
Operating Systems:

Implementing synchronization

constructs

Shankar

May 3, 2022



Outline overview

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



Implementing Locks: Overview overview

Implementations for single-cpu system

tcb queues for waiting // tcb: thread control block
interrupt-disabling for atomic access to queues

Implementations for multi-cpu systems

interrupt-disabling does not work
busy waiting is necessary

Spinlocks: all waiting is busy (ok for short waits)

using atomic read-modify-write instructions
using atomic read and write instructions

�Long-wait� locks: tcb queues + spinlocks to guard queues

Implementation in GeekOS (see GeekOS overview)



Outline locks via intrpt-disable

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



Lock: single-cpu, intrpt, tcb � 1 locks via intrpt-disable

Lock lck:
lckFree ← true // lck free or not
lckQueue ← []; // threads waiting to acquire lck

lck.acq(): // here on syscall with interrupts disabled
if lckFree

lckFree ← false
rti // return from interrupt

else // lck not free
update my tcb [ra set to after acq call]
move my tcb to lckQueue
scheduler()

Note: scheduler() called with interrupts o�



Lock: single-cpu, intrpt, tcb � 2 locks via intrpt-disable

lck.rel(): // here on syscall with interrupts disabled
if lckQueue 6= []

move a tcb from lckQueue to ready queue
// lckFree stays false

else
lckFree ← true

rti

For deterministic progress

�fo (or any fair) discipline for lock queue

Alternative lck.rel(): move waiting tcb to run queue

priority to waiting thread



Outline spinlocks via rmw

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



Atomic Read-Modify-Write Instructions spinlocks via rmw

Spinlock data located in memory shared by all cpus

Examples of atomic RMW instructions

test&set(x): atomic {return x ; x ← true}

swap(x): atomic {[x , reg] ← [reg, x ]}

Expensive instructions: a�ect caches, memory bus, ...



SpinLock via test&set spinlocks via rmw

Lock lck:

lckAcqd ← false // accessible by all processors

lck.acq():
while (test&set(lckAcqd)) skip;
return

lck.rel():
lckAcqd ← false
return

Probabilistic progress. Why?



Spinlock with deterministic progress � 1 spinlocks via rmw

Approach

associate ids with threads, say 0, · · · , N−1
notational convenience: assume ids passed in acq/rel calls
instead of taken from tcb

introduce booleans w[0], · · · , w[N−1]
where w[i] true i� thread i is waiting for the lock

when a thread j does release
look for next (in modulo-N order) waiting thread,
if found �pass� the lock to it, else set lock free

Lock lck:
acqd ← false
w[0], · · · w[N−1] ← [false, · · · , false]



Spinlock with deterministic progress � 2 spinlocks via rmw

lck.acq(i):

key ← true // local variable
w[i] ← true
while (w[i] and key)

key ← test&set(acqd)
w[i] ← false
return

lck.rel(i):
j ← (i + 1) mod N
while (j 6= i and not w[j])

j ← (j+1) mod N
if (j = i)

acqd ← false
else

w[j] ← false
return



Outline locks via spin+queue

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



Lock: spin, tcb,multi-cpu � 1 locks via spin+queue

Spinlock is not ok if lock can be held for a long time

excessive busy waiting

For locks with potentially long hold times

use TCB queues for waiting // like single-processor case
use spinlocks to achieve atomic queue access

// takes the place of interrupt-disabling

Lock lck:
lckFree ← true // lck free or not
lckQueue ← [] // processes waiting to acquire lck
lckSplock // spinlock for lckFree, lckQueue

Assume

rrSplock: spinlock to protect ready and run queues
scheduler(): call with rrSplock not free; releases rrSplock



Lock: spin, tcb,multi-cpu � 2 locks via spin+queue

lck.acq():

lckSplock.acq()
if lckFree

lckFree ← false
lckSplock.rel()

else // lck not free
rrSplock.acq()
update my tcb [ra set to after acq() call]
move my tcb to lckQueue
lckSplock.rel()
// note: rrSplock is not free
scheduler()



Lock: spin, tcb,multi-cpu � 3 locks via spin+queue

lck.rel():

lckSplock.acq()
if lckQueue 6= []

rrSplock.acq()
move a tcb from lckQueue to ready queue
rrSplock.rel()

else
lckFree ← true

lckSplock.rel()
return

For deterministic progress:

�fo (or any fair) discipline for lock queue
spinlocks with deterministic progress



Outline cond vars

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



Implementing Conditions � 1 cond vars

Approach: condition variable cv associated with lock lck

cvQueue: for processes waiting on cv
cv.wait(): atomic {release lck; wait on cvQueue}; acquire lck
cv.signal(): wakeup on cvQueue
spinlock: for atomic access to queues

or interrupt-disabling if single-processor

cv ← Condition(lck):
cvQueue ← [] // processes waiting on cv
cvSplock // lock to protect cvQueue

