> 0)W(S)

0

SJF

Relationship between idle and busy periods

Server cycles between idle periods and busy periods

Work-conserving discipline: server not idle when customer present

For work-conserving disciplines:
the sequence of idle and busy periods, hence utilization, is
independent of queueing discipline.

Proof: Consider the evolution of un�nished work Y (t)

arrival increases Y (t) by arrival's service time
while Y (t) > 0 holds, it decreases with slope −1

Evolution of un�nished work Y (t)

unfinished

work

t

1

21

2

3

4

5

4

0

Y(t)

5

3

S1