Assume

rrSplock: spinlock to protect ready and run queues
scheduler(): call with rrSplock not free; releases rrSplock



Implementing Conditions � 2 cond vars

cv.wait():
rrSplock.acq()
cvSplock.acq()
update my tcb [ra set to a1]
move my tcb to cvQueue
cvSplock.rel()
lck.rel()
scheduler()

a1: lck.acq()

cv.signal():
rrSplock.acq()
cvSplock.acq()
move a tcb from cvQueue to ready queue
cvSplock.rel()
rrSplock.rel()



Outline semaphores

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



Semaphores � 1 semaphores

Approach: semaphore sem

semVal: value of sem
semQueue: for processes waiting on sem
P: if semVal > 0 then decrement it else join semQueue
V: if semQueue not empty then move a tcb to ready queue

else increment semVal
spinlocks for atomic access to queues

or interrupt-disabling if single processor

sem ← Semaphore(N):
semVal ← N // value of sem
semQueue ← [] // for waiting on sem
semSplock // spinlock to protect semVal and semQueue

Assume

rrSplock: spinlock to protect ready and run queues
scheduler(): call with rrSplock not free; releases rrSplock



Implementing Semaphores � 2 semaphores

sem.P():
semSplock.acq()
if (sem.val > 0)

sem.val ← sem.val − 1
semSplock.rel()

else // sem.val = 0
rrSplock.acq()
update my tcb [ra set to after P() call]
move my tcb to semQueue
semSplock.rel()
scheduler()



Implementing Semaphores � 3 semaphores

sem.V():
semSplock.acq()
if (semQueue = [])

sem.val ← sem.val + 1
else

rrSplock.acq()
move a tcb from semQueue to ready queue
rrSplock.rel()

semSplock.rel()
return



Outline spinlocks via rw: overview

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



Critical-Section Problem spinlocks via rw: overview

Given program with

threads 0, · · · , N−1 that execute concurrently
parts of the program designated as critical sections (CSs)

To obtain entry and exit code around each CS so that

at any time there is at most one thread in all of the CSs
any thread in entry code eventually enters its CS
provided no thread stays in a CS forever
code requires only read-write atomicity

Peterson algorithm solution: N = 2

Bakery algorithm solution: arbitrary N

Terminology

thread is eating if it holds the lock
" " hungry if it is acquiring the lock
" " thinking otherwise



Outline Peterson spinlock

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



Peterson Lock Peterson spinlock

Threads 0 and 1 // id passed instead of taken from tcb

Shared variables

flag[0] ← false // true i� thread 0 is non-thinking
flag[1] ← false // true i� thread 1 is non-thinking
turn ← 0 or 1 // identi�es winner in case of con�ict

acq(i):
j ← 1− i // j is other thread's id

s1: flag[i] ← true
s2: turn ← j
s3: while (flag[j] and turn = j) skip

rel(i):

flag[i] ← false



Peterson Lock: Safety Peterson spinlock

Suppose thread i leaves s3 at time t0.
Need to show that thread j is not eating at t0.

Only two ways that i leaves s3.

Case 1: i leaves s3 because flag[j] is false.

Then at t0, j is thinking and so does not hold the lock.

Case 2: i leaves s3 because flag[j] is true and turn is i.

Thread i executed s2 at some t1 (< t0), setting turn to j.
Because turn is i at t0, j executed s2 at some t2 in [t1, t0].
Hence flag[i] is true and turn is i during [t2, t0].
Hence j is stuck in s3.



Peterson Lock: Progress Peterson spinlock

Suppose i calls acq(i) and is in s3 at time t0.
Need to show that i eventually leaves s3.

C1: Suppose turn is i at t0.
It remains so. Hence i eventually leaves s3.

C2: Suppose flag[j] is false at t0.
Eventually i leaves s3 or j does s1;s2 (→ C1).

C3: Suppose flag[j] is true and turn is j at t0.
So j is eating or hungry.

C3a: If j is eating, it eventually stops eating (→ C2 → C1)

C3b: If j is at s2, it eventually does s2 (→ C1).

C3c : If j is in s3, then turn remains j, so j eventually eats
(→ C3a → C2 → C1)

So eventually C1 holds, which leads to i eating.



Outline N from 2

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



N-user lock from 2-user locks N from 2

De�ne a binary tree of (at least) N leaf nodes.

Associate a distinct 2-user lock with every non-leaf node.

Associate the N users with distinct leaf nodes.

A thread acquires the N-user lock by acquiring in order
the 2-user locks on the path from my leaf to root

A thread releases the N-user lock by releasing
the acquired 2-user locks (in any order)

4-user lock example

- thread 0 acquires x1, x0
- thread 2 acquires x2, x0

users 0 1 2 3

x0

x1

2−user

locks
x2

But there are better ways to implement N-user locks



Outline bakery spinlock

1. Implementing Locks: Overview

2. Locks via Interrupt-Disabling (single-cpu only)

3. Spinlocks via Read-Modify-Write Instructions (multi-cpu)

4. Lock with Spin Waiting + Queue Waiting (multi-cpu)

5. Condition Variables

6. Semaphores

7. Spinlocks via Read and Write Instructions (multi-cpu)

8. SpinLock via RW: Peterson solution

9. Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution



Bakery Solution: Initial version bakery spinlock

Threads 0, · · · , N-1
Shared non-negative integer variables

num[0], · · · , num[N-1] ← 0, · · · , 0
num[i] is 0 i� i thinking; in con�ict, smaller num wins

acq(i):
s1: num[i] ← max(num[0], · · · , num[N-1]) + 1

for p in 0..N-1:
s2: while (0 < num[p] < num[i]):

noop

rel(i):
num[i] ← 0

This works if s1 is atomic.

It does not work if only reads and writes are atomic.



Analysis assuming s1 atomic bakery spinlock

De�ne

Q: hypothetical queue of ids of non-thinking threads
in increasing num order

i joins Q when thread i executes s1
i leaves Q when thread i executes rel

i is ahead of j: 0 < num[i] < num[j] holds
i has passed j: i is eating or i is in s2 with i.p > j.

Properties

arrival to Q joins at tail // coz s1 is atomic, right?
threads in Q have distinct nums " " " "

if i is ahead of j then j cannot pass i
so only the thread at the head of Q can eat

if i is ahead of j then i eventually passes j
so the thread at the head of Q will eventually eat



Assuming only read-write atomicity bakery spinlock

Flaw 1: threads i and j leave s1 with the same num

i and j enter s1 simltaneously
each reads the other's num before either updates its num
each updates its num and enters s2
each passes the other, so both acquire the lock

Flaw 2: j reads unstable num[i] and wrongly passes i

i does s1 except for updating num[i], to say x
k does s1, setting num[k] to x
j does s1, setting num[j] to x + 1
j and k enter s2 and pass i (because num[i] is 0)
i completes s1, setting num[i] to x
i enters s2 and passes j (because num[j] > num[i])
i and j can now both acquire the lock



Fix assuming only read-write atomicity bakery spinlock

Fixing �aw 1

use thread ids to break ties // lexicographic ordering
let [num[i],i] < [num[j],j] denote

num[i] < num[j] or (num[i] = num[j] and i < j)

Fixing �aw 2

introduce booleans choosing[0], · · · , choosing[N-1]
i sets choosing[i] true while i in s1
in s2, thread j reads num[i] only after �nding choosing[i]
false
so if num[i] changes after j reads it, then i executed s1 after
j left s1.
so num[i] will be higher than num[j], so i cannot pass j



Bakery Lock bakery spinlock

Shared variables:
choosing[0..N-1] ← false
num[0..N-1] ← 0

acq(i):
t1: choosing[i] ← true
t2: num[i] ← max(num[0],· · · ,num[N-1]) + 1
t3: choosing[i] ← false

for p in 0..N-1:
t4: while choosing[p]:

noop
t5: while [0, .] < [num[p], p] < [num[i], i]:

noop

rel(i):
num[i] ← 0



Bakery Lock Analysis: De�nitions bakery spinlock

De�ne

i is choosing: choosing[i] is true (ie, i on t2,t3)

j is a peer of i:

i and j are non-thinking
their choosing intervals overlapped
j is still choosing

Q: hypothetical queue of ids of non-thinking non-choosing
threads in increasing [num,id] order

// �non-choosing� simply makes the argument cleaner: once a
// thread enters Q, it is nobody's peer (but it can have peers)

i is ahead of j: [0,·] < [num[i], i] < [num[j], j] holds

i has passed j: i is eating or i is in t4..t5 with i.p > j



Bakery Lock Analysis: Properties bakery spinlock

While thread i is in Q
set of its peers keeps decreasing // choosing is non-blocking
only a peer can join Q ahead of i
so at most N-1 threads can join Q ahead of i

When thread i reads num[j] in t5
j is not currently a peer of i
// j not choosing, or started choosing after i �nished choosing
so i may pass j based on an unstable num[j]
but j will not pass i // coz num[j] will exceed num[i]

only the head eats // coz i passes j only if i is ahead of j

every hungry i eventually eats
eventually i has no peers // coz choosing is non-blocking
after this, no thread joins ahead of i, the head eventually eats,
so i eventually becomes the head and eats


	Implementing Locks: Overview
	Locks via Interrupt-Disabling (single-cpu only)
	Spinlocks via Read-Modify-Write Instructions (multi-cpu)
	Lock with Spin Waiting + Queue Waiting (multi-cpu)
	Condition Variables
	Semaphores
	Spinlocks via Read and Write Instructions (multi-cpu)
	SpinLock via RW: Peterson solution
	Obtaining N-user locks from 2-user locks
	Spinlock via RW: Bakery solution

